留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

赶黄草中大环多酚类成分含量测定及其提取工艺

陈岚 江圣圭 史鹏杰 蔡舒心 董志颖 孙连娜

潘青杰, 张文文, 王芳. 羁押人员应用抗感染药物所致的158例不良反应分析[J]. 药学实践与服务, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
引用本文: 陈岚, 江圣圭, 史鹏杰, 蔡舒心, 董志颖, 孙连娜. 赶黄草中大环多酚类成分含量测定及其提取工艺[J]. 药学实践与服务, 2021, 39(4): 309-312, 378. doi: 10.12206/j.issn.1006-0111.202009048
PAN Qingjie, ZHANG Wenwen, WANG Fang. Analysis on 158 detainees with adverse reactions due to anti-infective drugs[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
Citation: CHEN Lan, JIANG Shenggui, SHI Pengjie, CAI Shuxin, DONG Zhiying, SUN Lianna. Content determination and extraction process of macrocyclic polyphenols from Penthorum chinense Pursh[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(4): 309-312, 378. doi: 10.12206/j.issn.1006-0111.202009048

赶黄草中大环多酚类成分含量测定及其提取工艺

doi: 10.12206/j.issn.1006-0111.202009048
基金项目: 国家重点研发计划资助(2019YFC1711000);上海市自然科学基金项目(13401900106)
详细信息
    作者简介:

    陈 岚,副主任药师,研究方向:中药材质量研究及品质评价,Email:chenlan_999@163.com

    通讯作者: 孙连娜,副教授,硕士生导师,研究方向:中药资源活性评价及新药研发,Email:sssnmr@163.com
  • 中图分类号: R284.2

Content determination and extraction process of macrocyclic polyphenols from Penthorum chinense Pursh

  • 摘要:   目的  建立HPLC法同时测定赶黄草中大环多酚类成分:乔松素-7-O-[4'', 6''-(S)-六羟基二苯甲酰基]-β-D-葡萄糖苷(PHG)、乔松素-7-O-[3''-O-没食子酰基-4'', 6''-(S)-六羟基二苯甲酰基]-β-D-葡萄糖苷(PGHG)、乔松素二氢查耳酮-7-O-[3''-O-没食子酰基-4'', 6''-(S)-六羟基二苯甲酰基]-β-D-葡萄糖苷(THA)的含量,并优化其最佳提取工艺。  方法  通过HPLC法测定PHG、PGHG、THA的含量,以PHG、PGHG、THA的总提取率为指标对赶黄草提取物进行分析,采用正交设计考察溶媒浓度、提取时间、溶媒用量、提取次数对提取率的影响,从而优化赶黄草大环多酚类成分的最佳提取工艺。  结果  在采用的含量测定方法下,PHG、PGHG、THA在线性范围内线性关系良好,加样回收率在100.90%~102.04%之间,RSD值均小于1.5%。最佳提取工艺为取赶黄草干药材,切3~5 cm小段,加入10倍体积、浓度为80%的乙醇水溶液,回流2次,每次2 h。该工艺下,大环多酚提取率超过90%。  结论  新建立的含量测定方法准确稳定,重复性好;经优化的提取工艺稳定可行,可为该类成分的进一步开发利用打下基础。
  • 超多孔水凝胶(SPF)是一种三维结构的亲水性高分子聚合网格,在水中能够溶胀但不溶解,且因其具有良好的生物相容及生物可降解性,被广泛应用于医学、药学等领域。与传统水凝胶相比,超多孔水凝胶通过致孔剂、模板等方法调整孔隙率,从而改变溶胀速率以及释药速率[1-3]。胰岛素等生物大分子类药物不仅体内稳定性差、易被酶解、生物半衰期短、不易透过生理屏障,故现有给药方式多以注射为主,患者依从性差[4]。有研究显示[5],超多孔水凝胶承载胰岛素灌胃后可以显著降低大鼠血糖:给药2 h后血糖显著下降,4~6 h降至最低,但12 h即回至最初血糖的80%,说明该制剂起效快但持续时间短,血糖波动大,需频繁给药,患者依从性差。上述情况,结合胃肠道对胰岛素的灭活等原因,本实验拟合成具有缓释作用的聚(丙烯酸-丙烯酰胺)/O-羧甲基壳聚糖[P(AA-co-AM)/O-CMC]互穿网络聚合物超多孔水凝胶(SPH-IPN),以期通过皮下给药包载胰岛素的SPH-IPN后,实现长效、减小血糖波动的目的。

    丙烯酰胺(AM)、丙烯酸(AA)、N,N′-亚甲基-双丙烯酸胺(Bis)、过硫酸铵(APS)、N,N,N′,N′-四甲基乙二胺(TEMED)均购自上海阿拉丁生化科技股份有限公司;泊洛沙姆127(PF127,北京化工厂);O-羧甲基壳聚糖(O-CMC,大连美仑生物技术有限公司);戊二醛(GA,上海阿拉丁生化科技股份有限公司);姜黄素(宝鸡国康生物科技有限公司);牛胰岛素(上海源叶生物有限公司);十二烷基硫酸钠(SDS)、乙二胺四乙酸二钠(EDTA)、碳酸氢钠、盐酸、乙醇、甲醇、乙酸乙酯、氢氧化钠均为分析纯,实验用水为去离子水。

    85-2型恒温磁力搅拌器(上海司乐仪器有限公司);恒温水浴锅(余姚市东方电工仪器厂);透析袋(Viskase,美国);Nicolet iS50傅里叶变换红外光谱仪(Thermo,美国);AVANCE III 400核磁共振谱仪(Bruker,德国);FE28型pH计(Mettler Toledo,美国);Waters UPLC:二元溶剂管理系统、在线脱气机、自动进样器、PDA检测器(Waters公司,美国);TTL-DC型多功能氮吹仪(北京同泰联科技发展有限公司);SHA-B双功能恒温水浴振荡器(常州金坛良友仪器有限公司)。

    雄性SD大鼠,体重范围(220±20)g,合格证号:SCXK(京)2017-0002,购自北京斯贝福实验动物科技有限公司,饲养于北京中医药大学动物房。

    依次向西林瓶中加入50% AM和AA溶液,以10 mol/L NaOH调节pH至5.0。随后再加入2.5% Bis溶液、10% PF 127溶液、20%APS溶液和50 μl 16.7% TEMED溶液,磁力搅拌混匀。室温放置15 min后,逐滴加入 6% O-CMC溶液,使溶液中O-CMC/单体比(w/w)为0.144,迅速加入NaHCO3粉末,搅拌约20 s使其产生气泡,将其置于40 ℃水浴加热5 min,室温固化30 min,即得半互穿网络水凝胶(semi-IPN)。将所得semi-IPN置于GA/O-CMC比(w/w)为2∶10的GA溶液(用0.2 mol/L的盐酸溶液调节pH至1.0)中至将其吸干,室温放置1 h,得粗P(AA-co-AM)/O-CMC超多孔水凝胶(SPH-IPN)。将SPH-IPN置于0.1 mol/L盐酸溶液中,透析5 d,无水乙醇中脱水透析2 d,30 ℃烘干至恒重,干燥密闭保存,即得纯化后的SPH-IPN。

    将样品充分干燥,KBr压片法制样,使用傅里叶变换红外光谱仪测定500~4 000 cm−1波数的SPH-IPN的IR谱。将样品置于氧化锆样品管(A=4 mm),转速5 000 Hz,固体碳谱测定。

    取干燥的SPH-IPN,室温下浸于过量水中(pH 7.0),于不同时间点用筛网取出SPH-IPN,吸去表面残余水后称重,根据以下公式计算SPH-IPN在不同时间点的溶胀比(QS):

    $$ {Q_{\rm{S}}} = \frac{{{W_{\rm{S}}} - {W_{\rm{d}}}}}{{{W_{\rm{d}}}}} $$

    其中,WS为溶胀后SPH-IPN质量(g);Wd为干SPH-IPN质量(g)。

    采用乙醇替代法测定SPH-IPN的孔隙率[6]。取干燥的SPH-IPN,置无水乙醇中浸泡12 h,取出后吸去表面残余乙醇,称重,根据以下公式计算孔隙率:

    $$ {\text{孔隙率}}=\frac{{M}_{2}-{M}_{1}}{\rho V}\times 100\;\text{%}$$

    其中,M1为干SPH-IPN质量(g);M2为乙醇浸泡后的SPH-IPN质量(g);ρ为乙醇密度(g/cm),V为SPH-IPN体积(cm3,以游标卡尺测量长方体SPH-IPN的长、宽、高后计算而得)。

    2.5.1   载胰岛素SPH-IPN的制备

    取胰岛素15 mg,精密称定,置10 ml量瓶中,加0.1 mol/L pH 7.4 PBS溶解并定容至刻度,得1.5 mg/ml的胰岛素溶液。称取50 mg SPH-IPN置装有10 ml胰岛素溶液的西林瓶中,37 ℃温浴放置2 h,取出,置烘箱内,30 ℃恒温干燥。

    2.5.2   载药量的测定

    取胰岛素SPH-IPN适量,研磨粉碎,取20 mg,精密称定,置10 ml量瓶中,加入0.1 mol/L pH 7.4 PBS,定容至刻度。37 ℃温浴2 h,超声10 min,精密量取上清液20 μl注入HPLC仪,记录色谱图,计算胰岛素含量,并根据以下公式计算载药量:

    $$ {\text{载药量}}(\%)=\frac{cV}{M}\times 100$$

    其中,c为测得胰岛素的浓度(mg/ml),V为量瓶体积(ml),M为SPH-IPN的质量(mg)。

    2.6.1   不同方法载药SPH-IPN的制备

    按“2.5.1”项下方法制备载胰岛素SPH-IPN,采用冷冻干燥法将其冻干即得含胰岛素的冻干SPH-IPN。称取空白凝胶200 mg置于1.5 mg/ml的胰岛素溶液37 ℃中溶胀2 h,备用,即得含胰岛素的预溶胀SPH-IPN。

    2.6.2   糖尿病大鼠模型的建立

    给大鼠喂食高脂饲料(88.8%基础饲料、1%胆固醇、10%猪油和 0.2%胆盐[7])喂养4周,动物自由进食和饮水,每周记录体重。于喂养的第28天晚禁食,在第29天一次性腹腔注射链脲佐菌素(STZ)35 mg/kg,将一次性注射STZ 3 d后大鼠空腹血糖≥11.1 mmol/L或随机血糖≥16.7 mmol/L作为成模标准[8]。对照组大鼠则腹腔注射无菌生理盐水(0.3 ml/100 g)。注意测血糖前应禁食12 h,空腹测血糖。造模期间要防止感染,注意消毒。未造模成功的大鼠再次注射STZ35 mg/kg,3 d后测血糖验证是否造模成功。

    2.6.3   分组、给药及血糖测定

    取糖尿病大鼠12只,按随机数字表分为2组,即模型1组和模型2组;取正常大鼠12只,按随机数字表分为2组,即正常1组和正常2组。模型组1组和正常1组皮下埋植含胰岛素的预溶胀SPH-IPN,模型2组和正常2组皮下埋植含胰岛素的冻干SPH-IPN。给药后分别于1、2、4、6、8、10、12、24、28、32、36、48、60、72 h不同时间间隔大鼠尾部取血0.02 ml,用血糖仪测定血糖值,考察不同时间血糖值的变化情况。

    3.1.1   傅立叶变换红外光谱(FTIR)

    图1为SPH-IPN的FTIR图。在1 651 cm−1处有-COOH的伸缩振动峰,且1 615 cm−1附近无AA和AM的C=C双键吸收峰,说明已聚合成P(AA-co-AM),SPH-IPN中存在P(AA-co-AM),图中3 335和2 922 cm-1处分别为-O-H和-C-H的伸缩振动峰;1 604和1 416 cm−1处分别为羧酸盐-COO-的反对称伸缩振动峰和对称伸缩振动峰;1 086、1 044和1 171 cm−1处分别为O-CMC中糖环羟基-CH-OH、一级羟基-CH2-OH和醚基C-O-C中的C-O伸缩振动峰。以上结果表明SPH-IPN中存在P(AA-co-AM),还存在的一些杂峰可能是还有一些未反应单体未被除尽。

    图  1  SPH-IPN的傅立叶变换红外光谱
    3.1.2   核磁共振(13C-NMR)

    图2为SPH-IPN的13C-NMR图。图中41.926×10−6为P(AA-co-AM)上主链碳原子的化学位移峰;179.499处为羧基碳原子的化学位移峰,说明结构中含有羧基官能团,AA与AM已聚合形成P(AA-co-AM)。

    图  2  SPH-IPN的核磁共振碳谱

    由于制得的水凝胶未找到合适的溶液将其溶解,因此在测定核磁共振图谱时,采用的是固体核磁技术[9]

    综合红外和碳谱结果可知,通过该方法可聚合形成P(AA-co-AM)结构,而该结构又是超多孔水凝胶SPH-IPN的主要结构,由此可说明已成功聚合SPH-IPN。

    图3为不同温度介质中SPH-IPN的溶胀曲线,可见随着温度升高,SPH-IPN的溶胀速率加快,平衡溶胀比增大,原因是温度较高时相互缠绕的聚合物链松开,破坏分子间的氢键,增加链运动,水分子在凝胶骨架内外的扩散速率加快,从而促进了聚合物的溶胀[10]

    图  3  不同温度下SPH-IPN的溶胀性

    表1为SPH-IPN孔隙率测定结果,所制SPH-IPN超多孔水凝胶空隙分布均匀。除此之外,与传统水凝胶相比[11],孔隙率高,更利于药物的释放。

    表  1  SPH-IPN的孔隙率测定结果
    干重M1
    (m/g)
    湿重M2
    (m/g)
    乙醇密度
    (g/cm3)
    体积
    (V/cm3)
    孔隙率
    (%)
    平均值
    (%)
    RSD
    (%)
    0.54250.63270.8160.1385.0381.633.88
    0.57510.67790.8160.1678.74
    0.56280.66210.8160.1581.13
    下载: 导出CSV 
    | 显示表格

    37 ℃时SPH-IPN溶胀比较大,温度过高易引起胰岛素变性,故选择37 ℃温度载药,胰岛素的载药量试验结果见表2

    表  2  SPH-IPN对胰岛素的载药量
    试验组载药量(w/w,%)平均值(w/w,%)RSD(%)
    13.133.191.88
    23.25
    33.20
    下载: 导出CSV 
    | 显示表格

    图4是含胰岛素的预溶胀SPH-IPN和冻干SPH-IPN对糖尿病大鼠和正常大鼠降糖作用的比较。图中预溶胀模型组在10 h时血糖值才有所降低,最低值为10 h的16.8 mmol/L,之后血糖又开始慢慢升高;预溶胀正常大鼠组在给药4 h后血糖开始降低,到24 h时血糖达到7.3 mmol/L,之后维持平稳状态;冻干模型组在包埋1 h后血糖便开始下降,血糖值降到6.7 mmol/L,在24 h后血糖开始慢慢升高,冻干正常大鼠组在1 h后血糖降至5.3 mmol/L,之后虽有起伏,但也一直在正常范围内。说明冻干凝胶的降糖作用较预溶胀组好,冻干凝胶在1~24 h时间段内的降糖作用较平稳。

    图  4  载胰岛素SPH-IPN的降糖作用

    本实验选用了能够迅速聚合的水溶性原料AA、AM为聚合反应单体;以APS/TEMED为引发体系;PF127为泡沫稳定剂,使产生的泡沫稳定时间更长;NaHCO3为起泡剂;O-CMC在合成过程中作为增稠剂,维持合适的起泡速率,使产生的气泡均匀、稳定,不致产生的气泡过快逸散[12]。采用溶液聚合法制备了含semi-IPN的水凝胶。因为该聚合反应在反应过程中会产生大量热量,这对泡沫的稳定极为有利,因此在常温条件下便能进行聚合反应,条件温和。以pH 1.0的GA溶液交联O-CMC时,可避免过度溶胀对孔隙结构的破坏,且pH 1.0时GA的交联能力较好。除此之外,相较于参考文献[5],本实验中O-CMC/单体比较高,当O-CMC/单体比为0.144时,虽然可形成具有大量相互贯通孔隙的聚合物,但会导致其溶胀速率减慢,溶胀比降低,从而影响载药量和释药速率。随着溶胀速率减慢,药物溶出速率也相应减慢;随着溶胀比的降低,吸收的药物溶液减少,载药量随之降低。本实验提高O-CMC/单体的目的是希望通过减慢SPH-IPN的溶胀速率,从而尝试制备缓释制剂。

    水凝胶的载药方法通常有2种:一是将药物与单体溶液混合,随着单体聚合、交联将药物包埋于水凝胶中[13];另一种方法为吸附载药,即凝胶在被载药液中溶胀,将载药水凝胶干燥,实现药物包埋[14]。姜黄素属于脂溶性药物,课题组前期研究结果表明,0.5%的SDS对姜黄素有一定的增溶效果;0.1 mol/L pH 7.4 PBS中SPH-IPN的溶胀比较大,对胰岛素具有一定的增溶作用,故分别选用这两种溶剂配制胰岛素溶液。

    文献[5]表明,超多孔水凝胶载药后的释药性能与O-CMC的含量、pH、离子强度、温度等多个因素有关,同时也有可能与载药SPH-IPN的制备过程有关。

    笔者曾用SPH-IPN包载姜黄素,并开展探索性实验。结果发现20、40、60目不同粒径的凝胶累积释放率不同,前13 h三者的累积释放率均几乎一样(接近0),13 h后累积释放率逐渐增加,以40目凝胶的效果最佳,48 h后达到6.00%,明显高于其他组,但其释放速度慢,见图5。灌胃给予载姜黄素SPH-IPN后,部分大鼠排泄物中可见载姜黄素SPH-IPN,说明SPH-IPN在体内溶胀速率很慢;而载姜黄素SPH-IPN组和姜黄素原药组,灌胃后大鼠眼眶血中均未检出姜黄素,也进一步体现SPH-IPN未促进姜黄素的吸收。

    图  5  不同粒径载姜黄素SPH-IPN的释药情况

    将载胰岛素SPH-IPN予灌胃给药溶胀很慢,降糖效果极不明显,为延长SPH-IPN溶胀时间,最终考虑将其进行皮下包埋给药。

    载胰岛素SPH-IPN皮下包埋给药发现,载胰岛素冻干SPH-IPN组的降糖效果优于载胰岛素溶胀SPH-IPN组,表明载药SPH-IPN的释放性能除与溶胀比有关外,其制备过程也会一定程度影响被载药物的疗效,与文献[5]报道一致。实验中将冻干组和溶胀组均进行包埋,均可延长溶胀时间,但冻干SPH-IPN组的降糖效果优,皮下包埋2 h后表现出明显的降糖作用,相比溶胀组而言,起效时间快(8 h左右)且持续时间长,24 h之内均具有良好的降糖作用。提示我们在制备载药SPH-IPN的过程中应该时刻关注被载药物的活性及稳定性,应在适当的条件下对药物进行包载以提高药物疗效,同时也说明载胰岛素冻干SPH-IPN可作为控释制剂,实现调节大鼠血糖的目的。结合实验结果分析可知,SPH-IPN能够增强药物的稳定性,提高生物利用度,比较适合作为蛋白质药物给药载体。

    文献研究发现,胰岛素经皮给药具有不错的疗效,与皮下给药效果几无差异,且依从性好,成为最新、有效、方便的给药方式。Norduist等[15]将微针贴剂用于胰岛素给药,结果发现,血浆胰岛素浓度变化与传统的皮下注射并无太大差异,但微针贴剂能极大地提高实验大鼠的依从性。无痛中空微针皮内胰岛素给药系统已获得 FDA批准,进入II期临床,相关产品有以色列纳米通道技术公司采用MEMS技术开发的中空微针器具,其中包括用于无痛释放胰岛素薄片与胰岛素微型泵相结合。Liu等[16]将可溶性材料透明质酸制备成负载胰岛素的微针阵列。在体实验发现,负载胰岛素的微针能够在1 h内完全溶解,携带的胰岛素快速释放入体内。

    与上述研究及应用相比,本实验的载胰岛素SPH-IPN,释放药物无需微型泵,皮下包埋给药可以24 h内保持平稳、正常的血糖浓度,适合作为一日一次给药的控释制剂。为了提高患者的依从性,进一步研究将载胰岛素SPH-IPN制备为微针阵列的形式,以期得到一种方便、快捷、安全的胰岛素缓释递药系统。

  • 图  1  赶黄草中大环多酚类成分的化学结构图

    图  2  标准品溶液(A-C)与药材提取液(D)HPLC图

    1.PHG;2.PGHG;3.THA。

    表  1  赶黄草药材来源信息表

    样品编号采集地区批号提供单位
    S1四川古蔺18110803四川古蔺肝苏药业有限公司 
    S2四川古蔺18110804四川古蔺肝苏药业有限公司 
    S3四川古蔺19050701四川新荷花中药饮片有限公司
    下载: 导出CSV

    表  2  赶黄草中3种化合物的含量(n=3)

    样品编号PHG/
    (mg/g)
    PGHG/
    (mg/g)
    THA/
    (mg/g)
    总含量/
    (mg/g)
    S13.665.121.9910.77
    S27.068.261.7717.09
    S35.699.731.2516.67
    下载: 导出CSV

    表  3  正交试验因素水平表

    水平A因素 B因素 C因素 D因素
    溶媒浓度(%)提取时间(t/h)溶媒用量(倍)提取次数(次)
    1401101
    2602202
    3803303
    下载: 导出CSV

    表  4  正交试验结果表

    试验号A因素 B因素 C因素 D因素总提取率(%)
    溶媒浓度(%)提取时间(t/h)溶媒用量(倍)提取次数(次)
    1111132.27
    2122246.67
    3133350.47
    4212350.40
    5223170.53
    6231280.07
    7313292.86
    8321389.79
    9332187.56
    K1129.41175.54202.15190.37
    K2201.01206.99184.63219.61
    K3270.21218.11213.86190.66
    极差R46.9314.199.749.75
    下载: 导出CSV

    表  5  方差分析表

    因素偏差平方和自由度FF临界值P
    A3303.955222.901F0.05 (2,2)=19
    F0.10 (2,2)=9
    <0.05
    B324.99622.253>0.10
    C144.27421.000>0.10
    D188.12921.304>0.10
    误差144.2742
    下载: 导出CSV
  • [1] 何述敏, 李敏, 吴众, 等. 扯根菜的研究进展[J]. 中草药, 2002(6):102-103.
    [2] 胡杨洋, 王胜鹏, 陈锐娥, 等. 赶黄草的药学研究和应用[J]. 中药药理与临床, 2012, 28(3):136-140.
    [3] 杨丽娜, 周承芳, 曾棋平, 等. 赶黄草保肝活性成分的提取纯化工艺研究进展[J]. 解放军药学学报, 2018, 34(2):169-171.
    [4] 肖丽萍, 宋洋洋, 周彦希, 等. 赶黄草抗非酒精性脂肪肝的实验研究[J]. 中国实验方剂学杂志, 2014, 20(10):125-129.
    [5] CAO Y W, JIANG Y, ZHANG D Y, et al. Protective effects of Penthorum chinense Pursh against chronic ethanol-induced liver injury in mice[J]. J Ethnopharmacol,2015,161:92-98. doi:  10.1016/j.jep.2014.12.013
    [6] HU Y Y, WANG S P, WANG A Q, et al. Antioxidant and hepatoprotective effect of Penthorum chinense Pursh extract against t-BHP-induced liver damage in L02 cells[J]. Molecules,2015,20(4):6443-6453. doi:  10.3390/molecules20046443
    [7] 张冲. 不同浓度乙醇赶黄草提取物对大鼠酒精性脂肪肝的治疗作用及机制研究[D]. 四川医科大学, 2015.
    [8] 唐勇, 张冲, 李国春, 等. 赶黄草乙醇提取物对大鼠酒精性脂肪肝的作用[J]. 中成药, 2016, 38(7):1601-1605.
    [9] 李国春, 黄新武, 尹加珍, 等. 赶黄草提取物对大鼠酒精性脂肪肝的影响[J]. 中国临床药理学杂志, 2016, 32(2):163-165.
    [10] 解静. 赶黄草提取物对胆汁淤积性肝细胞损伤的保护作用[D]. 西南医科大学, 2016.
    [11] WANG M, ZHANG X J, FENG R B, et al. Hepatoprotective properties of Penthorum chinense Pursh against carbon tetrachloride-induced acute liver injury in mice[J]. Chin Med,2017,12:32. doi:  10.1186/s13020-017-0153-x
    [12] 孙晓梅, 阎姝. 复方赶黄草对ANIT致大鼠胆汁淤积性肝损伤的影响及作用机制研究[J]. 中药材, 2018, 41(3):716-719.
    [13] 覃俊媛, 谢晓芳, 杨雪, 等. 2个产地赶黄草对四氯化碳致大鼠急性肝损伤的保护作用[J]. 中成药, 2018, 40(7):1592-1594. doi:  10.3969/j.issn.1001-1528.2018.07.031
    [14] 张剑, 伍淑明, 杨肖, 等. 赶黄草中化学成分研究进展[J]. 中草药, 2017, 48(21):4571-4577. doi:  10.7501/j.issn.0253-2670.2017.21.033
    [15] 黄豆豆. 肝苏颗粒质量控制研究[D]. 上海: 第二军医大学, 2014.
    [16] WANG A Q, WANG S P, JIANG Y, et al. Bio-assay guided identification of hepatoprotective polyphenols from Penthorum chinense Pursh on t-BHP induced oxidative stress injured L02 cells[J]. Food Funct,2016,7(4):2074-2083. doi:  10.1039/C6FO00110F
    [17] ZHOU F Y, WANG A Q, LI D, et al. Pinocembrin from Penthorum chinense Pursh suppresses hepatic stellate cells activation through a unified SIRT3-TGF-β-Smad signaling pathway[J]. Toxicol Appl Pharmacol,2018,341:38-50. doi:  10.1016/j.taap.2018.01.009
    [18] HUANG D D, JIANG Y, CHEN W S, et al. Evaluation of hypoglycemic effects of polyphenols and extracts from Penthorum chinense[J]. J Ethnopharmacol,2015,163:256-263. doi:  10.1016/j.jep.2015.01.014
    [19] 姚宏亮, 沈洁, 佴逸凡. 藕皮多酚提取工艺优化及其体外抗氧化性研究[J]. 食品研究与开发, 2019, 40(14):103-108.
    [20] 窦志华, 曹瑞, 卞理, 等. 正交试验法优选大黄中蒽醌类成分提取工艺[J]. 中草药, 2018, 49(14):3279-3286. doi:  10.7501/j.issn.0253-2670.2018.14.013
    [21] 高林晓, 郭蒙, 郭茂鸿, 等. 正交试验设计优化刺三加根中总多酚的提取工艺研究[J]. 食品研究与开发, 2019, 40(13):57-62.
  • [1] 彭莹, 刘欣, 聂依文, 王歆荷, 年华, 朱建勇.  三种狼毒乙醇提取物对咪喹莫特诱导的银屑病小鼠防治作用研究 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202406029
    [2] 向兴, 张慧卿, 张琪金, 刘银沁, 黄宝康.  飞机草中医药文献研究及其中药性能探讨 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202410019
    [3] 舒飞, 孙蕊, 宋凯, 张元林, 闫家铭, 舒丽芯.  粉-液双室袋产品的综合评价 . 药学实践与服务, 2025, 43(2): 92-96. doi: 10.12206/j.issn.2097-2024.202312009
    [4] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [5] 吴海韵, 杨甜, 张弛, 梁文仪, 苏娟.  气相色谱-离子迁移谱技术在中药研究中的应用进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202409007
    [6] 陈方剑, 赵娟娟, 叶侃倜, 孙煜昕, 刘继勇, 杨骏.  血通胶囊提取工艺优化及质量控制研究 . 药学实践与服务, 2025, 43(2): 82-86, 91. doi: 10.12206/j.issn.2097-2024.202409003
    [7] 乔方良, 蒋益萍, 夏天爽, 刘爱军, 赵凯, 辛海量.  对萼猕猴桃苷E提取分离纯化工艺的研究 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202407001
    [8] 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟.  花椒生物碱富集纯化工艺优化及其成分分析 . 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
    [9] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [10] 张成中, 朱雪艳, 卜其涛, 王宏瑞, 黄宝康.  基于网络药理学与分子对接预测鸡骨草特征图谱研究 . 药学实践与服务, 2024, 42(8): 350-358. doi: 10.12206/j.issn.2097-2024.202303048
    [11] 凯丽比努尔·奥布力艾散, 李倩, 谢志, 贾文彦, 尹东锋.  星点设计-效应面法优化仑伐替尼混合胶束的制备工艺 . 药学实践与服务, 2024, 42(11): 495-502. doi: 10.12206/j.issn.2097-2024.202403019
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  5039
  • HTML全文浏览量:  1369
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 修回日期:  2021-01-11
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2021-07-25

赶黄草中大环多酚类成分含量测定及其提取工艺

doi: 10.12206/j.issn.1006-0111.202009048
    基金项目:  国家重点研发计划资助(2019YFC1711000);上海市自然科学基金项目(13401900106)
    作者简介:

    陈 岚,副主任药师,研究方向:中药材质量研究及品质评价,Email:chenlan_999@163.com

    通讯作者: 孙连娜,副教授,硕士生导师,研究方向:中药资源活性评价及新药研发,Email:sssnmr@163.com
  • 中图分类号: R284.2

摘要:   目的  建立HPLC法同时测定赶黄草中大环多酚类成分:乔松素-7-O-[4'', 6''-(S)-六羟基二苯甲酰基]-β-D-葡萄糖苷(PHG)、乔松素-7-O-[3''-O-没食子酰基-4'', 6''-(S)-六羟基二苯甲酰基]-β-D-葡萄糖苷(PGHG)、乔松素二氢查耳酮-7-O-[3''-O-没食子酰基-4'', 6''-(S)-六羟基二苯甲酰基]-β-D-葡萄糖苷(THA)的含量,并优化其最佳提取工艺。  方法  通过HPLC法测定PHG、PGHG、THA的含量,以PHG、PGHG、THA的总提取率为指标对赶黄草提取物进行分析,采用正交设计考察溶媒浓度、提取时间、溶媒用量、提取次数对提取率的影响,从而优化赶黄草大环多酚类成分的最佳提取工艺。  结果  在采用的含量测定方法下,PHG、PGHG、THA在线性范围内线性关系良好,加样回收率在100.90%~102.04%之间,RSD值均小于1.5%。最佳提取工艺为取赶黄草干药材,切3~5 cm小段,加入10倍体积、浓度为80%的乙醇水溶液,回流2次,每次2 h。该工艺下,大环多酚提取率超过90%。  结论  新建立的含量测定方法准确稳定,重复性好;经优化的提取工艺稳定可行,可为该类成分的进一步开发利用打下基础。

English Abstract

潘青杰, 张文文, 王芳. 羁押人员应用抗感染药物所致的158例不良反应分析[J]. 药学实践与服务, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
引用本文: 陈岚, 江圣圭, 史鹏杰, 蔡舒心, 董志颖, 孙连娜. 赶黄草中大环多酚类成分含量测定及其提取工艺[J]. 药学实践与服务, 2021, 39(4): 309-312, 378. doi: 10.12206/j.issn.1006-0111.202009048
PAN Qingjie, ZHANG Wenwen, WANG Fang. Analysis on 158 detainees with adverse reactions due to anti-infective drugs[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
Citation: CHEN Lan, JIANG Shenggui, SHI Pengjie, CAI Shuxin, DONG Zhiying, SUN Lianna. Content determination and extraction process of macrocyclic polyphenols from Penthorum chinense Pursh[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(4): 309-312, 378. doi: 10.12206/j.issn.1006-0111.202009048
  • 赶黄草(Penthori Chinensis Herba)在民间又名水泽兰、水杨柳等,以其为原料制成的单味成方制剂肝苏颗粒现收载于《中华人民共和国卫生部部颁标准中药成方制剂十三册》附录[1]。赶黄草是苗族的传统药物,主产于四川古蔺,具有清热、利湿、解毒、活血、平肝、健脾等功效[2],可用于酒精性、非酒精性脂肪肝,淤积性、酒精性及其他诱导因素引起的肝损伤的保护和治疗[3-13]。赶黄草中化学成分类型众多,以黄酮类、萜类、酚酸类为其主要活性成分[14]。其中,具有以黄酮苷连接没食子酰基结构的大环多酚类化合物(图1)乔松素-7-O-[4'', 6''-(S)-六羟基二苯甲酰基]-β-D-葡萄糖苷(pinocembrin-7-O-[4'',6''-(S)-hexahydroxydiphenoyl]-β-D-glucose,PHG)、乔松素-7-O-[3''-O-没食子酰基-4'', 6''-(S)-六羟基二苯甲酰基]-β-D-葡萄糖苷(pinocembrin-7-O-[3''-O-galloyl-4",6''-(S)-hexahydroxydiphenoyl]-β-D-glucose,PGHG)、乔松素二氢查耳酮-7-O-[3''-O-没食子酰基-4'', 6''-(S)-六羟基二苯甲酰基]-β-D-葡萄糖苷(pinocembrin dihydrochalcone-7-O-[3''-O-galloyl-4'',6''-(S)-hexahydroxydiphenoyl]-β-D-glucose or thonningianin A,THA)的肝保护及抗肝纤维化活性较强[15-17],同时也具有较好的降糖活性[18],有较高的开发价值,故本实验建立HPLC法同时测定该3种化合物的含量,并通过正交试验优选其提取工艺,为该类成分的进一步开发研究提供前期基础。

    图  1  赶黄草中大环多酚类成分的化学结构图

    • 从四川收集3批赶黄草药材(表1),药材经课题组孙连娜副教授鉴定为虎耳草科植物扯根菜(Penthorum chinense Pursh)的干燥地上部分。各批次药材均留样于上海中医药大学中药资源与生物技术研究中心。

      表 1  赶黄草药材来源信息表

      样品编号采集地区批号提供单位
      S1四川古蔺18110803四川古蔺肝苏药业有限公司 
      S2四川古蔺18110804四川古蔺肝苏药业有限公司 
      S3四川古蔺19050701四川新荷花中药饮片有限公司
    • XS105DU 电子天平(瑞士Mettler Toledo公司);XS104 电子天平(瑞士Mettler Toledo公司);HDM-10000B 数显电热套(上海利闻科学仪器有限公司);N-1300旋转蒸发仪(东京理化器械株式会社);Milli-Q纯水机(美国Millipore公司);1200型高效液相色谱仪(美国 Agilent 公司);Centrifuge 5810R高速台式冷冻离心机(德国Eppendorf公司)。

      PHG对照品(批号:20181117)、PGHG对照品(批号:20181103)、THA对照品(批号:20181103)均由本实验室制备,且经HPLC归一化法检测表明纯度均在98%以上;水为超纯水;甲酸(色谱纯,上海麦克林生化科技有限公司);乙腈(色谱纯,美国Thermo Fisher公司);乙醇、甲醇(分析纯,上海泰坦科技股份有限公司 )。

    • 精密称定PHG、PGHG、THA对照品,加80%甲醇分别制成对照品储备液,质量浓度分别为0.610 4、0.604 4、0.485 2 mg/ml。

    • 取赶黄草药材粉末(过3号筛)1 g,精密称定后转移至250 ml锥形瓶中,精密移取并加入80%甲醇水溶液100 ml,称重确定初始重量,回流提取1 h,放至常温,加溶剂补至初始重量,摇匀,取样,过膜,取续滤液作供试品溶液。

    • 色谱柱:Agilent ZORBAX SB-C18柱(4.6 mm×250 mm,5 μm);流动相:乙腈(A)-0.5%甲酸水溶液(B);洗脱条件:梯度洗脱(0~20 min,32%→50% A,20~25 min,50%→90% A,25~30 min:90%→32% A);其他参数:流速为1 ml/min,柱温为30℃,检测波长为280 nm,进样量为10 μl。在此色谱条件下,供试品溶液(图2)中PHG、PGHG、THA与其他成分均达到基线分离,分离度大于1.5,理论塔板数以PHG计不低于20 000。

      图  2  标准品溶液(A-C)与药材提取液(D)HPLC图

    • 取“2.1.1”项方法制备的混合对照品溶液,依次稀释2、4、10、50、100倍,分别按“2.1.3”项色谱条件进样测定,以3种成分的进样浓度(X)为横坐标,峰面积(Y)为纵坐标,分别进行HPLC检测,线性拟合得回归方程。PHG、PGHG、THA的回归方程分别为:Y=18 575.798X+5.091 9(r=0.999 9),Y=21 923.382X+29.293 3(r=0.999 9),Y=21 544.589X−13.093 6(r=0.999 9),线性范围依次是6.10~610.40、6.04~604.40、4.85~485.20 μg/ml,以上表明3种化合物线性关系良好。

    • 取对照品溶液,按“2.1.3”项色谱条件进行HPLC检测,连续进样分析6次,记录峰面积。结果显示PHG峰面积的RSD为1.15%,PGHG峰面积的RSD为0.18%,THA峰面积的RSD为0.12%,表明所用仪器精密度良好。

    • 取赶黄草药材(S3,过3号筛)6份,按“2.1.2”项方法制备供试品溶液,再分别按“2.1.3”项色谱条件进行HPLC检测,记录峰面积,计算含量。结果显示样品中PHG的平均含量为5.83 mg/g,RSD为1.03%;PGHG平均含量为9.99 mg/g,RSD为0.91%;THA平均含量为1.31 mg/g,RSD为0.50%,表明本方法重复性良好。

    • 取赶黄草药材(S3,过3号筛)1份,按“2.1.2”项方法制备供试品溶液,分别放置0、4、8、12、24 h后取样,按“2.1.3”项色谱条件进样测定,记录峰面积。结果显示样品中PHG、PGHG、THA峰面积的RSD分别为1.72%、2.44%和4.06%,表明供试品溶液在24 h内稳定。

    • 取同一批赶黄草药材(S3,过3号筛)6份,每份约0.5 g,精密称定,按照药材含有量1∶1的比例,分别精密加入PHG、PGHG、THA对照品,按“2.1.2”项方法制备供试品溶液,再按“2.1.3”项条件进行HPLC分析,记录峰面积,计算回收率。结果显示PHG、PGHG、THA加样回收率分别为102.04%、100.90%、101.55%,对应的RSD值分别为0.88%、0.82%、1.43%,表明该方法可靠。

    • 取各批次赶黄草药材(S1~S3,过3号筛)各3份,按“2.1.2”项方法制备供试品溶液后按“2.1.3”项条件进行HPLC分析,记录峰面积并计算含量(表2)。

      表 2  赶黄草中3种化合物的含量(n=3)

      样品编号PHG/
      (mg/g)
      PGHG/
      (mg/g)
      THA/
      (mg/g)
      总含量/
      (mg/g)
      S13.665.121.9910.77
      S27.068.261.7717.09
      S35.699.731.2516.67
    • 取赶黄草药材(S2)切成3~5 cm小段,称取50 g,加入60%乙醇溶液500 ml,分别采用浸渍法(浸渍24 h)、渗漉法(浸泡24 h后以5 ml/min的流速收集渗漉液)、回流法(加热回流1 h)提取。结果表明,浸渍法平均总提取率为36.67%,渗漉法平均总提取率为36.82%,回流法平均总提取率为71.99%。考察结果为回流法提取效果最佳,因此选择回流法作为提取方法。

    • 在确定提取方法为回流法的基础上,取赶黄草药材(S2),选择常规回流提取中对提取效果影响较大的因素:溶媒浓度(A)、提取时间(B)、溶媒用量(C)、提取次数(D)作为影响因素,每个因素各取3个水平,在平行操作条件下,设计L9(34)正交试验(表3)。

      表 3  正交试验因素水平表

      水平A因素 B因素 C因素 D因素
      溶媒浓度(%)提取时间(t/h)溶媒用量(倍)提取次数(次)
      1401101
      2602202
      3803303

      以PHG、PGHG、THA的总提取率作为考察指标得正交试验结果(表4),根据极差大小可以看出各因素对赶黄草中大环多酚类成分的影响大小为A>B>D>C;进一步方差分析(表5)结果表明,溶媒浓度(A)对提取效果有显著影响(P<0.05),而其他3个因素无显著影响(P>0.05)。因此,根据正交试验得出的最佳组合为A3B1C3D2

      表 4  正交试验结果表

      试验号A因素 B因素 C因素 D因素总提取率(%)
      溶媒浓度(%)提取时间(t/h)溶媒用量(倍)提取次数(次)
      1111132.27
      2122246.67
      3133350.47
      4212350.40
      5223170.53
      6231280.07
      7313292.86
      8321389.79
      9332187.56
      K1129.41175.54202.15190.37
      K2201.01206.99184.63219.61
      K3270.21218.11213.86190.66
      极差R46.9314.199.749.75

      表 5  方差分析表

      因素偏差平方和自由度FF临界值P
      A3303.955222.901F0.05 (2,2)=19
      F0.10 (2,2)=9
      <0.05
      B324.99622.253>0.10
      C144.27421.000>0.10
      D188.12921.304>0.10
      误差144.2742
    • 本实验比较并优化了供试品溶液制备方法,并考察了不同型号色谱柱、不同检测波长、不同流动相组成,在此基础上建立了赶黄草中PHG、PGHG、THA的HPLC检测方法,该法能使样品中测定成分与其他成分达到有效分离,峰型好,可简便快速分析样品,检测结果准确可靠。

      在建立含量测定方法的基础上进行提取工艺优化。从毒性大小、常用性角度选择乙醇为溶媒,单因素实验结果显示回流法提取效果最佳,因此选择乙醇热回流法作为提取方法,对常规热回流法影响较大的4个因素进行3个水平设置,建立L9(34)正交试验组,以便考察不同参数设定值对赶黄草中大环多酚成分提取率的影响。通过极差及方差分析发现溶媒浓度(A)即乙醇浓度对提取率有显著性影响,而其他3个因素(B、C、D)均无显著性影响。经正交试验优选后的最佳提取工艺为A3B1C3D2,结合生产实际,从节约原料降低成本的角度,对无明显影响的3个因素进行适当调整,调整后的提取工艺为A3B2C1D2,即取赶黄草干药材,切3~5cm小段,加入10倍体积、浓度为80%的乙醇溶液,回流2次,每次2 h。按照该工艺,取3批药材各5 kg,进行3次放大验证试验,提取率均在90%以上,且RSD值为3.73%,说明该工艺稳定可行,可为赶黄草中该类成分的进一步开发研究打下基础。

参考文献 (21)

目录

/

返回文章
返回