-
藤茶即显齿蛇葡萄Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang,是葡萄科蛇葡萄属的一种野生木质落叶藤本植物,俗称藤茶、白茶等。其产地主要分布于湖南、湖北、云南、贵州、广东、广西、福建等地[1]。我国壮族和瑶族百姓,以及产地居民将其幼嫩茎叶经揉制、干燥制成保健茶,用于感冒、发热、咽喉肿痛、疮疖等症,至今已有数百年的历史[2-3]。二氢杨梅素(dihydromyricetin,DMY)为藤茶中主要的二氢黄酮醇类化合物,既往研究证实二氢杨梅素具有抗氧化、抗肿瘤、抗炎、解酒保肝、抗病原微生物及调血脂等多方面的药理作用[4-5]。牛蒡子(Fructus arctii)又名大力子、鼠粘子、恶实等,为菊科二年生草本植物牛蒡(Arctium lappa L.)的干燥成熟果实。具有疏散风热、宣肺祛痰、利咽透疹和解毒消肿的功效[6-7]。笔者通过研究藤茶不同产地、部位、加工工艺的二氢杨梅素含量,进一步完善藤茶的质量标准。评价优选藤茶与牛蒡子配伍的清咽功效,为进一步开发清咽功能保健食品提供实验依据。
-
藤茶植物原料于2018年6~8月采自湖南、湖北、福建、贵州不同乡镇,所有采集的原植物均经药学高级工程师雷雨博士鉴定为葡萄科蛇葡萄属植物显齿蛇葡萄(Ampelopsis grossedentata)的茎叶部位。不同植株采收间隔不小于300 m,单株不同采收方式及部位分为人工采收(芽尖、嫩叶、粗老叶、茶梗)、机器采收;藤茶(批号:20180620,贵州江口梵净山云峰野生植物开发有限公司);牛蒡子(批号:171101,安国市深豪药业有限公司);藤茶牛蒡子浓缩液:取采收地为贵州江口县的芽尖部位优选藤茶及牛蒡子的复配样品105.0 g(藤茶63.0 g,牛蒡子42.0 g),常压、温度80 ℃,提取2次,每次各用1 050 ml无菌水浸泡30 min,将提取液合并浓缩至70 ml,以下简称“复配样品”;二氢杨梅素对照品(99.57 %,MMST-18031501,中国科学院成都生物研究所成都曼思特生物科技有限公司);甲醇(色谱纯,Fisher Chemical);纯水(MLMP-1-20T,四川优普超纯科技有限公司优普系列超纯水器);磷酸(90 %,BCBD9465,Fluka);乙醚(国药集团化学试剂北京有限公司);碘伏(山东利尔康牌医疗科技股份有限公司)。
-
安捷伦高效液相色谱仪(Agilent 1290,DAD检测器);超声波仪器(上海睿祺电子设备有限公司);QHAMS型精密十万分之一天平;FW100型高速万能粉碎机(天津市泰斯特仪器有限公司);XR-YLS-25A型电动耳肿打孔器(上海欣软信息科技有限公司);电热鼓风干燥箱(上海一恒科技有限公司);微量加样器(Hamilton)。
-
SPF级SD大鼠,雄性,体重(185 ± 15)g,10周龄,购自北京华阜康生物科技股份有限公司 [许可证号:SCXK(京)2019-0008]。SPF级BALB/c小鼠,雄性,体重(20 ± 2)g,6周龄,购自北京华阜康生物科技股份有限公司 [许可证号:SCXK(京)2019-0008]。实验动物饲养于北京联合大学应用文理学院保健食品功能检测中心SPF级动物室 [许可证号:SYXK(京)2017-0038]。分笼饲养,控制室温(25 ± 2)℃,自由摄食、饮水。维持饲料由北京华阜康生物科技股份有限公司 [许可证号:SCXK(京)2019-0008] 生产。
-
色谱柱为Agilent ZORBAX SB-C18柱(250 mm×4.6 mm, 5 µm);甲醇−0.05 %磷酸水溶液(30∶70)为流动相;流动相流速:1 ml/min;检测波长291 nm;柱温25 ℃;进样量10 µl;运行时间20 min;理论塔板数按二氢杨梅素计算不低于3 000。二氢杨梅素保留时间为8.37 min,如图1所示获得样品色谱图。
-
精密称定二氢杨梅素对照品12.72 mg,置于10 ml容量瓶中,以甲醇溶解并稀释至刻度,摇匀,经0.45 µm滤膜过滤,制得1.272 mg/ml储备液。
-
样品拆袋,混合均匀,粉碎。精密称定样品约0.05 g于100 ml容量瓶中,加70 %乙醇,超声提取30 min。取出后冷却至室温,加入70 %乙醇定容至刻度,摇匀,静置。经0.45 µm微孔滤膜过滤后,供液相色谱分析用。
-
采用逐级稀释法,量取适量二氢杨梅素储备液,至于10 ml容量瓶中,加70 %乙醇定容,制得浓度分别为0.019 9、0.039 8、0.079 5、0.159、0.318 mg/ml。以进样浓度(mg/ml)为横坐标(X),峰面积为纵坐标(Y),固定进样量为10 µl,绘制标准曲线,回归方程为:Y = 165 202 X + 482.04(r = 0.999),表明二氢杨梅素对照品在0.019 9~0.318 mg/ml范围内线性关系良好。
-
精密吸取二氢杨梅素系列对照品溶液0.079 5 mg/ml,按规定色谱条件重复进样6次,每次进样10 µl,记录二氢杨梅素的峰面积值,重复6次进样峰面积的RSD为0.60 %,表明该方法的仪器精密度良好。
-
称取同一样品6份,按照“2.2.2”项制备供试品溶液进行重复性试验,二氢杨梅素平均含量为14.23%,RSD为1.24 %,表明该方法重现性良好。
-
取同一供试品溶液,分别于0、2、4、6、8、12 h进行测定,二氢杨梅素峰面积RSD为1.41 %,表明供试品溶液在12 h内基本稳定,该方法稳定性良好。
-
按9份样品中二氢杨梅素含量的1.2倍,1.0倍,0.8倍,分别准确加入二氢杨梅素对照品。按照“2.2.2”供试品制备方法制备供试液,HPLC进样检测,计算加样回收率。该样品二氢杨梅素的加样回收率在95.04 %~100.4 %之间,平均回收率为97.53 %,RSD为2.00 %,表明本方法的准确度良好,具体结果见表1。
表 1 藤茶中二氢杨梅素加样回收率的试样结果(
$n=9 $ )样品
(m/mg)原有量
(m/mg)加入量
(m/mg)测得量
(m/mg)回收率
(%)平均回收率
(%)RSD
(%)50.48 6.977 5.010 11.77 95.67 97.53 2.000 50.00 6.902 5.560 12.39 98.71 50.97 6.980 5.460 12.46 100.4 49.64 6.816 6.670 13.38 98.41 49.81 6.935 6.830 13.61 97.74 50.09 6.918 6.810 13.39 95.04 49.59 6.834 8.120 14.94 99.83 50.61 6.854 8.250 14.78 96.07 50.05 6.961 8.300 14.92 95.89 综上,方法学考察结果表明本研究建立的提取和分析方法能够满足藤茶中二氢杨梅素定量分析的要求。
-
计量资料以(
$\bar{x}\pm s$ )表示,采用SPSS 16.0软件统计分析。统计学意义水平设定为P < 0.05表示显著性差异,P < 0.01表示极显著性差异,均证明该数据具有统计学意义。 -
供试品溶液进样10 µl,通过回归方程计算不同采收点藤茶芽尖部位的二氢杨梅素含量。结果17批样品中二氢杨梅素含量介于18.60 %~37.69 %之间,含量较高的采样点在湖南省八大公山、贵州省江口县、贵州省罗场乡,较低的采样点多为湖北及福建一带。具体见表2。
表 2 不同采收点芽尖部位藤茶中二氢杨梅素的含量(
$\bar{x}\pm s$ ,$ n=6 $ )采样点 含量(%) 不同地区含量(%) 湖北恩施 20.80±1.2 24.33±8.1 湖北来凤1 18.60±1.1 湖北来凤2 33.60±1.0 福建将乐1 30.30±0.6 29.47±1.2 福建将乐2 28.63±0.9 湖南八大公 37.69±0.5 31.66±5.0 湖南张家界1 33.67±0.3 湖南张家界2 29.83±0.9 湖南张家界3 30.39±1.2 湖南张家界4 30.43±0.6 湖南武陵山1 22.83±0.5 湖南武陵山2 36.81±0.8 贵州江口1 35.50±0.6 32.26±2.9 贵州江口2 31.40±0.8 贵州江口3 30.60±0.7 贵州罗场1 35.11±1.0 贵州罗场2 28.69±0.5 相对于湖南省张家界各采收点差异范围(29.83 %~33.67 %),贵州省江口县(30.60 %~35.50 %)、贵州省罗场乡(28.69 %~35.11 %)、湖北省来凤县(18.60 %~33.60 %)、湖南省武陵山地区(22.83 %~36.81 %),藤茶芽尖部位中DMY含量出现较大浮动。贵州省总体采收藤茶芽尖含量水平最高,其次为湖南省。
-
自然晒干法指将新鲜采集的样品摊开,于阳光下晒至全干;自然阴干法指新鲜采集的样品摊开,于阴凉干燥通风处晾至全干。选择总体含量较高且含量趋于平稳的贵州省江口县2号采收地样品,利用人工采收手法收集同一植株的芽尖、嫩叶、粗老叶及茶梗样品,同时利用机器采收同一植株样本。而后利用不同干燥方式进行加工处理,含测结果如表3所示。
表 3 同一采收地点不同部位及加工方式二氢杨梅素含量(
$\bar{x}\pm s$ ,$ n=6 $ )采收部位 自然晒干含量(%) 自然阴干含量(%) 芽尖 35.85±0.4 32.22±0.8 嫩叶 26.22±0.5 28.32±0.6 粗老叶 15.84±0.5 16.02±0.5 茶梗 15.32±0.2 15.47±0.2 机器采收 20.40±1.0 20.77±0.9 注:1.采收地点为贵州省江口县2号点。2.芽尖部位用自然晒干加工方式其二氢杨梅素含量最高,平均含量为35.85 %。 -
受试动物精神状态、行为活动、摄食摄水等均未见明显异常。给予复配样品前后,各剂量组大鼠、小鼠的体重与空白对照组比较均无显著性差异。
-
大鼠低、中、高剂量组分别给予0.38、0.75、2.25 g/kg复配样品原药材折算浓缩液灌胃,同时设空白对照组0 g/kg。经口给予大鼠复配样品36 d,实验结束前8 d,用脱毛器脱去大鼠两侧腹股沟处的毛,乙醚麻醉大鼠,碘伏消毒,在无菌条件下切开大鼠两侧腹股沟皮肤,植入经高压灭菌并烘干、称重的棉球,缝合切口,继续给予复配样品。实验结束当天,给予复配样品1 h后,断颈处死大鼠,在原缝合处剪开皮肤,剥离并取出棉球肉芽组织,置于已称重的洁净平皿中,恒温干燥箱60 ℃开盖干燥1 h后称重,计算肉芽肿净重量。
由表4可见,经口给予大鼠复配样品36 d后,与空白对照组比较,中剂量组(0.75 g/kg)和高剂量组(2.25 g/kg)大鼠肉芽肿净量降低,其中,中剂量组具有显著性差异,高剂量组具有极显著性差异,说明该剂量下的复配样品可显著改善大鼠棉球植入致炎率。
表 4 大鼠棉球植入实验肉芽肿净量(
$\bar{x}\pm s$ ,$n=12 $ )组别 给药剂量(g/kg) 肉芽肿(m/mg) 空白对照组 0.00 428.2±65.4 低剂量组 0.38 392.3±45.3 中剂量组 0.75 372.6±58.9* 高剂量组 2.25 347.3±20.9** *P < 0.05,**P < 0.01,与空白对照组比较。 -
小鼠低、中、高剂量组分别给予0.75、1.50、4.50 g/kg复配样品原药材折算浓缩液灌胃,同时设空白对照组0 g/kg。经口给予大鼠复配样品36 d,实验结束当天,吸取二甲苯20 µl,滴加在小鼠右耳外侧面耳郭的中央,让其自由扩散,30 min后,将小鼠脱颈椎处死,剪下双耳,用9 mm直径打孔器在两耳相同部位打下耳片并称重,以两耳重量之差为耳郭肿胀值,计算耳郭肿胀率。
由表5可见,经口给予小鼠复配样品36 d后,各剂量组小鼠耳郭肿胀率与空白对照组比较均有降低,且差异具有统计学意义。
表 5 小鼠耳肿胀实验耳郭肿胀率(
$\bar{x}\pm s$ ,$n=15 $ )组别 给药剂量(g/kg) 耳郭肿胀率(%) 空白对照组 0.00 74.8±24.3 低剂量组 0.75 64.2±11.9 中剂量组 1.50 59.8±13.8* 高剂量组 4.50 53.7±7.8** *P < 0.05,**P < 0.01,与空白对照组比较。 -
本研究考察了湖北、湖南、贵州、福建等不同产地藤茶有效成分二氢杨梅素的含量,采样点所在地为显齿蛇葡萄主产区[8-9],其中种植于贵州省江口县的藤茶无论在不同产地功效成分含量还是同一产地不同植株含量稳定性上都相对较好。藤茶以芽尖嫩叶多为佳,粗老叶、茶梗较多会影响藤茶整体品质和功效。该研究数据可作为企业收购原料参考指标,用于判定藤茶产品中二氢杨梅素的含量情况,为生产及研发提供依据。
经口给予本配伍样品36 d后,高剂量组大鼠肉芽肿净量及小鼠耳郭肿胀率均显著低于空白对照组。该复配样品对大、小鼠体重增长均无不良影响。据结果判定大鼠棉球植入结果及小鼠耳肿胀治疗效果均呈阳性,可认定该配伍样品具有清咽功能。综上所述,该藤茶及牛蒡子配伍样品在动物致炎模型中发挥了消炎作用。
吸烟、饮酒等不良习惯加大群众患急慢性咽炎的概率,具有清咽功能保健食品的开发需求迫在眉睫[10],本着中医药主张未病先治的理论,笔者将继续对本配伍药效及安全性进行深入研究。
Therapeutic effects study on the contents of dihydromyricetin in ampelopsis grossedentata from different places and their compatibility with fructus arctiine
-
摘要:
目的 探究不同产地、部位及加工工艺藤茶中二氢杨梅素含量的差异,及优选藤茶与牛蒡子配伍药效学研究。 方法 二氢杨梅素高效液相方法学验证采用Agilent ZORBAX SB-C18柱,流动相为甲醇−0.05 % 磷酸(30∶70),流速为1 ml/min,检测波长为291 nm,柱温25 ℃。配伍药效验证方法采用大鼠棉球植入致炎及小鼠耳肿胀致炎模型,对大鼠棉球植入实验肉芽肿净量及小鼠耳肿胀率进行观察。 结果 方法学验证二氢杨梅素在0.019 9~0.318 mg/ml范围内线性关系良好(r=0.999),回收率在95.04 %~100.4 %之间,样品在24 h内稳定,该方法重复性较好。配伍药效学验证高剂量优选藤茶与牛蒡子配伍可致大鼠肉芽肿净量及小鼠耳肿胀率均显著低于空白对照组。 结论 方法简便准确,二氢杨梅素在不同产地、部位及加工工艺中含量差异较大,其中以贵州省江口县自然晒干的芽尖部位藤茶含量最高。藤茶与牛蒡子配伍可显著改善咽部症状,减轻致炎程度,共同协同达到清咽效果。 Abstract:Objective To study the content differences of Dihydromyricetin in Ampelopsis grossedentata from different origins, parts and processing techniques, and improve the therapeutic effects by optimizing the compatibility of Ampelopsis grossedentata with Fructus arctiine. Methods The HPLC separation of Dihydromyricetin was performed on an Agilent ZORBAX SB-C18 column with methanol, 0.05 % phosphoric acid (30∶70) as the mobile phase. The flow rate was 1 ml/min, the detection wavelength was 291 nm, and the column temperature was 25 °C. Compatibility efficacy verification was performed with the inflammation model caused by cotton ball implantation in rats and ear swelling in mice. The net granulomatosis in the rats with cotton ball implantation and the swelling rate of mouse ears were recorded. Results Dihydromyricetin had a good liner recovery between 0.019 9-0.318 mg/ml (r=0.999). The extracted recovery was in the range of 95.04 %-100.4 %. The sample was stable within 24 h. This method had good repeatability. The combination of optimized high-dose Ampelopsis grossedentata with Fructus arctiine resulted in significantly lower net granuloma in rats and ear swelling rate in mice compared to the blank control group. Conclusion This method is simple and accurate. The content of dihydromyricetin varies greatly with different origins, parts, and processing techniques. Among them, the natural sun-dried vine tea in Jiangkou County, Guizhou Province has the highest content. The combination use of Ampelopsis grossedentata and Fructus Arctiine can significantly alleviate the pharyngeal symptoms, reduce the degree of inflammation, and achieve the therapeutic effect of clearing pharynx. -
Key words:
- throat clearing /
- Ampelopsis grossedentata /
- Fructus arctiine /
- Dihydromyricetin /
- HPLC
-
温经活血汤作为海军第九七一医院的院内处方,由川芎、红花、独活、羌活、秦艽、甘草等十四味中药材组成,可用于因“瘀、湿、寒”引起的各部位疼痛,如风湿性关节炎等,具有“温经散寒、活血消肿、祛风胜湿、通痹止痛”的功效。温经活血巴布剂是在温经活血汤基础上改良的新型制剂,该剂型在保持其原有药效作用的基础上,改善了汤剂在储存过程中易腐败的特点[1]。处方中川芎、红花、独活、羌活含有的挥发性成分是温经活血巴布剂发挥其药效作用的重要组成部分,其中独活、羌活的重要药效成分蛇床子素、异欧前胡素因其不溶于水的物理特性,故在全方水提时难以提出[2-5]。为更好地提取药材中的药效成分,本实验拟采用超临界CO2萃取技术[6-8],在单因素试验的基础上,正交设计优选川芎、红花、独活、羌活的挥发油提取工艺。
1. 仪器与试药
1.1 仪器
安捷伦1260型高效液相色谱仪(美国安捷伦公司),FA1604型电子分析天平(上海衡平仪器仪表厂),DHG-9023型电热恒温鼓风干燥箱(上海申贤恒温设备厂),KH-100B型超声波清洗器(昆山禾创超声仪器有限公司),HH-2型数显恒温水浴锅(国华电器有限公司),HA221-40-11 超临界萃取装置(江苏南通华安超临界萃取有限公司)。
1.2 试药
川芎(批号:200701)、红花(批号:200801)、羌活(批号:200201)、独活(批号:200301)均购自青岛天成中药饮片有限公司,经山东中医药大学张华教授鉴定川芎为伞形科植物川芎Ligusticum chuanxiong Hort的干燥根茎、红花为菊科植物红花Carthamus tinctorius L.的干燥花、羌活为伞形科植物羌活Notopterygium incisum Ting ex H. T. Chang的干燥根茎和根、独活为伞形科植物重齿毛当归Angelica pubescens Maxim, f. biserrata Shan et Yuan的干燥根,均符合《中华人民共和国药典》(2020年版)中的相关规定,为正品药材;蛇床子素对照品(批号:823A027)、异欧前胡素对照品(批号:A1229A025)均购自北京索莱宝科技有限公司,纯度均>98%;高效液相用甲醇、乙腈为色谱纯(天津四友有限公司);其余试剂均为分析纯。
2. 方法与结果
2.1 超临界萃取工艺
按处方比例称取一定量的川芎、红花、羌活、独活药材,放入萃取釜中按设置好的温度和压力加热加压提取至结束后,从解析釜Ⅰ出料口接收黄色膏状提取物,计算所得萃取得率(萃取得率=所得提取物的质量/药材质量×100%)。
2.2 蛇床子素、异欧前胡素的含量测定[8-10]
2.2.1 对照品溶液的制备
精密称定蛇床子素、异欧前胡素适量分别置于25 ml容量瓶中,加甲醇定容后配制成210.40 μg/ml的蛇床子素、163.20 μg/ml的异欧前胡素对照品母液。精密量取蛇床子素对照品母液5 ml、异欧前胡素对照品母液3 ml于10 ml容量瓶中,用甲醇定容,摇匀,过0.45 μm微孔滤膜,取续滤液,得混合对照品溶液。
2.2.2 供试品溶液的制备
精密称定超临界提取挥发油150 mg于25 ml容量瓶中,加甲醇超声处理后定容,摇匀,过0.45 μm微孔滤膜,取续滤液,得供试品溶液。
2.2.3 阴性供试品的制备
按处方比例称取缺羌活、独活的药材,按“2.1”项下工艺操作,同“2.2.2”项下进行样品处理,得阴性供试品溶液。
2.2.4 色谱条件
色谱柱:ZORBAX SB-C18(4.6 mm×250 mm,5 μm),进样量:10 μl,流速:1.0 ml/min,柱温:20 ℃,检测波长:321 nm。流动相与洗脱条件:A相为乙腈,B相为水。梯度洗脱为:0~8 min,30%→62%A;8~22 min,62%A。
2.2.5 系统适应性试验
分别精密吸取混合对照品溶液,挥发油供试品溶液,缺羌活、独活的阴性供试品溶液按“2.2.4”项下条件进样测定,记录色谱图。测得成分蛇床子素、异欧前胡素色谱峰达到了较为理想的分离效果,分离度均>1.5,理论板数均≥5 000,且阴性供试品对测定无干扰,混合对照品、供试品及阴性供试品色谱图见图1。
2.2.6 线性关系
取混合对照品溶液,分别吸取2、5、10、20、30、40 μl注入液相色谱仪,记录峰面积。以对照品溶液的进样量为横坐标(X),峰面积为纵坐标(Y),绘制标准曲线。得蛇床子素回归方程为Y=28.273X−1.521,r=1.000(n=6);异欧前胡素回归方程为Y=21.251X+21.496, r=1.000(n=6)。结果表明,蛇床子素在21.04~420.80 μg范围内线性良好,异欧前胡素在12.24~195.84 μg范围内线性良好。
2.2.7 精密度考察
精密量取对照品溶液,按“2.2.4”项下色谱条件重复进样6次,记录各成分色谱峰面积。结果表明蛇床子素、异欧前胡素的峰面积RSD分别为0.98%和0.64%,结果表明仪器精密度良好。
2.2.8 稳定性考察
取同一供试品溶液,分别于制备后0、2、4、8、12、24 h按“2.2.4”项下色谱条件进样测定,记录各成分峰面积,蛇床子素和异欧前胡素的RSD分别为1.50%和1.36%,结果表明所提挥发油在室温条件下24 h内稳定。
2.2.9 重复性考察
同样的条件下制备供试品溶液6份,按“2.2.4”项下色谱条件进样测定,记录峰面积,并计算含量,结果蛇床子素和异欧前胡素的平均含量分别为17.34 mg/g和8.09 mg/g,RSD分别为1.85%和1.57%,结果表明该方法重复性良好。
2.2.10 加样回收率考察
取已知含量的挥发油供试品6份,分别精密称定50 mg于10 ml容量瓶中,按药材成分含有量1∶1的比例,分别精密加入蛇床子素、异欧前胡素对照品按“2.2.2”项下制备供试品溶液,按“2.2.4”项下色谱条件进行含量测定,测定两种成分的平均加样回收率为100.01%和99.65%,RSD分别为1.10%和1.13%,表明该方法稳定可行。
2.2.11 样品测定
取各操作下的供试品溶液,按“2.2.4”项下色谱条件分别进样,记录峰面积,按外标一点法进行所测指标的含量测定,测定结果如表1所示。
表 1 正交试验设计及结果试验号 因素 萃取得率
(%)蛇床子素含量
(mg/g)异欧前胡素含量
(mg/g)综合评分*
(Y)A B C D 1 1 1 1 1 2.55 20.34 10.50 69.95 2 1 2 2 2 2.98 22.19 10.90 76.79 3 1 3 3 3 4.43 20.85 9.39 85.70 4 2 1 2 3 3.55 23.86 11.45 85.05 5 2 2 3 1 3.75 25.99 11.77 89.94 6 2 3 1 2 3.80 27.38 12.78 94.28 7 3 1 3 2 3.00 23.77 11.00 78.95 8 3 2 1 3 3.38 24.81 11.17 83.90 9 3 3 2 1 3.75 27.40 10.78 89.15 K1 232.44 233.95 248.13 249.04 K2 269.27 250.63 250.99 250.02 K3 252 269.13 254.59 254.65 R 36.83 35.18 6.46 5.61 注:*综合评分(Y)计算公式见“2.3”项;因素A:萃取温度;因素B:萃取压力;因素C:萃取时间;因素D:空白 2.3 单因素试验设计及结果
影响超临界提取挥发油的主要因素有萃取温度、分离斧Ⅰ温度、萃取压力和萃取时间等,按照“2.1”项下实验方法,以萃取得率、蛇床子素含量和异欧前胡素含量的综合评分为考察指标综合评价[6-7],各指标权重系数分别为:0.40、0.30、0.30,综合评分公式:Y(得分)=(本组萃取得率/最高组萃取得率×0.40+本组蛇床子素含量/最高组蛇床子素含量×0.30+本组异欧前胡素含量/最高组异欧前胡素含量×0.30)×100,考察萃取温度(40、45、50、55、60 ℃)、分离斧Ⅰ温度(40、45、50、55、60 ℃)、萃取压力(20、25、30、35、40 MPa)、萃取时间(1、2、3、4、5 h)对所提挥发油的影响。采用控制变量的方法,当改变其中一个因素时,其余因素为萃取温度40 ℃、分离斧Ⅰ温度40 ℃、萃取压力20 MPa、萃取时间1.0 h,确定各因素的大致范围,实验结果如图2所示。
由图2可得,在萃取温度,分离斧Ⅰ温度、萃取压力、萃取时间4个影响因素中,萃取温度、萃取压力、萃取时间3个因素对挥发油综合评分影响较大,而分离斧Ⅰ温度影响较小,故确定后续操作在分离斧Ⅰ温度为50 ℃的基础上,萃取温度选取50、55、60 ℃ 3个水平,萃取压力选20、25、30 MPa 3个水平,萃取时间选取2、3、4 h 3个水平进行正交试验。
2.4 正交试验设计及结果
对单因素试验结果进行分析,确定以萃取温度、萃取压力、萃取时间为考察因素,采用 L9(34)正交试验法,优选最佳提取工艺条件。具体因素水平表见表2。试验设计及结果见表1,方差分析结果见表3,统计分析使用SPSS 22.0软件。
表 2 正交因素试验水平表水平 因素 A.萃取温度(T/ ℃) B.萃取压力(P/MPa) C.萃取时间(t/h) 1 50 20 2.0 2 55 25 3.0 3 60 30 4.0 表 3 方差分析结果方差来源 方差平方和 自由度 均方 F P A 226.366 2 113.183 37.819 <0.05 B 206.456 2 103.228 34.493 <0.05 C 6.986 2 3.496 1.167 >0.05 D(误差) 5.985 2 2.993 F0.05(2,2)=19.0 由极差分析可以得出影响所提药材综合评分的因素大小为A>B>C,即萃取温度>萃取压力>萃取时间,各因素水平的强弱顺序为:A2>A3>A1,B3>B2>B1,C3>C2>C1。同时方差分析结果表明因素A萃取温度和因素B萃取压力对于超临界所提挥发油的综合评分有显著性影响, 因素C萃取时间的3个水平相差不大,无显著影响。结合极差分析和方差分析结果,在综合考虑实际操作的前提下,为获得好的提取效果,确定因素A选择水平2,因素B选择水平3,因素C选择水平1,即本试验最佳提取工艺组合为A2B3C1,萃取温度为55 ℃,萃取压力为30 MPa,萃取时间为2 h。
2.5 验证试验
按比例称取3份同一批号的处方量药材,按照正交试验优选条件进行萃取,测定所得挥发油的萃取得率和每1.00 g萃取物中所含蛇床子素、异欧前胡素的含量,实验结果如表4所示。计算其相应结果得平均萃取得率为3.77%,RSD为1.56%,蛇床子素平均含量为27.41 mg/g,RSD为1.66%,异欧前胡素平均含量为12.69 mg/g,RSD为1.28%,表明正交试验所得萃取工艺条件稳定可行。
表 4 3批中药材萃取得率和主要含量工艺验证试验结果批号 萃取得率
(%)蛇床子素含量(mg/g) 异欧前胡素含量(mg/g) 20210724 3.70 27.81 12.84 20210801 3.81 27.50 12.73 20210810 3.79 26.91 12.52 3. 讨论
3.1 高效液相色谱条件的确定
本实验对甲醇-水,乙腈-水,乙腈-0.1%磷酸水作为流动相进行比较,结果显示乙腈洗脱能力较甲醇更好,出峰时间早且分离好,乙腈-水与乙腈-0.1%磷酸水相比得出的图无明显区别,表明调节洗脱液酸碱性对分离物质无太大影响,故流动相选择乙腈-水。波长选择为321 nm是因为在该波长处蛇床子素、异欧前胡素均有较好吸收。
3.2 考察指标的选择
本次实验中选择蛇床子素、异欧前胡素为液相检测指标,其中蛇床子素具有抗炎、抗氧化、抗血栓及抗血小板凝聚等作用,是独活发挥其祛风除湿、通痹止痛功效的主要药效成分[11-12]。羌活具有抗炎、抗氧化、抗菌、抗癌细胞增殖、抗血栓等作用,而异欧前胡素作为羌活的重要活性成分,故将其作为本次实验的考察指标[5]。同时未考察红花中活性成分是因为红花主要活性成分为羟基红花黄色素A,虽然其同样具有活血化瘀的药理作用,但其溶解性为水溶性,不在挥发油成分中。川芎的主要药效成分——阿魏酸,虽具有抗氧化、抑菌消炎、抗血栓的作用,但在经液相检测过程中发现挥发油中虽含阿魏酸,但其提取量过低且在阿魏酸出峰位置有其他物质干扰,经调节流动相比例和切换检测波长等方法未将其去除,故未将其列入检测指标范围内。
3.3 提取方法的选择
常用的挥发油提取方法有水蒸气蒸馏法、超临界CO2萃取法等。水蒸气蒸馏法是指将药材用水浸泡后,采用直接加热蒸馏或通入水蒸气蒸馏,使挥发油与水共同蒸馏出来后收集馏液,冷却后分离油层的方法。超临界CO2萃取法是指应用CO2超临界流体提取植物的挥发油,该方法较水蒸气蒸馏法可以有效防止挥发油中易热解成分的破坏且可以提高产品质量和提高收率。
-
表 1 藤茶中二氢杨梅素加样回收率的试样结果(
$n=9 $ )样品
(m/mg)原有量
(m/mg)加入量
(m/mg)测得量
(m/mg)回收率
(%)平均回收率
(%)RSD
(%)50.48 6.977 5.010 11.77 95.67 97.53 2.000 50.00 6.902 5.560 12.39 98.71 50.97 6.980 5.460 12.46 100.4 49.64 6.816 6.670 13.38 98.41 49.81 6.935 6.830 13.61 97.74 50.09 6.918 6.810 13.39 95.04 49.59 6.834 8.120 14.94 99.83 50.61 6.854 8.250 14.78 96.07 50.05 6.961 8.300 14.92 95.89 表 2 不同采收点芽尖部位藤茶中二氢杨梅素的含量(
$\bar{x}\pm s$ ,$ n=6 $ )采样点 含量(%) 不同地区含量(%) 湖北恩施 20.80±1.2 24.33±8.1 湖北来凤1 18.60±1.1 湖北来凤2 33.60±1.0 福建将乐1 30.30±0.6 29.47±1.2 福建将乐2 28.63±0.9 湖南八大公 37.69±0.5 31.66±5.0 湖南张家界1 33.67±0.3 湖南张家界2 29.83±0.9 湖南张家界3 30.39±1.2 湖南张家界4 30.43±0.6 湖南武陵山1 22.83±0.5 湖南武陵山2 36.81±0.8 贵州江口1 35.50±0.6 32.26±2.9 贵州江口2 31.40±0.8 贵州江口3 30.60±0.7 贵州罗场1 35.11±1.0 贵州罗场2 28.69±0.5 表 3 同一采收地点不同部位及加工方式二氢杨梅素含量(
$\bar{x}\pm s$ ,$ n=6 $ )采收部位 自然晒干含量(%) 自然阴干含量(%) 芽尖 35.85±0.4 32.22±0.8 嫩叶 26.22±0.5 28.32±0.6 粗老叶 15.84±0.5 16.02±0.5 茶梗 15.32±0.2 15.47±0.2 机器采收 20.40±1.0 20.77±0.9 注:1.采收地点为贵州省江口县2号点。2.芽尖部位用自然晒干加工方式其二氢杨梅素含量最高,平均含量为35.85 %。 表 4 大鼠棉球植入实验肉芽肿净量(
$\bar{x}\pm s$ ,$n=12 $ )组别 给药剂量(g/kg) 肉芽肿(m/mg) 空白对照组 0.00 428.2±65.4 低剂量组 0.38 392.3±45.3 中剂量组 0.75 372.6±58.9* 高剂量组 2.25 347.3±20.9** *P < 0.05,**P < 0.01,与空白对照组比较。 表 5 小鼠耳肿胀实验耳郭肿胀率(
$\bar{x}\pm s$ ,$n=15 $ )组别 给药剂量(g/kg) 耳郭肿胀率(%) 空白对照组 0.00 74.8±24.3 低剂量组 0.75 64.2±11.9 中剂量组 1.50 59.8±13.8* 高剂量组 4.50 53.7±7.8** *P < 0.05,**P < 0.01,与空白对照组比较。 -
[1] 王丹丹, 王文清, 施春阳, 等. 藤茶中二氢杨梅素含量变异研究进展[J]. 中药材, 2015, 38(9):1995-1998. [2] 何桂霞, 裴刚, 杨伟丽, 等. HPLC测定藤茶不同采收时期及不同部位的二氢杨酶素含量[J]. 中成药, 2004(3):40-42. [3] 王家胜, 何磊磊, 张妮, 等. 不同产地显齿蛇葡萄中二氢杨梅素测定[J]. 中成药, 2014, 36(1):145-147. doi: 10.3969/j.issn.1001-1528.2014.01.035 [4] 陈图锋, 高文华, 唐敏. 高效液相色谱法测定藤茶中二氢杨梅素和杨梅素含量[J]. 亚太传统医药, 2015, 11(1):28-30. [5] 侯小龙, 王文清, 施春阳, 等. 二氢杨梅素药理作用研究进展[J]. 中草药, 2015, 46(4):603-609. [6] 张淑雅, 王小萍, 陈昕, 等. 牛蒡苷抗炎和解热作用研究[J]. 药物评价研究, 2013, 36(6):422-425. [7] 黄少花, 黄礼德, 刘胜, 等. 牛蒡子提取物镇痛抗炎作用的实验研究[J]. 右江民族医学院学报, 2012, 34(1):7-9. doi: 10.3969/j.issn.1001-5817.2012.01.003 [8] 黄虹, 罗水忠, 黄兆祥. 显齿蛇葡萄生态环境和土壤条件的研究[J]. 南昌大学学报(理科版), 2001(2):134-136. [9] 郑道君, 刘国民. 中国藤茶资源的研发概况[J]. 农业网络信息, 2006(6):136-142. doi: 10.3969/j.issn.1672-6251.2006.06.049 [10] 罗亚星. 清咽润喉类保健食品的作用机制与研究现状[J]. 食品安全质量检测学报, 2020, 11(24):9177-9182. -