留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

基于网络药理学和分子对接的荆防败毒散预防新型冠状病毒肺炎的活性成分研究

冯群 关永霞 黄志艳 叶士莉 程国良 姚景春 张贵民

于熙, 王玉婷, 林厚文, 孙雅婷. 海绵共附生土曲霉的化学成分研究[J]. 药学实践与服务, 2022, 40(2): 120-124. doi: 10.12206/j.issn.1006-0111.202107019
引用本文: 冯群, 关永霞, 黄志艳, 叶士莉, 程国良, 姚景春, 张贵民. 基于网络药理学和分子对接的荆防败毒散预防新型冠状病毒肺炎的活性成分研究[J]. 药学实践与服务, 2020, 38(6): 485-491, 538. doi: 10.12206/j.issn.1006-0111.202005078
YU Xi, WANG Yuting, LIN Houwen, SUN Yating. Study on chemical constituents of sponge-associated Aspergillus terreus[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(2): 120-124. doi: 10.12206/j.issn.1006-0111.202107019
Citation: FENG Qun, GUAN Yongxia, HUANG Zhiyan, YE Shili, CHENG Guoliang, YAO Jingchun, ZHANG Guimin. Study on active ingredients of Jingfang Baidu San for preventing COVID-19 based on network pharmacology and molecular docking[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 485-491, 538. doi: 10.12206/j.issn.1006-0111.202005078

基于网络药理学和分子对接的荆防败毒散预防新型冠状病毒肺炎的活性成分研究

doi: 10.12206/j.issn.1006-0111.202005078
基金项目: 山东省重点研发计划(重大科技创新工程)项目(2017CXGC1308)
详细信息
    作者简介:

    冯 群,硕士,工程师,研究方向:中药新药研发与安全性评价,Email:fengchangqun@163.com

    通讯作者: 张贵民,研究员,研究方向:新药研发,Email:gmzhanglunan@163.com
  • 中图分类号: R285.5

Study on active ingredients of Jingfang Baidu San for preventing COVID-19 based on network pharmacology and molecular docking

  • 摘要:   目的  运用网络药理学和分子对接方法,预测荆防败毒散预防新型冠状病毒肺炎(COVID-19)的活性成分,为临床用药提供参考。  方法  通过中药系统药理学分析平台,检索荆防败毒散组方中所有药材的化学成分和作用靶点。通过Uniprot数据库校正靶点对应的基因,利用Cytoscape软件构建药材-成分-靶点网络并进行可视化处理,利用疾病数据库检索COVID-19相关的靶点,筛选出重合的靶点,通过String数据库构建蛋白-蛋白相互作用网络。通过Metascape进行GO富集分析和KEGG通路富集分析,预测其作用机制,通过分子对接,计算核心成分在预防新型冠状病毒肺炎的作用强度。  结果  限定筛选条件为口服生物利用度(OB)≥30%、类药性(DL)≥0.18,共得到荆防败毒散的159个活性成分和277个靶点,与获得的273个COVID-19相关的靶点取交集,得到55个核心靶点;对核心靶点进行GO富集分析和KEGG通路富集分析,得到GO条目1376个和136条信号通路,涉及感染性疾病、癌症、细胞进程、免疫系统、信号等通路。分子对接结果显示荆防败毒散核心成分与SARS-CoV-2 3CL水解酶、血管紧张素转化酶II(ACE2)具有较强的结合能力,结合形式有氢键、疏水作用。  结论  荆防败毒散中的活性成分能通过抑制新型冠状病毒(SARS-CoV-2)蛋白,ACE2结合,通过对多靶点、多通路的作用发挥对COVID-19的防治作用。
  • 海绵是具有代表性的海洋生物,其共附生微生物也是近年来研究的热点。在海洋高盐、高压、低温、寡营养的生存环境下,海绵共附生微生物能够产生结构新颖、生物活性良好的次级代谢产物。其中海绵共附生真菌是海绵化学多样性的重要来源[1]

    曲霉属 (Aspergillus sp)真菌分布广泛而且研究丰富。海洋曲霉属真菌的次级代谢产物主要包括聚酮类[2]、生物碱类[3]、肽类[4]、萜类[5]等化合物,具有抗肿瘤[6]、抗菌[7]、抗病毒[4]等生物活性。本课题的土曲霉(Aspergillus terreus)是从我国南海西沙永兴岛海域的棕色扁海绵Phakellia fusca中分离得到的,属于散囊菌目(Eurotiales)发菌科(Tri-chocomaceaez)的一种真菌,在海洋动植物和陆地植物中均有分布。该菌的次级代谢产物具有多样性,包括生物碱类化合物[8]、丁烯酸内酯类化合物[9]、萜类化合物[10]、环肽类化合物[11]等。本文采用硅胶柱色谱、Sephadex LH-20凝胶柱色谱、高效液相色谱等多种分离方法从土曲霉Aspergillus terreus中共分离得到8个单体化合物。通过理化常数测定、波谱数据分析等方法确定了化合物的结构。化合物18的结构见图1

    图  1  化合物1 ~ 8的化学结构式

    菌株来源于棕色扁海绵Phakellia fusca,由上海交通大学海洋药物研究中心鉴定为Aspergillus terreus,菌株保存在上海交通大学医学院附属仁济医院药学部海洋药物研究中心(菌株编号152805)。

    Agilent 600核磁共振波谱仪(美国 Agilent 公司);Waters高效液相色谱仪(美国Waters公司);XBridge C18半制备型液相色谱柱(10 mm×250 mm,5 μm);快速制备色谱仪(法国Interchim公司);OSB-2100旋转蒸发仪(日本EYELA 公司);振荡培养箱(上海知楚)。薄层硅胶、200~300目柱色谱用硅胶(青岛海洋化工厂);Sephadex LH-20凝胶(瑞典GE Healthcare公司);色谱纯试剂(天津康科德科技有限公司);其他分析纯有机试剂(上海化学试剂公司);氘代试剂(剑桥同位素实验室)。

    Aspergillus terreus单菌落接种到装有100 ml PDB培养液的250 ml三角瓶中,28 ℃,220 r/min震荡培养3 d,以该发酵液10%的接种量接到装有500 ml的真菌2号培养液(甘露醇20 g,麦芽糖20 g,CaCO3 15 g,葡萄糖10 g,谷氨酸钠10 g,酵母提取物3 g,玉米浆1 g,KH2PO4 0.5 g,MgSO4·7H2O 0.3 g,海盐30 g,蒸馏水1 L)的1 L三角瓶中,28 ℃,220 r/min震荡培养10 d,获得菌株的发酵物。收集发酵液24 L,用等体积的乙酸乙酯萃取3次,浓缩后得到乙酸乙酯相浸膏9.3 g。

    乙酸乙酯相浸膏首先经Sephadex LH-20凝胶柱色谱分离,以二氯甲烷-甲醇(体积比为1∶1)作为溶剂进行洗脱,得到组分Fr.1~Fr.4。组分Fr.2经硅胶柱色谱(石油醚:丙酮 = 100∶1~0∶100)分离得到组分Fr.2-1~Fr.2-9。组分Fr.2-5经反相中压柱色谱分离得到8个亚组分,其中Fr.2-5d经重结晶得到化合物3 (2.5 mg)。组分Fr.2-6经LH-20凝胶柱色谱和反相半制备HPLC(38%乙腈-水)分离得到化合物1 (3.5 mg, tR = 21.0 min)。化合物2 (3.5 mg, tR = 13.0 min)由组分Fr.2-7经反相半制备HPLC,以33%乙腈-水为流动相等梯度洗脱得到。组分Fr.2-8以乙腈-水 (体积比10∶90~100∶0)为流动相,经反相中压柱色谱和反相半制备HPLC(20%乙腈-水)分离得到化合物4 (2.0 mg, tR=30.0 min)、 化合物5 (4.0 mg, tR=28.0 min)和化合物6 (9.0 mg, tR=14.0 min)。Fr.3经过硅胶柱色谱分离得到7个组分,其中Fr.3-3经反相半制备HPLC进一步纯化得到化合物7 (1.7 mg, tR=12.0 min)。组分Fr.3-4以20%~100%的乙腈-水为流动相,经反相中压柱色谱和反相半制备HPLC(15%乙腈-水)分离得到化合物8 (18.0 mg, tR = 8.0 min)。

    化合物1为黄色粉末(甲醇),硫酸/香草醛显色为黄色,ESIMS给出的分子离子峰[M+H]m/z 466.15。1H NMR (600 MHz, CDCl3)中,δH 12.23 (1H, s)为氨基质子信号;一组邻位二取代的苯环质子信号δH 8.82 (1H, dd, J=8.5, 0.8 Hz, H-3), 7.89 (1H, dd, J=7.9, 1.3 Hz, H-6), 7.60 (1H, td, J=8.5, 1.3 Hz, H-4), 7.22 (1H, m, H-5),芳香质子信号δH 9.21 (1H, brs, H-9), 8.70 (1H, d, J=4.5 Hz, H-1′), 8.25 (1H, dt, J=8.0, 2.2 Hz, H-3′), 7.36 (1H, dd, J=8.0, 4.5 Hz, H-2′),提示3-取代吡啶环的存在;1个芳香质子信号δH 7.27 (1H, s, H-10′);4个甲氧基质子信号δH 3.97 (3H, s, 4″-OCH3), 3.91 (3H, s, 3″-OCH3), 3.90 (3H, s, 5″-OCH3), 3.82 (3H, s, 7″-OCH3)。13C NMR (150 MHz, CDCl3)共显示24个碳信号,结合DEPT谱,推断δC 168.2, 167.2, 164.0为羰基碳信号;17个芳香碳信号;δC 61.3, 61.3, 56.5, 52.7为4个甲氧基碳信号。碳信号归属为:δC 168.2 (C-7)、167.2 (C-7′′)、164.0 (C-7′)、152.6 (C-4′)、151.5 (C-5′′)、149.3 (C-2′)、148.8 (C-3′′)、146.9 (C-4′′)、140.4 (C-2)、135.2 (C-6′)、133.6 (C-4)、130.3 (C-1′)、127.9 (C-6)、125.8 (C-2′′)、123.8 (C-5)、123.6 (C-5′)、121.8 (C-3)、120.4 (C-1′′)、119.0 (C-1)、108.8 (C-6′′)、61.3 (3″-OCH3)、61.3 (4″-OCH3)、56.5 (5″-OCH3)、52.7 (7″-OCH3)。该化合物核磁数据与参考文献[11]对照基本一致,确定化合物为methyl-3,4,5-trimethoxy-2-(2-(nicotinamido)benzamido) benzoate。

    化合物2为黄色粉末(甲醇),ESIMS给出的分子离子峰[M+H]m/z 457.14。1H NMR (600 MHz, DMSO-d6)中,δH 12.19 (1H, s, 3-NH), 11.10 (1H, s, 1′′-NH), 8.52 (1H, d, J = 8.1 Hz, 1′-NH)为氨基质子信号;1个芳香质子单峰信号δH 9.29 (1H, s, H-7);一组邻位二取代的苯环质子信号δH 8.44 (1H, d, J = 8.5 Hz, H-7′′), 7.92 (1H, dd, J = 7.9, 1.5 Hz, H-4′′), 7.63 (1H, td, J = 7.9, 1.5 Hz, H-6′′), 7.20 (1H, td, J = 7.6, 1.5 Hz, H-5′′);2个相邻的连接杂原子的次甲基质子信号δH 4.55 (1H, dd, J = 8.1, 2.9 Hz, H-2′), 4.41 (1H, m, H-4′);3个甲基质子信号δH 3.70 (3H, s, H-9′′), 3.52 (3H, s, H-9), 1.19 (3H, d, J = 6.4 Hz, H-5′)。13C NMR (150 MHz, DMSO-d6)共显示20个碳信号,结合DEPT谱,推断δC 168.8, 167.3, 162.7, 159.5, 150.1为羰基碳信号;10个芳香碳信号;δC 65.9, 59.8为2个连杂原子的次甲基碳信号;δC 52.4, 28.6, 20.5为3个甲基碳信号,结合氢谱信号,确定有一个甲氧基和一个氮甲基。碳信号归属为:δC 168.8 (C-3′)、167.3 (C-8″)、162.7 (C-10)、159.5 (C-4)、151.2 (C-8a)、150.1 (C-2)、146.3 (C-7)、139.3 (C-2′′)、138.2 (C-6)、134.2 (C-6′′)、130.7 (C-4′′)、127.2 (C-4a)、123.4 (C-5′′)、120.7 (C-7′′)、117.1 (C-3′′)、65.9 (C-4′)、59.8 (C-2′)、52.4 (C-9″)、28.6 (C-9)、20.5 (C-5′)。该化合物的比旋光值为$[\alpha]_{\rm{D}}^{20} $+98 (c 0.1, MeOH)。该核磁数据与参考文献[12]对照基本一致,确定该化合物为terrelumamide A。

    化合物3为白色结晶(甲醇),ESIMS给出的分子离子峰[M+H]m/z 323.13。1H-NMR (600 MHz, CDCl3)中,δH 7.2-7.5 (10H, m, H-3′-H-7′, H-3′′-H-7′′)为10个芳香质子信号,提示存在2个单取代苯基;2个亚甲基质子信号δH 4.20 (2H, brs, H-1′′), 3.94 (2H, brs, H-1′);1个甲氧基质子信号δH 3.92 (3H, s, 2-OCH3)。13C-NMR (150 MHz, CDCl3)共显示19个碳信号,结合DEPT谱推断δC 158.2为羰基碳信号;12个芳香碳信号;δC 34.0, 30.4为2个亚甲基碳信号,提示结构中存在两个苄基基团;δC 61.8为甲基碳信号;δC 144.2, 140.6, 129.4为3个烯碳信号。碳信号归属为:δC 158.2 (C-5), 144.2 (C-6), 140.6 (C-2), 136.5 (C-2′′), 135.6 (C-1′), 129.6 (C-3′, 7′), 129.4 (C-3, 3′′, 7′′), 128.6 (C-4′, 6′), 127.8 (C-4′′, 6′′), 126.9 (C-5′, 5′′), 61.8 (2-OCH3), 34.0 (C-1′′), 30.4 (C-1′)。该化合物核磁数据与参考文献[13]对照基本一致,确定化合物为emeheterone。

    化合物4为黄色粉末(甲醇),硫酸/香草醛显色为紫色,ESIMS给出的分子离子峰[M+H]m/z 240.12。1H NMR (600 MHz, CD3OD)中,给出1个芳香质子信号δH 6.13 (1H, d, J = 0.7 Hz, H-5);3个次甲基氢信号δH 6.07 (1H, d, J = 3.0 Hz, H-8), 3.89 (1H, dt, J = 10.5, 3.0 Hz, H-9), 1.90 (1H, m, H-11);1个亚甲基质子信号δH 1.58 (1H, ddd, J = 12.2, 10.5, 4.6 Hz, H-10), 1.36 (1H, ddd, J = 12.2, 10.5, 3.0 Hz, H-10);3个甲基质子信号δH 2.28 (3H, s, H-7), 0.99 (3H, d, J = 6.7 Hz, H-13), 0.96 (3H, d, J = 6.7 Hz, H-12)。13C NMR (150 MHz, CD3OD)共显示12个碳信号,结合DEPT谱推断δC 155.0为羰基碳信号;4个芳香碳信号;δC 115.8, 70.5, 25.2为3个次甲基脂肪碳信号,结合对应的氢信号提示结构中存在1个缩醛碳信号和一个连氧次甲基碳信号;δC 40.4为亚甲基碳信号;δC 24.0, 21.8, 18.8为3个甲基碳信号。碳谱信号归属为:δC 157.9 (C-4)、155.0 (C-2)、143.5 (C-6)、132.7 (C-3)、115.8 (C-8)、95.0 (C-5)、70.5 (C-9)、40.4 (C-10)、25.2 (C-11)、24.0 (C-12)、21.8 (C-13)、18.8 (C-7)。该化合物的ECD曲线显示在217 nm处有负的Cotton 效应(Δε −5.86),其核磁和ECD数据与参考文献[14]对照基本一致,最终确定该化合物为(8R, 9S)-dihydroisoflavipucine。

    化合物5为黄色结晶(甲醇),硫酸/香草醛显色为紫色,ESIMS给出的分子离子峰[M+H]m/z 240.12。1H NMR (600 MHz, CD3OD)中,给出1个芳香质子信号δH 6.13 (1H, d, J = 0.7 Hz, H-5);3个次甲基氢信号δH 6.06 (1H, d, J = 3.0 Hz, H-8), 3.90 (1H, dt, J = 10.5, 3.0 Hz, H-9), 1.90 (1H, m, H-11);1组亚甲基质子信号δH 1.56 (1H, ddd, J = 12.3, 10.5, 4.6 Hz, H-10), 1.36 (1H, ddd, J = 12.3, 10.5, 3.0 Hz, H-10);3个甲基质子信号δH 2.28 (3H, s, H-7), 0.99 (3H, d, J = 6.6 Hz, H-13), 0.95 (3H, d, J = 6.6 Hz, H-12)。13C NMR (150 MHz, CD3OD)共显示12个碳信号,结合DEPT谱推断δC 155.0为羰基碳信号;4个芳香碳信号;δC 115.8, 70.5, 25.2为3个次甲基碳信号,结合对应的氢信号提示结构中存在1个次甲二氧基碳信号和一个连氧次甲基碳信号;δC 40.5为亚甲基碳信号;δC 24.0, 21.8, 18.8为3个甲基碳信号。碳信号归属为:δC 157.8 (C-4)、155.0 (C-2)、143.4 (C-6)、132.8 (C-3)、115.8 (C-8)、95.1 (C-5)、70.5 (C-9)、40.5 (C-10)、25.2 (C-11)、24.0 (C-12)、21.8 (C-13)、18.8 (C-7)。该化合物的核磁数据与化合物4对比基本一致,ECD曲线显示在217 nm处有正的Cotton 效应(Δε +25.34),提示为化合物4的差向异构体。将此化合物的核磁和ECD数据与参考文献[14]对照基本一致,最终确定化合物为(8S, 9S)-dihydroisoflavipucine。

    化合物6为黄色粉末(甲醇),硫酸/香草醛溶液无明显显色,ESIMS给出的分子离子峰[M+H]m/z 245.12。1H NMR (600 MHz, CDCl3)中,给出1组单取代的苯环芳香质子信号δH 7.32 (2H, t, J = 7.5 Hz, H-5′), 7.26 (1H, t, J = 7.5 Hz, H-4′), 7.20 (2H, d, J = 7.5 Hz, H-6′);2个次甲基氢信号δH 4.25 (1H, dd, J=10.5, 2.9 Hz, H-9), 4.04 (1H, t, J = 7.8 Hz, H-6);4组亚甲基质子信号δH 3.65-3.50 (2H, m, H-3); 3.65-3.50 (1H, m, H-10), 2.76 (1H, dd, J=14.5, 10.5 Hz, H-10); 2.30 (1H, m, H-5), 1.88 (1H,m, H-5); 1.98 (2H, m, H-4)。13C NMR (150 MHz, CDCl3)共显示14个碳信号,结合DEPT谱推断δC 169.6, 165.3为酰胺羰基碳信号;6个芳香碳信号;δC 59.3, 56.4为2个连氮次甲基碳信号;δC 45.6, 37.0, 28.5, 22.7为4个亚甲基碳信号,提示结构中存在苯丙氨酸和脯氨酸片段。碳信号归属为:δC 169.6 (C-7)、165.3 (C-1)、136.1 (C-1′)、129.4 (C-2′)、129.4 (C-6′)、129.3 (C-3′)、129.3 (C-5′)、127.7 (C-4′)、59.3 (C-6)、56.4 (C-9)、45.6 (C-3)、37.0 (C-10)、28.5 (C-5)、22.7 (C-4)。该化合物的比旋光值为$[\alpha]_{\rm{D}}^{20} $-47 (c 0.1, MeOH),将核磁数据与参考文献[15]对照基本一致,最终确定化合物为cyclo(S-Pro-S-Phe)。

    化合物7为浅黄色粉末(甲醇),硫酸/香草醛显色不明显,ESIMS给出的分子离子峰[M+H]m/z 284.13。1H NMR (600 MHz, DMSO-d6)中给出2个氨基质子信号δH 10.83 (1H, s, H-1′), 7.71 (1H, s, H-8);1组邻二取代的苯环芳香质子信号δH 7.54 (1H, d, J = 8.0 Hz, H-5′), 7.30 (1H, d, J = 8.0 Hz, H-8′), 7.03 (1H, t, J = 7.3 Hz, H-7′), 6.94 (1H, t, J = 7.3 Hz, H-6′);1个芳香质子单峰信号δH 7.16 (1H, s, H-2′);2个次甲基氢信号δH 4.28 (1H, t, J = 5.0 Hz, H-9), 4.04 (1H, t, J = 8.5 Hz, H-6);4组亚甲基质子信号δH 3.36 (1H, m, H-3), 3.23 (1H, m, H-10), 3.21(1H, m, H-3), 3.05 (1H, m, H-10), 1.95 (1H, m, H-5), 1.66 (1H, m, H-4), 1.59 (1H, m, H-4), 1.36 (1H, m, H-5)。13C NMR (150 MHz, DMSO-d6)共显示16个碳信号,结合DEPT谱推断δC 169.0, 165.5为酰胺羰基碳信号;8个芳香碳信号;δC 58.4, 55.2为2个连氮次甲基碳信号;δC 44.6, 27.7, 25.8, 21.8为4个亚甲基碳信号。碳信号归属为:δC 169.0 (C-7)、165.5 (C-1)、136.0 (C-9′)、127.3 (C-4′)、124.4 (C-2′)、120.8 (C-7′)、118.6 (C-5′)、118.2 (C-6′)、111.2 (C-8′)、109.3 (C-3′)、58.4 (C-6)、55.2 (C-9)、44.6 (C-3)、27.7 (C-5)、25.8 (C-10)、21.8 (C-4)。将核磁数据与化合物6对比,化合物7中吲哚基取代了化合物6中的苯基。该化合物的比旋光值为$[\alpha]_{\rm{D}}^{20} $-90 (c 0.1, MeOH),将该核磁数据与参考文献[16]对照基本一致,最终确定化合物为brevianamide F。

    化合物8为棕黄色油状(甲醇),ESIMS给出的分子离子峰[M+Na]m/z 177.06。1H NMR (600 MHz, DMSO-d6)中,给出3个烯氢信号δH 6.72 (1H, m, H-7), 6.37 (1H, d, J = 15.8 Hz, H-6), 6.00 (1H, s, H-2),其中一对为反式烯氢;2个羟基信号δH 5.80 (1H, s, 5-OH), 5.68 (1H, s, 4-OH);2个连氧次甲基质子信号δH 4.50 (1H, m, H-4), 3.89 (1H, m, H-5);1个甲基质子信号δH 1.88 (3H, d, J = 6.3 Hz, H-8)。13C NMR (150 MHz, DMSO-d6)共显示8个碳信号,结合DEPT谱,推断δC 203.7为酮羰基碳信号;4个双键碳信号;δC 80.8, 76.4为2个连氧次甲基碳信号;δC 19.1为甲基碳信号。碳信号归属为:δC 203.7 (C-1)、168.5 (C-3)、139.4 (C-7)、125.5 (C-6)、124.8 (C-2)、80.8 (C-5)、76.4 (C-4)、19.1 (C-8)。该化合物的比旋光值为$[\alpha]_{\rm{D}}^{20} $+78 (c 0.1, MeOH),将该化合物核磁数据与参考文献[17]对照基本一致,确定化合物为terrein。

    对分离得到的化合物进行α-葡萄糖苷酶抑制活性的测试。采用PBS缓冲液为反应体系,利用α-葡萄糖苷酶,以4-硝基苯基-α-D吡喃葡萄糖苷(PNPG)为特异性底物,以阿卡波糖作为阳性药,分别设立空白对照组、α-葡萄糖苷酶空白组和PNPG空白组,评价化合物的α-葡萄糖苷酶的抑制活性。结果表明,化合物3具有较强的α-葡萄糖苷酶的抑制活性,IC50值为14.28 µmol/L。其他化合物没有明显的α-葡萄糖苷酶的抑制活性。另外,还对化合物的抗氧化活性进行测试。采用DPPH的方法,以抗氧化剂N-乙酰半胱氨酸作为阳性药对分离得到的化合物进行了体外抗氧化活性测试。结果显示这些化合物抗氧化活性不明显。

    本研究从棕色扁海绵共附生真菌土曲霉中分离得到了8个化合物,其中化合物3457为首次从该菌中分离得到,丰富了土曲霉次级代谢产物的多样性,为进一步探索该属真菌的化学成分和生源途径提供了理论依据。

    根据文献报道,化合物2可以提高胰岛素的敏感性[13],化合物45测试了多个肿瘤细胞系,均显示细胞毒活性不明显[15],化合物6对大肠杆菌、金黄色葡萄球菌、黄体微球菌、白色念珠菌和隐球菌等具有很好的抗菌活性[16],化合物7对PaCa-2胰腺细胞的抗癌活性和抗菌活性都不明显[17],化合物8能够抑制雄激素依赖性前列腺癌细胞LNCaP-CR的血管生成素分泌,能够抑制人脐静脉内皮细胞的血管形成[18]。为了更好的探究该真菌代谢产物的活性,对分离得到的化合物进行了α-葡萄糖苷酶抑制活性和抗氧化活性测试。其中化合物3显示了较强的α-葡萄糖苷酶的抑制活性,IC50值为14.28 µmol/L,其α-葡萄糖苷酶抑制活性的机制有待于进一步研究。

  • 图  1  荆防败毒散药材-成分-靶点网络

    图  2  荆防败毒散干预COVID-19的Hub网络

    图  3  荆防败毒散成分作用靶点GO功能分析

    图  4  荆防败毒散核心靶点KEGG富集分析的前20条通路气泡图

    图  5  β-谷甾醇、丹参酮ⅡA、芒柄花黄素与Mpro和ACE2的分子对接图

    表  1  荆防败毒散中部分活性成分的基本信息

    成分名称MOL IDMWOB (%)DL药味归属
    β谷甾醇MOL000358414.7936.910.75荆芥、防风、羌活、前胡、独活、枳壳
    谷甾醇MOL000359414.7936.910.75荆芥、防风、羌活、前胡、川芎、甘草
    槲皮素MOL000098302.2546.430.28荆芥、柴胡、前胡、甘草
    异欧前胡素MOL001942270.3045.460.23防风、前胡、羌活、独活
    欧前胡素MOL001941270.3034.550.22防风、前胡、羌活、独活
    紫花前胡苷MOL004792408.4457.120.69羌活、独活、前胡
    柚皮素MOL004328272.2759.290.21枳壳、甘草
    异鼠李素MOL000354316.2849.600.31柴胡、甘草
    豆甾醇MOL000449412.7743.830.76荆芥、柴胡
    亚油酸乙酯MOL001494308.5642.000.19防风、川芎
    山奈酚MOL000422286.2541.880.24柴胡、甘草
    紫花前胡素MOL013077328.3939.270.38防风、前胡
    木犀草素MOL000006286.2536.160.25荆芥、桔梗
    甘草酚MOL002311366.3990.780.67甘草
    宽叶甘松酸MOL013098328.3987.480.37前胡
    Divaricate acidMOL011737320.3287.000.32防风
    甘草吡喃
    香豆素
    MOL004904384.4180.360.65甘草
    shinpterocarpinMOL004891322.3880.300.73甘草
    芒柄花黄素MOL000392268.2869.670.21甘草
    xambioonaMOL005018388.4954.850.87甘草
    丹参酮IIAMOL007154294.3749.890.40前胡
    异甘草酚MOL004948366.3944.700.84甘草
    去氢齿孔酸MOL000300453.7544.170.83茯苓
    7-甲氧基-2-甲基异黄酮MOL003896266.3142.560.20甘草
    美迪紫檀素-3-O-葡萄糖苷MOL004924432.4640.990.95甘草
    过氧化麦角
    甾醇
    MOL000283430.7440.360.81茯苓
    去氢茯苓酸MOL000276526.8335.110.81茯苓
    茯苓酸MOL000289528.8533.630.81茯苓
    kanzonol FMOL004988420.5432.470.89甘草
    汉黄芩素MOL000173284.2830.680.23防风
    下载: 导出CSV

    表  2  荆防败毒散中核心成分与Mpro、ACE2的结合能

    成分CAS号化学式结合能(kJ/mol)
    MproACE2
    槲皮素117-39-5C15H10O7−27.21−34.33
    山奈酚520-18-3C15H10O6−27.21−32.66
    木樨草素491-70-3C15H10O6−28.89−34.33
    汉黄芩素10-29-7C16H12O5−27.21−33.91
    7-甲氧基-2-甲基异黄酮19725-44-1C17H14O3−25.96−32.24
    β-谷甾醇83-46-5C29H50O−31.40−36.84
    丹参酮IIA568-72-9C19H18O3−30.14−36.43
    异鼠李素480-19-3C16H12O7−27.21−33.49
    芒柄花黄素485-72-3C16H12O4−29.73−30.14
    柚皮素153-18-4C15H12O5−28.47−33.49
    下载: 导出CSV
  • [1] 大汇临床研究. 重磅!钟南山院士最新千例新冠肺炎研究结果来了![EB/OL]. (2020-02-10)[2020-02-15]. https://mp.weixin.qq.com/s/SzFloKDdXQNG8fbLYqfThg.
    [2] ZHANG J J, LITVINOVA M, LIANG Y X, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China[J]. Science,2020,368(6498):1481-1486. doi:  10.1126/science.abb8001
    [3] 黄煌. 基于经方医学对新型冠状病毒肺炎的思考[J]. 南京中医药大学学报, 2020, 36(2):152-156.
    [4] 胡相萍, 张兰萍. 荆防败毒散联合阿奇霉素治疗小儿急性支气管炎临床疗效及其对患儿肺功能的动态观察[J]. 中国妇幼保健, 2016, 31(19):3975-3978.
    [5] 吴晖, 邵丹, 文丹, 等. 加减荆防败毒散治疗风寒型外感热病疗效观察及对TNF-α、IL-1β的影响[J]. 福建中医药, 2017, 48(3):11-13. doi:  10.3969/j.issn.1000-338X.2017.03.005
    [6] 邵丹, 吴晖, 文丹, 等. 加减荆防败毒散对急性上呼吸道感染患者外周血T淋巴细胞亚群的影响[J]. 福建中医药, 2014, 45(2):18-19.
    [7] 张奎, 陈红英, 马瑜. 荆防败毒散药效学研究[J]. 河南中医, 2009, 29(6):601-602.
    [8] RU J L, LI P, WANG J N, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform,2014,6:13. doi:  10.1186/1758-2946-6-13
    [9] DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res,2019,47(w1):W357-W364. doi:  10.1093/nar/gkz382
    [10] UniProt Consortium. UniProt: a worldwide hub of protein knowledge[J]. Nucleic Acids Res,2019,47:D506-D515. doi:  10.1093/nar/gky1049
    [11] ZHOU Y Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun,2019,10(1):1523. doi:  10.1038/s41467-019-09234-6
    [12] STERLING T, IRWIN J J. ZINC 15: ligand discovery for everyone[J]. J Chem Inf Model,2015,55(11):2324-2337. doi:  10.1021/acs.jcim.5b00559
    [13] GOODSELL D S, ZARDECKI C, DI COSTANZO L, et al. RCSB Protein Data Bank: Enabling biomedical research and drug discovery[J]. Protein Sci,2020,29(1):52-65. doi:  10.1002/pro.3730
    [14] CHEN C N, LIN C P, HUANG K K, et al. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3'-digallate (TF3)[J]. Evid Based Complement Alternat Med,2005,2(2):209-215. doi:  10.1093/ecam/neh081
    [15] MENACHERY V D, YOUNT B L Jr, DEBBINK K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence[J]. Nat Med,2015,21(12):1508-1513. doi:  10.1038/nm.3985
    [16] NGUYEN N T, NGUYEN T H, PHAM T N H, et al. Autodock vina adopts more accurate binding poses but Autodock4 forms better binding affinity[J]. J Chem Inf Model,2020,60(1):204-211. doi:  10.1021/acs.jcim.9b00778
    [17] HSIN K Y, MATSUOKA Y, ASAI Y, et al. systemsDock: a web server for network pharmacology-based prediction and analysis[J]. Nucleic Acids Res,2016,44(w1):W507-W513. doi:  10.1093/nar/gkw335
    [18] WANG C, HORBY P W, HAYDEN F G, et al. A novel coronavirus outbreak of global health concern[J]. Lancet,2020,395(10223):470-473. doi:  10.1016/S0140-6736(20)30185-9
    [19] 林伯良. 小柴胡汤证的研究[M]. 北京: 人民卫生出版社, 1959: 23.
    [20] 邓翠娟. 探究荆防败毒散加减配合拔罐治疗风寒感冒的临床效果[J]. 内蒙古中医药, 2017, 36(14):42-43. doi:  10.3969/j.issn.1006-0979.2017.14.043
    [21] 李丽, 陈玉婷, 曾希. RelA/p65的磷酸化调节及其与肿瘤的关系[J]. 中南医学科学杂志, 2018, 46(2):216-220.
    [22] 冯馨锐, 崔雨舒, 何志涛, 等. 肿瘤坏死因子-α的生物学功能研究进展[J]. 吉林医药学院学报, 2019, 40(1):66-68.
    [23] ZHOU P, YANG X L, WANG X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature,2020,579(7798):270-273. doi:  10.1038/s41586-020-2012-7
    [24] 齐阳, 黄爱文, 宋洪涛. 血管紧张素转换酶2抗新冠病毒药理作用机制的研究进展[J/OL]. 中国医院药学杂志: 1-5[2020-07-14]. https://kns.cnki.net/kcms/detail/42.1204.R.20200420.1846.047.html.
    [25] 张启燕, 张文会, 肖军海, 等. 3C和3CL蛋白酶及广谱抑制剂的研究进展[J]. 国际药学研究杂志, 2016, 43(3):425-430.
    [26] ZHANG L L, LIN D Z, SUN X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors[J]. Science,2020,368(6489):409-412. doi:  10.1126/science.abb3405
    [27] 张泽鑫, 吴汶丰, 谢丹, 等. 基于网络药理学和分子对接分析达原饮治疗新型冠状病毒肺炎(COVID-19)的分子靶点和机制[J/OL].中药材: 1-8[2020-05-14]. https://kns.cnki.net/kcms/detail/44.1286.R.20200511.1748.002.html.
    [28] 詹群璋, 黄英杰, 林树红, 等. 基于网络药理学和分子对接的玉屏风散预防新型冠状病毒肺炎(COVID-19)活性化合物的研究[J]. 中草药, 2020, 51(7):1731-1740. doi:  10.7501/j.issn.0253-2670.2020.07.007
  • [1] 周丽城, 欧已铭, 王园.  玉米须黄酮化学成分与药理作用研究进展 . 药学实践与服务, 2025, 43(2): 51-58. doi: 10.12206/j.issn.2097-2024.202309037
    [2] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [3] 周娇, 郑建雨, 王思真, 杨峰.  mRNA肿瘤疫苗非病毒递送系统研究进展 . 药学实践与服务, 2025, 43(3): 109-116. doi: 10.12206/j.issn.2097-2024.202410034
    [4] 徐璐璐, 刘爱军.  丹参白术方“异病同治”冠心病、血管性痴呆、特发性膜性肾病的网络药理学作用机制研究 . 药学实践与服务, 2025, 43(3): 143-150. doi: 10.12206/j.issn.2097-2024.202312027
    [5] 张强, 李静, 刘越, 储晓琴.  基于网络药理学与分子对接技术研究制痂酊治疗Ⅱ度烧伤的作用机制 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202307014
    [6] 黄韵, 张正银, 金英, 郑怡菁, 李铁军, 孙莉莉.  耐碳青霉烯类肺炎克雷伯菌及大肠埃希菌临床分离株耐药性及耐药基因分析 . 药学实践与服务, 2024, 42(10): 439-444. doi: 10.12206/j.issn.2097-2024.202309059
    [7] 张林晨, 张小琴, 张俊平.  山楂酸药理作用的研究进展 . 药学实践与服务, 2024, 42(5): 185-189. doi: 10.12206/j.issn.2097-2024.202307052
    [8] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [9] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [10] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [11] 张成中, 朱雪艳, 卜其涛, 王宏瑞, 黄宝康.  基于网络药理学与分子对接预测鸡骨草特征图谱研究 . 药学实践与服务, 2024, 42(8): 350-358. doi: 10.12206/j.issn.2097-2024.202303048
    [12] 陈金涛, 乔子婴, 马明华, 张若曦, 王振伟, 年华.  基于网络药理学和分子对接技术研究金芪清疏颗粒治疗社区获得性肺炎的潜在机制 . 药学实践与服务, 2024, 42(11): 471-478. doi: 10.12206/j.issn.2097-2024.202312014
    [13] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
  • 期刊类型引用(11)

    1. 周超,尚丹丹,杨雯萱,代龙,姚景春. 荆防颗粒联合复方黄柏液涂剂对宫颈HPV感染的临床研究. 长春中医药大学学报. 2025(01): 55-59 . 百度学术
    2. 孟珈同,邱智东,李军鸽,王永春,唐秋竹. 荆防败毒散关键信息考证. 中成药. 2024(04): 1262-1271 . 百度学术
    3. 吕婧,高燕,赵渤年,姚景春,梁红宝. 荆防颗粒增强免疫作用机制研究. 中草药. 2024(16): 5541-5550 . 百度学术
    4. 唐勇琛,张洪平,樊玲凤,杨玉竹,张亚洲. 心脉舒一号口服液治疗心脏病分子机制网络药理学研究. 中国药业. 2024(17): 66-73 . 百度学术
    5. 尉雅洁,刘明飞,孙成宏,王伟,肖贺,程国良,陈颖. 基于网络药理学和动物实验探究荆防颗粒对高尿酸血症的治疗作用及机制. 中草药. 2023(03): 808-816 . 百度学术
    6. 张永康,孙成宏,王西双,姚景春,张贵民. 基于网络药理学和实验验证探讨荆防颗粒对自身免疫性肝炎小鼠的治疗作用及作用机制. 中草药. 2023(05): 1461-1470 . 百度学术
    7. 尉雅洁,刘明飞,周诗喆,项海鑫,孙成宏,陈颖. 荆防颗粒对氧嗪酸钾诱导小鼠高尿酸肾病的防治作用机制探讨. 山东医药. 2023(15): 1-5 . 百度学术
    8. 鲍柏屹,孙美玲,陈祥,曹兆流,唐书炳,李歆. 基于网络药理学和分子对接研究地奥心血康治疗心脏神经官能症的相关机制. 中国医药导报. 2023(17): 9-13 . 百度学术
    9. 阚雪纯,何润东,葛佳颖,吴俊,苗登顺. 基于网络药理学的续断抗骨质疏松分子作用机制研究. 南京医科大学学报(自然科学版). 2022(01): 35-40 . 百度学术
    10. 姚世霞,刘东升,牛钰婷,朱旭江,刘志浩,朱琳. 荆防颗粒质量评价. 中成药. 2022(10): 3130-3136 . 百度学术
    11. 徐庆仪,郁冬冬,黄烨炜. 临床治疗新型冠状病毒肺炎中药复方所使用高频数中药的网络药理学探讨. 海峡药学. 2021(10): 69-74 . 百度学术

    其他类型引用(4)

  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  7188
  • HTML全文浏览量:  4090
  • PDF下载量:  72
  • 被引次数: 15
出版历程
  • 收稿日期:  2020-05-26
  • 修回日期:  2020-10-16
  • 刊出日期:  2020-11-25

基于网络药理学和分子对接的荆防败毒散预防新型冠状病毒肺炎的活性成分研究

doi: 10.12206/j.issn.1006-0111.202005078
    基金项目:  山东省重点研发计划(重大科技创新工程)项目(2017CXGC1308)
    作者简介:

    冯 群,硕士,工程师,研究方向:中药新药研发与安全性评价,Email:fengchangqun@163.com

    通讯作者: 张贵民,研究员,研究方向:新药研发,Email:gmzhanglunan@163.com
  • 中图分类号: R285.5

摘要:   目的  运用网络药理学和分子对接方法,预测荆防败毒散预防新型冠状病毒肺炎(COVID-19)的活性成分,为临床用药提供参考。  方法  通过中药系统药理学分析平台,检索荆防败毒散组方中所有药材的化学成分和作用靶点。通过Uniprot数据库校正靶点对应的基因,利用Cytoscape软件构建药材-成分-靶点网络并进行可视化处理,利用疾病数据库检索COVID-19相关的靶点,筛选出重合的靶点,通过String数据库构建蛋白-蛋白相互作用网络。通过Metascape进行GO富集分析和KEGG通路富集分析,预测其作用机制,通过分子对接,计算核心成分在预防新型冠状病毒肺炎的作用强度。  结果  限定筛选条件为口服生物利用度(OB)≥30%、类药性(DL)≥0.18,共得到荆防败毒散的159个活性成分和277个靶点,与获得的273个COVID-19相关的靶点取交集,得到55个核心靶点;对核心靶点进行GO富集分析和KEGG通路富集分析,得到GO条目1376个和136条信号通路,涉及感染性疾病、癌症、细胞进程、免疫系统、信号等通路。分子对接结果显示荆防败毒散核心成分与SARS-CoV-2 3CL水解酶、血管紧张素转化酶II(ACE2)具有较强的结合能力,结合形式有氢键、疏水作用。  结论  荆防败毒散中的活性成分能通过抑制新型冠状病毒(SARS-CoV-2)蛋白,ACE2结合,通过对多靶点、多通路的作用发挥对COVID-19的防治作用。

English Abstract

于熙, 王玉婷, 林厚文, 孙雅婷. 海绵共附生土曲霉的化学成分研究[J]. 药学实践与服务, 2022, 40(2): 120-124. doi: 10.12206/j.issn.1006-0111.202107019
引用本文: 冯群, 关永霞, 黄志艳, 叶士莉, 程国良, 姚景春, 张贵民. 基于网络药理学和分子对接的荆防败毒散预防新型冠状病毒肺炎的活性成分研究[J]. 药学实践与服务, 2020, 38(6): 485-491, 538. doi: 10.12206/j.issn.1006-0111.202005078
YU Xi, WANG Yuting, LIN Houwen, SUN Yating. Study on chemical constituents of sponge-associated Aspergillus terreus[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(2): 120-124. doi: 10.12206/j.issn.1006-0111.202107019
Citation: FENG Qun, GUAN Yongxia, HUANG Zhiyan, YE Shili, CHENG Guoliang, YAO Jingchun, ZHANG Guimin. Study on active ingredients of Jingfang Baidu San for preventing COVID-19 based on network pharmacology and molecular docking[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 485-491, 538. doi: 10.12206/j.issn.1006-0111.202005078
  • 2019年12月,武汉市出现多例不明原因的病毒性肺炎病例,病例临床表现主要为发热、咳嗽,少数病人腹泻、呕吐、呼吸困难,胸片呈双肺浸润性病灶[1]。2020年2月11日,世界卫生组织将该病命名为新型冠状病毒肺炎(corona virus disease 2019,COVID-19),并称引起该病的病毒为SARS-CoV-2,与成年人相比,儿童更不易感染该病毒,65岁以上老年人更易受感染[2]。目前全球疫情愈演愈烈,国内用了两个多月控制住疫情,中医药做出了巨大贡献,但部分地区输入性病例和无症状感染者不断增加,寻找相应的群体性配方,是当前一项十分紧迫的研究任务。据古文献记载,加上黄煌教授临床经验和近期的个案报道,建议可以采用两首古代相传的治疗时令病的经验成方——荆防败毒散和十神汤,作为群体性预防用方[3]

    荆防败毒散,出自《摄生众妙方》,由荆芥、防风、羌活、独活、柴胡、前胡、川芎、枳壳、茯苓、桔梗、甘草等十一味中药组成,已上市的中成药包括荆防颗粒、荆防合剂。临床研究表明,荆防败毒散能缓解发热、咳嗽、喘息与肺部啰音等作用,调节机体炎症因子和细胞免疫状况,增强机体的免疫功能[4-6]。现代药理学研究证明其具有解热、镇痛和抗炎的作用[7]

    本文通过网络药理学筛选出荆防败毒散作用靶点,并进行聚类分析,预测荆防败毒散中核心活性成分,进而运用分析软件对药材-成分-靶点进行分子对接及信号通路分析,并预测其治疗COVID-19的作用机制,为荆防败毒散用于预防及治疗COVID-19的可能性提供理论参考。

    • 借助中药系统药理分析平台(TCMSP,http://tcmspw.com/tcmsp.php)[8],分别以荆芥、防风、羌活、独活、柴胡、前胡、川芎、枳壳、茯苓、桔梗、甘草为关键词搜索荆防败毒散中的成分。本研究结合口服生物利用度(OB≥30%)和类药性(DL≥0.18),筛选收集到的化学成分,并结合《中国药典》2015年版中药物的含量测定项对已筛选的成分进行补充,最终建立荆防败毒散的成分库。

    • 经OB和DL筛选合格的成分,在TCMSP数据库对其成分靶点进行收录。对未在TCMSP中收录靶点的成分,在PubChem查询成分对应的Canonical SMILES序列,并利用此序列在SwissTarget数据库[9](http://www.swisstargetprediction.ch/)中对该成分的靶点进行预测,收集预测结果中的靶标蛋白基因名称。最后对收集的所有靶点在Unitprot数据库[10](http://www.Unitprot.org/)输入蛋白名称并限定来源为Homo sapiens,获取官方基因名作为荆防败毒散的靶点库。通过Cytoscape 3.6.1软件,构建荆防败毒散药材-成分-靶点网络,分析成分和靶点网络。

    • 在CTD、NCBI和GeneCards数据库中,以“COVID-19”、“novel coronavirus pneumonia”等检索词检索,检索时间为2020年7月13日。将检索结果合并、去重,获取新冠肺炎疾病相关基因,并把相关基因编码的蛋白质作为药物治疗的潜在作用靶点。

    • 将荆防败毒散成分的靶点与COVID-19靶点分别导入String数据库,获取荆防败毒散成分靶点和COVID-19靶点的蛋白-蛋白相互作用(PPI)关系,通过Cytoscape软件Merge功能,取两者交集,挖掘关键靶点网络。

    • 为了进一步了解上述筛选出的靶标蛋白基因的功能及在信号通路中的作用,将筛选得到的作用靶点导入Metascape数据库[11](https://metascape.org/),通过输入靶基因名称列表并限定物种为人,进行GO(gene ontology)生物过程(BP,Biological Process)、细胞组成(CC,cellular component)、分子功能(MF,molecular function)富集分析和KEGG(kyoto encyclopedia of genes and genomes)信号通路富集分析,并利用R 4.0.0软件将其结果可视化。

    • 从ZINC数据库[12](http://zinc.docking.org/)下载Degree值前10成分的mol2格式文件,用Autodock Tool软件打开该成分,使其能量最小化并判定成分的Root、选定可扭转的键,保存为*pdbqt格式文件。从PDB数据库[13](https://www.rcsb.org/)下载SARS-CoV-2 3CL水解酶(Mpro,PDB ID: 6LU7)和血管紧张素转化酶II(ACE2,PDB ID: 1R42)的3D结构PDB格式文件[14-15],运用Pymol软件移除靶蛋白中的配体和非蛋白分子(如水分子),再保存为PDB格式文件。随后用Autodock Tool软件打开的PDB文件,加氢、计算电荷并给蛋白添加原子类型(Assign AD4 type),将其保存为*pdbqt格式文件[16]

      运用Autodock Vina将成分和受体对接。结合能小于0说明配体与受体可以自发结合,目前对于活性分子的靶点筛选尚无统一标准,本文根据结合能进行排序,结合能数值的绝对值越大,对接结果较好,该成分可视为荆防败毒散预防COVID-19的潜在活性成分。

    • 从TCMSP数据库中搜索荆防败毒散各味药的成分,并依据OB≥30%及DL≥0.18要求,得到最终选定的结果为187个不同的成分(28个无已知靶点),其中荆芥11个、防风18个、羌活15个、独活9个、柴胡17个、前胡24个、川芎7个、枳壳5个、茯苓15个、桔梗7个、甘草92个。筛选后的荆防败毒散中部分活性成分的基本信息见表1

      表 1  荆防败毒散中部分活性成分的基本信息

      成分名称MOL IDMWOB (%)DL药味归属
      β谷甾醇MOL000358414.7936.910.75荆芥、防风、羌活、前胡、独活、枳壳
      谷甾醇MOL000359414.7936.910.75荆芥、防风、羌活、前胡、川芎、甘草
      槲皮素MOL000098302.2546.430.28荆芥、柴胡、前胡、甘草
      异欧前胡素MOL001942270.3045.460.23防风、前胡、羌活、独活
      欧前胡素MOL001941270.3034.550.22防风、前胡、羌活、独活
      紫花前胡苷MOL004792408.4457.120.69羌活、独活、前胡
      柚皮素MOL004328272.2759.290.21枳壳、甘草
      异鼠李素MOL000354316.2849.600.31柴胡、甘草
      豆甾醇MOL000449412.7743.830.76荆芥、柴胡
      亚油酸乙酯MOL001494308.5642.000.19防风、川芎
      山奈酚MOL000422286.2541.880.24柴胡、甘草
      紫花前胡素MOL013077328.3939.270.38防风、前胡
      木犀草素MOL000006286.2536.160.25荆芥、桔梗
      甘草酚MOL002311366.3990.780.67甘草
      宽叶甘松酸MOL013098328.3987.480.37前胡
      Divaricate acidMOL011737320.3287.000.32防风
      甘草吡喃
      香豆素
      MOL004904384.4180.360.65甘草
      shinpterocarpinMOL004891322.3880.300.73甘草
      芒柄花黄素MOL000392268.2869.670.21甘草
      xambioonaMOL005018388.4954.850.87甘草
      丹参酮IIAMOL007154294.3749.890.40前胡
      异甘草酚MOL004948366.3944.700.84甘草
      去氢齿孔酸MOL000300453.7544.170.83茯苓
      7-甲氧基-2-甲基异黄酮MOL003896266.3142.560.20甘草
      美迪紫檀素-3-O-葡萄糖苷MOL004924432.4640.990.95甘草
      过氧化麦角
      甾醇
      MOL000283430.7440.360.81茯苓
      去氢茯苓酸MOL000276526.8335.110.81茯苓
      茯苓酸MOL000289528.8533.630.81茯苓
      kanzonol FMOL004988420.5432.470.89甘草
      汉黄芩素MOL000173284.2830.680.23防风
    • 利用Cytoscape软件进行“荆防败毒散药材-成分-靶点”网络的构建,网络共包括447个节点(11种药材节点、159个成分节点、277个靶点节点)和2718条边,如图1所示,其中形状“△”代表药材,“〇”代表成分,“◇”代表基因,每条边则表示药材中所含成分及成分与靶点相互作用关系。性状的大小代表Degree值的大小。按照Degree值,排名前10位的成分分别是槲皮素、山奈酚、木樨草素、汉黄芩素、β-谷甾醇、7-甲氧基-2甲基异黄酮、丹参酮IIA、柚皮素、芒柄花黄素、异鼠李素。

      图  1  荆防败毒散药材-成分-靶点网络

    • 在数据库中检索并筛选得到COVID-19相关的273个靶点,将273个疾病靶点和277个荆防败毒散活性成分的作用靶点导入String数据库,得到靶点PPI关系,利用Cytoscape软件将两者进行Merge取交集处理,得到包含55个靶点和766条边的Hub网络,见图2。按照Degree值从高到低,Hub网络中排名前10位的靶点分别为MAPK3、TNF、IL6、CASP3、TP53、MAPK8、MAPK1、IL10、CCL2、MAPK14。

      图  2  荆防败毒散干预COVID-19的Hub网络

    • 通过Metascape数据库进行的GO功能富集分析得到GO条目1376个(P<0.01),其中BP条目1304个,包括细胞因子和凋亡信号、刺激反应、多生物过程、免疫过程、细胞代谢、生物进程调控等;CC条目19个,包括细胞膜、细胞器膜、基质、转录因子等;MF条目53个,包括酶活性和酶结合、细胞因子活性和结合能力、转录因子结合、蛋白特异性结合等各类别分析中排名前20位的条目,见图3

      图  3  荆防败毒散成分作用靶点GO功能分析

      KEGG通路富集分析筛选得到136条(P<0.01)通路,涉及与寄生虫、真菌、病毒感染引起的疾病通路有22条(如朊病毒、甲型流感、人类嗜T淋巴细胞病毒I型感染、丙肝、肺结核、疟疾、百日咳等)、癌症相关的通路17条(如非小细胞肺癌、小细胞肺癌、黑色素瘤、癌症中碳代谢、转录失调等)、细胞进程、免疫系统进程、信号通路等。选Count值较大的前20条通路进行可视化,结果见图4

      图  4  荆防败毒散核心靶点KEGG富集分析的前20条通路气泡图

    • 将荆防败毒散中排序前10的核心成分分别与Mpro、ACE2受体进行分子对接。一般认为配体与受体结合的构象稳定时能量越低,发生的作用可能性越大,结合能≤–5.0 kJ/mol作为筛选标准,结合能≤–20.93 kJ/mol时则视为成分与靶点有较好的活性,结合能≤–29.336 kJ/mol时则结合活性强烈[17]。分子对接结果显示,筛选出的荆防败毒散核心成分与Mpro结合能远小于–20.93 kJ/mol,与ACE2受体结合能远小于–29.336 kJ/mol(见表2)。选择结合能均小于–29.336 kJ/mol的β-谷甾醇、丹参酮IIA、芒柄花黄素,对其与Mpro、ACE2的结合形式进行分析,丹参酮IIA可与Mpro的110位谷氨酰胺(GLN)和ACE2的158位络氨酸(TYR)形成氢键(键长20 nm和22 nm);芒柄花黄素可与Mpro的131位精氨酸(ARG)和287位亮氨酸(LEU)分别形成氢键(键长27 nm和19 nm),与ACE2的615位天冬氨酸(ASP)形成氢键(键长22 nm)。氢键、疏水作用可能是荆防败毒散成分与两个受体主要的结合形式,结果见图5。分子对接结果表明荆防败毒散中活性成分与Mpro、ACE2结合活性较强,与后者的结合能力优于前者。

      表 2  荆防败毒散中核心成分与Mpro、ACE2的结合能

      成分CAS号化学式结合能(kJ/mol)
      MproACE2
      槲皮素117-39-5C15H10O7−27.21−34.33
      山奈酚520-18-3C15H10O6−27.21−32.66
      木樨草素491-70-3C15H10O6−28.89−34.33
      汉黄芩素10-29-7C16H12O5−27.21−33.91
      7-甲氧基-2-甲基异黄酮19725-44-1C17H14O3−25.96−32.24
      β-谷甾醇83-46-5C29H50O−31.40−36.84
      丹参酮IIA568-72-9C19H18O3−30.14−36.43
      异鼠李素480-19-3C16H12O7−27.21−33.49
      芒柄花黄素485-72-3C16H12O4−29.73−30.14
      柚皮素153-18-4C15H12O5−28.47−33.49

      图  5  β-谷甾醇、丹参酮ⅡA、芒柄花黄素与Mpro和ACE2的分子对接图

    • 突如其来的疫情给人类带来巨大挑战,人类必须努力了解疾病特点,尽快寻找到控制措施[18]。荆防败毒散,由人参败毒散去人参加荆芥、防风而成。以荆芥、防风,羌活、独活发汗解表,开泄皮毛,使风寒之邪随汗而解,为通治一身风寒湿邪的常用组合。柴胡、枳壳、桔梗调畅气机,川芎行血合营,羌活、茯苓化痰渗湿,三组合用,意在解表祛邪与疏通气血津液。甘草调和药性,祛风散寒之力较强,宜于外感风寒湿邪较重者。荆防败毒散治退热效果极佳,用于流行性感冒见效快[19-20]。新冠肺炎疫情属于寒湿疫。因此,基于辨证论治的原则,荆防败毒散可作为群体性预防用药的选择,并对初期轻症(寒湿证)的新冠肺炎有一定治疗效果。

      根据KEGG分析,得到136条通路,包括感染性疾病通路、癌症通路、细胞进程通路、免疫系统通路、信号通路等。KEGG前20条通路中,频率最高的靶点为RELA、MAPK1、MAPK3、TNF、IL6。RELA在调节对感染的免疫应答中起关键作用,而且其磷酸化调节作用可抑制肿瘤的发生[21]。丝裂原活化蛋白激酶(MAPK)是信号从细胞表面传导到细胞核内部的重要传递者。TNF在抗肿瘤、抗感染、免疫、炎症等多种生理病理过程中发挥着关键的作用[22]。结果表明荆防败毒散呈现出中药多成分-多靶点-多途径协同作用的特点,通过对上述靶点的作用,调节感染类疾病通路、免疫损伤性、炎症通路,起到防治COVID-19的作用。

      ACE2是SARS-CoV和SARS-CoV-2的宿主细胞受体,SARS-CoV-2 通过表达的S-蛋白与人体ACE2结合,导致病毒入侵而致病,这可作为治疗COVID-19的突破口[23-24]。Mpro是单正链RNA病毒前体多聚蛋白水解酶核心部分,将宿主细胞内的病毒RNA翻译成蛋白以产生子代毒,在RNA复制、逆转录过程中具有重要的作用[25-26],抑制Mpro活性将能阻止病毒的感染和复制。通过分子对接,这10个成分与SARS-CoV-2 3CL水解酶的结合能远小于−20.93 kJ/mol,与ACE2受体的结合能远小于−29.336 kJ/mol,与二者结合最好的成分均为β-谷甾醇和丹参酮IIA,结合形式包括氢键、疏水作用。此外,槲皮素、山柰酚、异鼠李素也具有较强的结合能力[27-28]。表明荆防败毒散核心成分与COVID-19相关蛋白有较强的结合能力。

      基于上述研究,荆防败毒散对肺部疾病有一定的保护治疗作用,能提高机体免疫力,对COVID-19具有潜在的防治作用,可作为群体性预防用药以及发病初期的治疗。鉴于网络药理学和分子对接的局限性,荆防败毒散防治COVID-19的效果有待临床进一步验证。

参考文献 (28)

目录

/

返回文章
返回