-
念珠菌为条件致病真菌,可寄居于人体的不同部位,当人体局部或全身免疫力下降时,其致病性可造成个体浅表或全身感染。白念珠菌(Candidaalbicans)是念珠菌的一种,是引发侵袭性感染的最主要致病菌[1]。近年来,由于抗真菌药物的大量使用,白念珠菌的耐药性逐渐增加。常规抗菌药对白念珠菌的抑制效果明显降低。
相对于单药而言,多种药物联合使用时往往能通过药效互补,起到协同作用,增强抑菌效果[2-3]。联合用药提高了抑菌效果,患者的治疗周期缩短,治疗成本可进一步降低。因此,研究抗白念珠菌药物联合疗法对于治疗白念珠菌感染非常有意义。
一般来说,联合疗法会同时使用抗真菌药和增效剂。目前经典的抗真菌药物有唑类化合物(如氟康唑)、多烯类(如两性霉素B)和棘白菌素类(如卡泊芬净)等,这些药物可直接抑制或杀伤白念珠菌。氯法齐明、法尼醇本身对真菌没有直接抑制作用,但可作为增效剂辅助增强抗真菌药物治疗效果,增强耐药菌的敏感性。近年来,光动力学、声动力学疗法等新兴的技术应用于抗真菌的治疗,同时传统的抗真菌物质在现代技术的改进下也能发挥特有的优势,比如将银制成纳米银颗粒用于抑制白念珠菌增殖。本文将针对白念珠菌尤其是耐药菌的杀伤或抑制作用,聚焦于传统抗真菌药物与声动力学/光动力学疗法、纳米银颗粒这几类抗菌方式,阐述与之相关的联合疗法。
Research progress on drug combination therapy against Candida albicans
-
摘要: 白念珠菌是念珠菌属最常见的种类之一,是临床上重要的侵袭性念珠菌感染来源。由于传统抗真菌药物的广泛使用,临床已经分离出很多耐药白念珠菌,导致部分传统药物在临床治疗效果明显下降。同时,一些化合物自身的毒性限制了其临床应用。在这种背景下,联合疗法由于发挥了各种药物或手段的协同作用,有可能改进单独用药的不足,具有抑制白念珠菌生长的巨大潜力。Abstract: Candida albicans is one of the most common species of Candida, which is an important cause of invasive candidiasis in clinic. Due to the frequently use of classical antifungal agents, there are amounts of drug resistant C. albicans being isolated, causing the significantly decreasing of the efficacy of some antifungal agents in clinical treatment. Besides, the use of some compounds in clinic has been limited because of their toxicities. In such a context, drug combination therapy shows great potential on antifungal because of the synergy of different drugs or therapeutic methods that could bring, which could improve the weaknesses of single drug.
-
Key words:
- Candida albicans /
- combination therapy /
- azole /
- polyenes /
- echinocandins /
- photodynamic therapy /
- ultrasonic therapy /
- silver nanoparticles
-
[1] ZENG Z R, TIAN G, DING Y H, et al. Surveillance study of the prevalence, species distribution, antifungal susceptibility, risk factors and mortality of invasive candidiasis in a tertiary teaching hospital in Southwest China[J]. BMC Infect Dis,2019,19(1):939. doi: 10.1186/s12879-019-4588-9 [2] DE CREMER K, DE BRUCKER K, STAES I, et al. Stimulation of superoxide production increases fungicidal action of miconazole against Candida albicans biofilms[J]. Sci Rep,2016,6:27463. doi: 10.1038/srep27463 [3] LOHSE M B, GULATI M, CRAIK C S, et al. Combination of antifungal drugs and protease inhibitors prevent Candida albicans biofilm formation and disrupt mature biofilms[J]. Front Microbiol,2020,11:1027. doi: 10.3389/fmicb.2020.01027 [4] ZHANG M, YAN H Y, LU M J, et al. Antifungal activity of ribavirin used alone or in combination with fluconazole against Candida albicans is mediated by reduced virulence[J]. Int J Antimicrob Agents,2020,55(1):105804. doi: 10.1016/j.ijantimicag.2019.09.008 [5] NISHIMOTO A T, SHARMA C, ROGERS P D. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans[J]. J Antimicrob Chemother,2020,75(2):257-270. doi: 10.1093/jac/dkz400 [6] DIŽOVÁ S, ČERNÁKOVÁ L, BUJDÁKOVÁ H. The impact of farnesol in combination with fluconazole on Candida albicans biofilm: regulation of ERG20, ERG9, and ERG11 genes[J]. Folia Microbiol (Praha),2018,63(3):363-371. doi: 10.1007/s12223-017-0574-z [7] 周罗成, 王宁, 朱莹莹, 等. 法尼醇在促氟康唑耐药白念珠菌凋亡中的作用机制[J]. 内科理论与实践, 2020, 15(1):49-52. doi: 10.16138/j.1673-6087.2020.01.010 [8] HUANG X X, ZHENG M Y, YI Y L, et al. Inhibition of berberine hydrochloride on Candida albicans biofilm formation[J]. Biotechnol Lett,2020,42(11):2263-2269. doi: 10.1007/s10529-020-02938-6 [9] ZHANG Y, BAI X, YUWEN H S, et al. Alkaloids from Tabernaemontana divaricata combined with fluconazole to overcome fluconazole resistance in Candida albicans[J]. Bioorg Chem,2021,107:104515. doi: 10.1016/j.bioorg.2020.104515 [10] RHIMI W, ANEKE C I, ANNOSCIA G, et al. Effect of chlorogenic and Gallic acids combined with azoles on antifungal susceptibility and virulence of multidrug-resistant Candida spp. and Malassezia furfur isolates[J]. Med Mycol,2020,58(8):1091-1101. doi: 10.1093/mmy/myaa010 [11] GUO N, LING G H, LIANG X Y, et al. In vitro synergy of pseudolaric acid B and fluconazole against clinical isolates of Candida albicans[J]. Mycoses,2011,54(5):e400-e406. doi: 10.1111/j.1439-0507.2010.01935.x [12] SHIH P Y, LIAO Y T, TSENG Y K, et al. A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity[J]. Front Microbiol,2019,10:602. doi: 10.3389/fmicb.2019.00602 [13] LO W H, DENG F S, CHANG C J, et al. Synergistic antifungal activity of chitosan with fluconazole against Candida albicans, Candida tropicalis, and fluconazole-resistant strains[J]. Molecules,2020,25(21):5114. doi: 10.3390/molecules25215114 [14] 严园园, 汪天明, 施高翔, 等. 黄连解毒汤联合氟康唑对耐药白念珠菌麦角甾醇的影响[J]. 中国中药杂志, 2015, 40(4):727-732. [15] SUN W W, WANG D C, YU C X, et al. Strong synergism of dexamethasone in combination with fluconazole against resistant Candida albicans mediated by inhibiting drug efflux and reducing virulence[J]. Int J Antimicrob Agents,2017,50(3):399-405. doi: 10.1016/j.ijantimicag.2017.03.015 [16] LI X Y, YU C X, HUANG X, et al. Synergistic effects and mechanisms of budesonide in combination with fluconazole against resistant Candida albicans[J]. PLoS One,2016,11(12):e0168936. doi: 10.1371/journal.pone.0168936 [17] DELARZE E, BRANDT L, TRACHSEL E, et al. Identification and characterization of mediators of fluconazole tolerance in Candida albicans[J]. Front Microbiol,2020,11:591140. doi: 10.3389/fmicb.2020.591140 [18] UPPULURI P, NETT J, HEITMAN J, et al. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms[J]. Antimicrob Agents Chemother,2008,52(3):1127-1132. doi: 10.1128/AAC.01397-07 [19] O'MEARA T R, ROBBINS N, COWEN L E. The Hsp90 chaperone network modulates Candida virulence traits[J]. Trends Microbiol,2017,25(10):809-819. doi: 10.1016/j.tim.2017.05.003 [20] YUAN R, TU J, SHENG C Q, et al. Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans[J]. Front Microbiol,2021,12:680382. doi: 10.3389/fmicb.2021.680382 [21] ZHANG J Q, LIU W, TAN J W, et al. Antifungal activity of geldanamycin alone or in combination with fluconazole against Candida species[J]. Mycopathologia,2013,175(3-4):273-279. doi: 10.1007/s11046-012-9612-1 [22] MATTHEWS R C, RIGG G, HODGETTS S, et al. Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. [J]. 抗菌试剂及化学方法, 2003, 47(7): 2208-2216. MATTHEWS R C, RIGG G, HODGETTS S, et al. Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90.[J]. Antimicrob Agents Chemother, 2003, 47(7):2208-2216. [23] GRELA E, ZDYBICKA-BARABAS A, PAWLIKOWSKA-PAWLEGA B, et al. Modes of the antibiotic activity of amphotericin B against Candida albicans[J]. Sci Rep,2019,9(1):17029. doi: 10.1038/s41598-019-53517-3 [24] AVERSA F, BUSCA A, CANDONI A, et al. Liposomal amphotericin B (AmBisome®) at beginning of its third decade of clinical use[J]. J Chemother,2017,29(3):131-143. doi: 10.1080/1120009X.2017.1306183 [25] KHAN S N, KHAN S, MISBA L, et al. Synergistic fungicidal activity with low doses of eugenol and amphotericin B against Candida albicans[J]. Biochem Biophys Res Commun,2019,518(3):459-464. doi: 10.1016/j.bbrc.2019.08.053 [26] CHUDZIK B, BONIO K, DABROWSKI W, et al. Synergistic antifungal interactions of amphotericin B with 4-(5-methyl-1, 3, 4-thiadiazole-2-yl) benzene-1, 3-diol[J]. Sci Rep,2019,9(1):12945. doi: 10.1038/s41598-019-49425-1 [27] UCHIDA R, KONDO A, YAGI A, et al. Simpotentin, a new potentiator of amphotericin B activity against Candida albicans, produced by Simplicillium minatense FKI-4981[J]. J Antibiot (Tokyo),2019,72(3):134-140. doi: 10.1038/s41429-018-0128-x [28] FUKUDA T, NAGAI K, YAGI A, et al. Nectriatide, a potentiator of amphotericin B activity from Nectriaceae sp. BF-0114[J]. J Nat Prod,2019,82(10):2673-2681. doi: 10.1021/acs.jnatprod.8b01056 [29] YAGI A, UCHIDA R, KOBAYASHI K, et al. Polyketide glycosides phialotides A to H, new potentiators of amphotericin B activity, produced by Pseudophialophora sp. BF-0158[J]. J Antibiot (Tokyo),2020,73(4):211-223. doi: 10.1038/s41429-019-0276-7 [30] ALVAREZ C, ANDES D R, KANG J Y, et al. Antifungal efficacy of an intravenous formulation containing monomeric amphotericin B, 5-fluorocytosine, and saline for sodium supplementation[J]. Pharm Res,2017,34(5):1115-1124. doi: 10.1007/s11095-017-2121-7 [31] PERLIN D S. Mechanisms of echinocandin antifungal drug resistance[J]. Ann N Y Acad Sci,2015,1354(1):1-11. doi: 10.1111/nyas.12831 [32] LARWOOD D J. Nikkomycin Z—ready to meet the promise? JoF,2020,6(4):261. doi: 10.3390/jof6040261 [33] KOVÁCS R, NAGY F, TÓTH Z, et al. Synergistic effect of nikkomycin Z with caspofungin and micafungin against Candida albicans and Candida parapsilosis biofilms[J]. Lett Appl Microbiol,2019,69(4):271-278. doi: 10.1111/lam.13204 [34] CHEN Y L, LEHMAN V N, AVERETTE A F, et al. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans[J]. PLoS One,2013,8(3):e57672. doi: 10.1371/journal.pone.0057672 [35] ROBBINS N, SPITZER M, YU T, et al. An antifungal combination matrix identifies a rich pool of adjuvant molecules that enhance drug activity against diverse fungal pathogens[J]. Cell Rep,2015,13(7):1481-1492. doi: 10.1016/j.celrep.2015.10.018 [36] COOLS T L, STRUYFS C, DRIJFHOUT J W, et al. A linear 19-mer plant defensin-derived peptide acts synergistically with caspofungin against Candida albicans biofilms[J]. Front Microbiol,2017,8:2051. doi: 10.3389/fmicb.2017.02051 [37] TROSKIE A M, RAUTENBACH M, DELATTIN N, et al. Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms[J]. Antimicrob Agents Chemother,2014,58(7):3697-3707. doi: 10.1128/AAC.02381-14 [38] MASOUDI Y, VAN RENSBURG W, BARNARD-JENKINS B, et al. The influence of cellulose-type formulants on anti- Candida activity of the tyrocidines[J]. Antibiotics (Basel),2021,10(5):597. doi: 10.3390/antibiotics10050597 [39] SABINO C P, WAINWRIGHT M, RIBEIRO M S, et al. Global priority multidrug-resistant pathogens do not resist photodynamic therapy[J]. J Photochem Photobiol B,2020,208:111893. doi: 10.1016/j.jphotobiol.2020.111893 [40] HU X Q, HUANG Y Y, WANG Y G, et al. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections[J]. Front Microbiol,2018,9:1299. doi: 10.3389/fmicb.2018.01299 [41] PANARIELLO B H D, KLEIN M I, ALVES F, et al. DNase increases the efficacy of antimicrobial photodynamic therapy on Candida albicans biofilms[J]. Photodiagnosis Photodyn Ther,2019,27:124-131. doi: 10.1016/j.pdpdt.2019.05.038 [42] DAVIES A, GEBREMEDHIN S, YEE M, et al. Cationic porphyrin-mediated photodynamic inactivation of Candida biofilms and the effect of miconazole[J]. J Physiol Pharmacol,2016,67(5):777-783. [43] LU J J, LI W, ZHENG W A, et al. Successful treatment of kerion with itraconazole and ALA-PDT: a case report[J]. Photodiagnosis Photodyn Ther,2019,27:385-387. doi: 10.1016/j.pdpdt.2019.07.007 [44] YANG M, DU K Y, HOU Y R, et al. Synergistic antifungal effect of amphotericin B-loaded poly(lactic-co-glycolic acid) nanoparticles and ultrasound against Candida albicans biofilms[J]. Antimicrob Agents Chemother,2019,63(4):e02022-e02018. [45] Gong-chang YU, Yong ZHANG, Ke NIE. Anti-emetic mechanisms of Xiaobanxia Tang Decoction on the chemotherapy-induced pica model in rats[J]. 中国药理学与毒理学杂志, 2015, 29(S1): 84-85. Gong-chang YU, Yong ZHANG, Ke NIE. Anti-emetic mechanisms of Xiaobanxia Tang Decoction on the chemotherapy-induced pica model in rats[J]. Chinese Journal of Pharmacology and Toxicology, 2015, 29(S1):84-85. [46] RADHAKRISHNAN V S, REDDY MUDIAM M K, KUMAR M, et al. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans)[J]. Int J Nanomedicine,2018,13:2647-2663. doi: 10.2147/IJN.S150648 [47] LARA H H, LOPEZ-RIBOT J L. Inhibition of mixed biofilms of Candida albicans and methicillin-resistant Staphylococcus aureus by positively charged silver nanoparticles and functionalized silicone elastomers[J]. Pathogens,2020,9(10):784. doi: 10.3390/pathogens9100784 [48] GUERRERO D J P, BONILLA J J A, LÓPEZ C C O, et al. Encapsulation of silver nanoparticles in polylactic acid or poly(lactic-co-glycolic acid) and their antimicrobial and cytotoxic activities[J]. J Nanosci Nanotechnol,2019,19(11):6933-6941. doi: 10.1166/jnn.2019.16663 [49] LEE B, LEE M J, YUN S J, et al. Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in Candida albicans, but not in Saccharomyces cerevisiae[J]. Int J Nanomedicine,2019,14:4801-4816. doi: 10.2147/IJN.S205736
计量
- 文章访问数: 6131
- HTML全文浏览量: 1706
- PDF下载量: 41
- 被引次数: 0