-
骨质疏松症(osteoporosis, OP)是以骨微细结构破坏和骨量减少为特征的全身性骨代谢疾病,可导致骨脆性和骨折风险增加,多见于老年人。衰老是致骨质疏松的一个重要因素,随着机体的衰老,骨骼中过多的活性氧(reactive oxygen species, ROS)抑制成骨细胞的增殖、分化和成熟,抑制成骨细胞分泌骨基质及骨基质的矿化,同时促进破骨细胞骨吸收,导致骨质疏松的发生。2018年国家卫生健康委员会发布OP流行病学调查结果显示,我国65岁以上人群OP患病率达32.0%,其中,男性为10.7%,女性为51.6%[1]。四烯甲萘醌(menatetrenone, MK4)在临床上常单独或协同用于防治老年性骨质疏松症,疗效显著[2-3],是我国现版《原发性骨质疏松症诊疗指南》和《骨质疏松症中西医结合诊疗指南》的推荐药物[1-2]。药理研究发现,MK4能促进成骨增殖、分化和碱性磷酸酶(alkaline phosphatase, ALP)活性[3-4]。MK4能通过调节氧化应激相关基因和蛋白,在成骨细胞骨形成中发挥保护作用[5],且能阻止成骨细胞凋亡[6]。过氧化氢(H2O2)是ROS在体内存在的主要形式,会穿透成骨细胞造成细胞损伤,本研究拟探讨MK4对H2O2刺激成骨细胞氧化损伤的保护作用和调控机制,阐明MK4抗老年性骨质疏松的作用机制。
-
成骨细胞系MC3T3-El(中国科学院上海生命科学研究细胞资源中心);特级胎牛血清(FBS)、DMEM高糖培养基、胰蛋白酶、双抗(青霉素和链霉素混合液)和PBS缓冲液(pH=7.2)均购自美国GIBCO公司;噻唑蓝(MTT)、MK4(Sigma公司)。过氧化氢(H2O2,比利时Acros Organics公司);丙二醛(MDA)试剂盒、谷胱甘肽(GSH)试剂盒、超氧化物歧化酶(SOD)试剂盒、JC-1线粒体膜电势(MMP)试剂盒和活性氧(ROS)试剂盒均购自上海碧云天生物技术有限公司;BCA蛋白检测试剂盒、Annexin V-FITC/PI凋亡检测试剂盒、核酸提取试剂盒、反转录试剂盒和扩增试剂盒(均为Thermo Fisher公司产品);叉头框蛋白(FoxO1和FoxO3)、β细胞淋巴瘤/白血病基因2(Bcl2)和凋亡基因(Bax)等引物购自生工生物工程(上海)股份有限公司。
-
复苏MC3T3-El小鼠成骨细胞系,置于5 ml含10% FBS的DMEM培养基中,放入37 ℃、5% CO2培养箱。以2×104/ml浓度的成骨细胞接种于96孔培养板中培养24 h后,分别采用0、10、20、50和100 μmol/L(n =10)的H2O2处理,培养4、12、24 h后,采用碧云天MTT试剂盒测定细胞活力。
以2×104/ml浓度的成骨细胞接种于96孔培养板中培养24 h后,并按空白、氧化应激模型、药物剂量分组:①对照组,②选择合适浓度H2O2组,③H2O2 +10 μmol/L MK4组,④H2O2 +1 μmol/L MK4组,⑤H2O2 + 0.1 μmol/L MK4组。加入药物培养24 h,采用MTT法检测细胞增殖活性。
-
以2×104/ml浓度的成骨细胞接种于96孔培养板中培养24 h,按照方法“2.1”项下设置各实验组,连续培养6 d,每3 d换液1次,采用硝基苯酚磷酸二钠法检测ALP活性。给药6 d后,弃培养液,PBS洗3次,依次加入100 μl二乙醇胺(50 mmol/L),50 μl的对硝基苯酚磷酸二钠(2.5 mmol/L),在37 ℃孵育30 min,再加入50 μl的0.3 mol/L氢氧化钠溶液终止反应,置405nm处,测吸光度值(A)。以不同浓度的对硝基苯酚溶液绘制标准曲线,ALP活性由每孔释放的对硝基苯酚的μmol数表示。
-
以5×104/ml浓度的成骨细胞将MC3T3-El细胞接种于12孔板内,放入37 ℃,5% CO2培养箱,12 h后换骨结节诱导培养基(0.1%牛血清白蛋白、10 nmol/L地塞米松、10 mmol/L β-甘油磷酸钠、50 μg/ml抗坏血酸以及10%胎牛血清的DMEM培养基)培养24 h,按照方法“2.1”项下设置各实验组,每3 d换液1次,连续培养14 d,采用0.1%茜素红-Tris-Hcl染液(pH 8.3)染色,37 ℃下染色30 min,采用倒置相差显微镜(Leica DMI 3000)观察,并随机拍照10张,用image-Pro Plus (IPP 6.0)分析骨结节面积。
-
以2×105/ml细胞浓度铺6孔板,培养24 h后,按照方法“2.1”项下设置各实验组,干预24 h后,用荧光酶标仪法分别测定JC-1单体和复合物的荧光,DCFH-DA探针法测活性氧水平,ELISA法测定GSH、SOD和MDA水平。
-
以1×106/ml细胞浓度铺6孔板,培养12 h后,按照方法“2.1”项下设置各实验组,干预24 h后,依据Annexin V-FITC/PI凋亡检测试剂盒说明书,采用流式细胞仪法检测。
-
以1×106/ml细胞浓度铺6孔板,培养12 h后,按照方法“2.1”项下设置各实验组,干预24 h后,依据试剂盒说明书进行提取总RNA和反转录后,分别对GAPDH、SOD2、FoxO1、FoxO3、Bcl-2和bax进行RT-PCR扩增,引物序列见表1,PCR反应条件:采用预变性95 ℃、10 min,变性95 ℃、45 s,退火60 ℃、45 s,延伸72 ℃、50 s,循环40次,总反应体系为10 μl。
表 1 小鼠引物序列
基因 上游引物 下游引物 SOD2 TCCCAGACCTGCCTTACGA TCGGTGGCGTTGAGATTG FoxO1 GTACGCCGACCTCATCACCAAG GCACGCTCTTCACCATCCACTC FoxO3 TGCTAAGCAGGCCTCATCTCAA AAGCTGTAAACGGATCACTGTC Bcl-2 AGGAGCAGGTGCCTACAAGA GCATTTTCCCACCACTGTCG bax CATCCAGGATCGAGCAGA GCCTTGAGCACCAGTTTG GAPDH TGAACGGGAAGCTAAGG TCCACCACCCTGTTGCTGGA -
每组实验重复3次。采用SPSS软件经ANOVA方差分析检验,差异有统计学意义(α=0.05),再采用Student's t test检验进行两组比较,以P<0.05为差异有统计学意义。
-
MC3T3-E1经0~100 μmol/L H2O2分别处理4、12、24 h,结果发现0~100 μmol/L H2O2处理4 h对细胞活力均无显著性影响(P>0.05),处理12 h后,在50和100 μmol/L H2O2下的细胞活力显著降低,分别降低19.4%和33.4%。H2O2干预24 h后,在20、50、100 μmol/L均具有显著性差异,分别降低13.2%,47.4%和57.9%(表2)。故后续实验选择20 μmol/L处理24 h。
表 2 H2O2处理的时间与浓度对成骨细胞活力的影响
处理时间(t/h) 对照组 H2O2浓度(μmol/L) 10 20 50 100 4 0.22±0.04 0.23±0.03 0.22±0.04 0.21±0.05 0.20±0.04 12 0.31±0.05 0.33±0.04 0.30±0.04 0.27±0.02* 0.22±0.03* 24 0.38±0.03 0.39±0.03 0.34±0.02* 0.20±0.03** 0.16±0.04** *P<0.05,**P<0.01,与对照组比较。 -
MC3T3-E1经20 μmol/L H2O2处理24 h后,结果显示,显著抑制了成骨细胞的细胞活力(P<0.05),ALP活性(P<0.05)和骨结节形成面积(P<0.05),与空白组比较,分别降低13%、16%和85%,见表3和图1。与模型组比较,MK4在1~10 μmol/L可促进H2O2损伤成骨细胞增殖(P<0.05)。同样,MK4在1~10 μmol/L能显著改善ALP活性(P<0.05)和提高骨结节形成面积(P<0.05),分别增加50.7%和44.5% (表3和图1)。
表 3 MK4对H2O2损伤成骨细胞的影响
组别 MTT(%对照) ALP(%对照) MPP(%对照) 活性氧(%对照) MDA(μmol/g) 细胞凋亡率(%) 对照组 1.00±0.01* 1.00±0.02* 1.00±0.02* 1.00±0.01* 27.2±4.3** 2.3±0.3* H2O2组 0.87±0.02 0.84±0.03 0.78±0.05 1.13±0.02 51.0±3.7 7.3±0.3 H2O2+MK4(10 μmol/L)组 1.03±0.04* 0.99±0.03* 1.05±0.07* 1.02±0.02* 27.3±3.1** 1.8±0.2* H2O2+MK4(1 μmol/L)组 0.96±0.03 0.87±0.04 0.88±0.21 1.06±0.05 44.8±2.0 2.9±0.3* H2O2+MK4(0.1 μmol/L)组 0.85±0.03 0.80±0.03 0.82±0.09 1.09±0.05 51.6±0.3 5.7±0.4 *P<0.05,**P<0.01,与H2O2组比较。 -
MC3T3-E1成骨细胞经20 μmol/L H2O2处理24 h后,结果发现显著降低成骨细胞膜电势和增高活性氧含量(P<0.05)。与模型组比较,MK4在10 μmol/L可促进H2O2损伤成骨细胞膜电势升高和降低活性氧含量(P<0.05)。与空白组比较,20 μmol/L H2O2能显著降低FoxO1, FoxO3和SOD2的mRNA表达(P<0.05)。与H2O2组比较,给予10 μmol/L MK4后,FoxO1, FoxO3和SOD2的mRNA表达均显著增高(P<0.01)。
-
在通道1和通道2观察单个细胞分布区域,选定99.9%的细胞区域用于后续分析,在通道3和通道4观察凋亡细胞分布,Q4为正常细胞,Q1为坏死细胞;Q2为晚期凋亡细胞,Q3为早期凋亡细胞。与对照组比较,20 μmol/L H2O2处理24 h后,细胞的凋亡率显著增高(P<0.05)。经0.1~10 μmol/L浓度MK4干预24 h后发现,1~10 μmol/L浓度MK4能显著降低细胞凋亡率(P<0.05),与对照组相近,见表3和图2。与空白组比较,20 μmol/LH2O2能显著降低Bcl-2的mRNA表达(P<0.001),bax表达无显著差异,给予10 μmol/L MK4后,Bcl-2和bax的mRNA表达均显著增高(P<0.01),见图3。H2O2组的bax/Bcl-2比值为对照组的22.5倍,而MK4处理后降低至对照组的7.6倍。
-
骨代谢中,机体通过调节FoxOs转录因子的活性,产生抗氧化物酶,对抗氧化应激对骨骼的损伤,包括FoxO1、FoxO3、FoxO4和FoxO6等,其中,FoxO1和FoxO3是调节成骨细胞氧化还原平衡和成骨功能的主要分子[7]。活性氧可激活FoxO1的转录,调节线粒体抗氧化酶Mn-SOD的活性[8]。随着活性氧的升高,FoxO3下调,成骨细胞分化受损,抑制骨形成作用[9]。本研究发现,MK4对H2O2引起的氧化应激具有显著的改善作用,降低活性氧和脂质氧化产物MDA水平,上调转录因子FoxO1、FoxO3和抗氧化酶SOD的mRNA表达。
Bcl-2蛋白可减少氧化应激水平,而bax基因可与Bcl-2形成异源二聚体,抑制Bcl-2的作用,进而诱导细胞凋亡。MK4可上调Bcl-2/bax比值,抑制了成骨细胞凋亡[10]。本研究发现,H2O2能显著提高成骨细胞凋亡率,同时增加bax的表达,降低Bcl-2蛋白表达。MK4处理组对成骨细胞凋亡的拮抗作用明显,随着剂量浓度增加而增加。MK4在在氧化应激状态下,可显著上调Bcl-2,下调bax的基因表达,bax/Bcl-2比值显著降低,抑制了成骨细胞凋亡。
FoxOs激活促进Bcl-2相关凋亡调节蛋白(Bim)转录,Bim是线粒体凋亡通路的核心调控者,引起成骨细胞线粒体膜电位降低[10]。线粒体跨膜电位降低说明线粒体膜通透性转运孔(MPTP)过度开放。若MPTP过度开放,易引起呼吸链解偶联,线粒体基质渗透压增高,使得促凋亡活性物质从线粒体释放入细胞基质,导致细胞凋亡。MK4显著改善了H2O2刺激的成骨细胞线粒体膜电势降低,表明MK4对H2O2刺激成骨细胞的氧化损伤具有保护作用。
综上所述,MK4能显著抑制H2O2刺激的成骨细胞氧化损伤,机制与FoxO转录因子相关。同时,MK4对H2O2引起的成骨细胞凋亡具有拮抗作用,其机制为上调Bcl-2和下调bax的基因表达。
Study on the protective effect of menatetrenone against the oxidative stress of osteoblasts
-
摘要:
目的 考察四烯甲萘醌(MK4)对成骨细胞氧化损伤的保护作用,阐明MK4防治骨质疏松作用机制。 方法 采用过氧化氢(H2O2)刺激小鼠成骨细胞系(MC3T3-E1)氧化应激模型,考察细胞活力、ALP活性和骨结节面积,DCFH-DA法检测活性氧(ROS)水平,JC-1检测线粒体膜电势,Annexin V-FITC/PI法检测细胞凋亡率,RT-PCR法考察氧化应激相关基因FoxO1、FoxO3、SOD、Bcl-2和bax等的mRNA表达。 结果 10 μmol/L四烯甲萘醌能显著提高H2O2刺激的成骨细胞增殖、ALP活性、骨结节形成面积和增强细胞膜电势,显著降低H2O2刺激的成骨细胞内丙二醛和活性氧水平,同时显著降低成骨细胞凋亡率和细胞凋亡因子bax/Bcl-2的mRNA表达水平,显著提高抗氧化酶SOD和转录因子FoxO1、FoxO3的mRNA表达。 结论 四烯甲萘醌可通过调控FoxO通路保护成骨细胞氧化损伤和通过下调bax/Bcl-2比例,降低成骨细胞凋亡。 Abstract:Objective To investigate the protective effect of menatetrenone (MK4) on the osteoblasts in oxidative stress, and to clarify the anti-osteoporosis mechanism of MK4. Methods Mouse osteoblasts (MC3T3-E1) induced by hydrogen peroxide (H2O2) was used. Cell viability, ALP activity and the area of bone nodule were observed. The level of ROS was detected by DCFH-DA, mitochondrial membrane potential by JC-1, apoptosis rate by annexin V-FITC/PI, and the expression of FoxO1, FoxO3, SOD, bcl-2 and bax by RT-PCR. Results Menatetrenone at 10 μmol/L significantly increased the proliferation of osteoblasts stimulated by H2O2, ALP activity, bone nodule formation area, cell membrane potential, the antioxidant SOD and transcription factors FoxO1 and FoxO3 mRNA expression. In the meantime, the elevated malondialdehyde and reactive oxygen species level in cells induced by H2O2, the apoptosis rate and the mRNA expression level of bax/Bcl-2 were significantly reduced. Conclusion menatetrenone can protect osteoblasts from oxidative damage by regulating FoxO pathway and reduce osteoblasts apoptosis by up regulating the proportion of Bcl-2/bax. -
Key words:
- menatetrenone /
- osteoporosis /
- osteoblasts /
- oxidative stress /
- FoxO pathway
-
良性前列腺增生(BPH)是泌尿外科最常见的中老年慢性疾病之一[1]。随着全球人口老龄化趋势的加剧,BPH的患病率逐年升高[2],据统计,2000年全球约有5 110万BPH患病病例,而到2019年增长至9 400万[3]。我国成年男性的BPH的总体患病率为41.1%[4],2019年我国BPH新发病例数已达283万例[5]。BPH的组织学特征是前列腺移行区的间质和上皮细胞的增殖,临床表现为尿频、排尿费力、残余尿增多等为主的下尿路症状(LUTS),严重影响中老年人的生活质量,同时也给患者增加了经济负担[6]。随着人民生活水平的提高,BPH患者对提高生活质量的需求也更加迫切。对于早期BPH患者,改善生活和饮食习惯是一线治疗方案,而随着BPH病程的进展,药物治疗是缓解下尿路症状,延缓疾病进程的首选方式。其中,α受体阻滞剂和5α还原酶抑制剂是BPH一线治疗药物。本研究对2019年至2023年样本医院中BPH治疗药物的使用情况和费用负担变化进行回顾性分析,特别是国家药品集中带量采购(简称“集采”)等政策的实施对此类药物使用的具体影响,以期为后续该类药物的临床合理应用提供数据参考。
1. 数据来源和方法
1.1 数据来源
本研究数据来源为全国医药信息网(CMEI)2019年1月至2023年12月期间上报药品使用数据的样本医院,共892家,其中,三级医院645家、二级医院247家。根据药理作用和作用部位的不同可将BPH治疗药物分为α受体阻滞剂、5α还原酶抑制剂、M受体拮抗剂、β3受体激动剂、磷酸二酯酶5抑制剂、中药制剂和植物制剂等。其中,α受体阻滞剂通过阻滞膀胱颈和前列腺部尿道部位的平滑肌表面的α肾上腺素能受体发挥作用,松弛平滑肌,从而缓解膀胱出口梗阻,有效缓解下尿路症状[7]。对于大多数BPH患者,临床医生推荐α受体阻滞剂作为初始治疗药物,通常在首次治疗后数日内即可改善症状,同时长期服用此药对于患者的前列腺体积和血清PSA水平无显著影响。而5α-还原酶抑制剂通过抑制睾酮向双氢睾酮转化所需的5α-还原酶,起到阻断双氢睾酮生成的作用,从而降低体内双氢睾酮的含量[8]。此类药物能够缩小前列腺体积,改善排尿症状和尿流率,达到减缓BPH进展的效果。该类药物长期应用可减小前列腺体积,降低患者前列腺手术的需求。此外,需注意5α-还原酶抑制剂通常需要较长时间发挥缩小前列腺体积的作用,在治疗6~12个月后症状缓解最明显,对于前列腺体积较小的患者可能疗效不佳。目前α受体阻滞剂和5α还原酶抑制剂均是临床应用治疗BPH的主流种类药物,可单独或联合应用[9]。本研究参照《中国泌尿外科和男科疾病诊断治疗指南》[10]纳入以下9种BPH治疗药物:其中6种为α受体阻滞剂,包括选择性α1受体阻滞剂(多沙唑嗪、阿夫唑嗪、特拉唑嗪),高选择性α1受体阻滞剂(坦索罗辛、萘哌地尔、赛洛多辛)。另外3种为5α还原酶抑制剂,包括竞争性5α还原酶抑制剂(非那雄胺、度他雄胺),非竞争性5α还原酶抑制剂(爱普列特)。
1.2 方法
采用描述性分析方法对近5年样本医院使用BPH治疗药物情况进行统计分析,内容包括药品名称、规格、使用数量、年度使用金额等信息。以WHO推荐及相关药品说明书为参照确定药物的限定日剂量(DDD),据此计算其用药频度(DDDs)、日均费用(DDDc)及排序比(B/A)。DDDs=某药物的消耗总剂量/该药的DDD值,DDDs越大表明临床上该药使用频率越高。DDDc =某药物使用总金额/该药的DDDs,DDDc越大表明患者每日用药的经济压力越大。B/A=某药品销售金额排序(B)/该药的DDDs排序(A),B/A可以反映某药用药金额与用药人次的同步性,其比值接近1.0,表明同步性较好,B/A>1表明该药物较便宜,B/A<1则表明该药物较昂贵。
2. 结果
2.1 BPH治疗药物的品种及配备情况
2019至2023年监测到样本医院使用的BPH治疗药物共9种(通用名称及政策属性详见表1)。其中8种(多沙唑嗪、阿夫唑嗪、特拉唑嗪、坦索罗辛、萘哌地尔、赛洛多辛、非那雄胺、爱普列特)属于2023版国家医保目录收录品种[11],但仅有3种药物(坦索罗辛、特拉唑嗪、非那雄胺)共4种规格被纳入了2018版的国家基本药物目录。特拉唑嗪、坦索罗辛、非那雄胺、度他雄胺和赛洛多辛分别进入第二、三、五、九批国家药品集采目录。截至2023年第四季度,9种BPH治疗药物在样本医院的配备情况如图1所示,坦索罗辛、非那雄胺和特拉唑嗪作为基本药物目录品种在样本医院的配备率最高,分别达98.77%、95.40%和61.88%。
表 1 2019至2023年样本医院使用BPH治疗药物的品种及政策属性情况编号 药品分类及通用名称 基药目录
(2018版)医保目录
(2023版)集采批次
(执行时间)α受体阻滞剂 1 多沙唑嗪 否 常规 − 2 阿夫唑嗪 否 常规 − 3 特拉唑嗪 是 常规 第二批
(2020.06 )4 坦索罗辛 是 常规 第三批
(2020.11 )5 萘哌地尔 否 常规 − 6 赛洛多辛 否 常规 第九批
(2024.03 )5α还原酶抑制剂 7 非那雄胺 是 常规 第三批
(2020.11 )8 度他雄胺 否 − 第五批
(2021.10 )9 爱普列特 否 常规 − 2.2 BPH治疗药物的使用金额
2019至2023年样本医院BPH治疗药物的使用金额情况及增速情况见图2和图3。如图2所示,近5年BPH治疗药物使用总金额呈现大幅下降后平稳上升的趋势,其中,2021年总使用金额增速最低,为−41.88%,这可能与样本医院中配备使用最广泛的坦索罗辛、非那雄胺中选第三批国家药品集采目录(2020年11月执行)有关;2021年之后,BPH治疗药物使用金额增速平稳上升,增速由3.49%上升至7.88%。2019年度,样本医院α受体阻滞剂的院均使用金额约为58.4万元,5α还原酶抑制剂的院均使用金额约为35.3万元,两者比例接近6∶4。而至2023年度,样本医院α受体阻滞剂的院均使用金额约为36.8万元,5α还原酶抑制剂的院均使用金额约为15.1万元,两者比例已接近7∶3。从图3中可以看出,2021年前,坦索罗辛和非那雄胺的总体使用金额分列第1名和第2名,且远高于其他药品。2021至2023年,随着坦索罗辛和非那雄胺使用金额的骤降,多沙唑嗪的使用金额位居第1名,坦索罗辛和非那雄胺的使用金额分别位居第2和第3名,爱普列特的使用金额位居第4名,且其呈逐年上升趋势。
2.3 BPH治疗药物的DDDs
2019至2023年样本医院良性前列腺增生治疗药物的DDDs及排序情况见表2、图4。由表2和图4可知,近5年来BPH治疗药物的DDDs整体呈上升趋势。此外,坦索罗辛和非那雄胺的DDDs持续排名前2位,且总占比均超过了78%,可见这两种药品在临床上的使用频率较高,应用较为广泛。
表 2 2019至2023年样本医院BPH治疗药物的DDDs及排序药品名称 2019年 2020年 2021年 2022年 2023年 DDDs 构成比
(%)排序 DDDs 构成比
(%)排序 DDDs 构成比
(%)排序 DDDs 构成比
(%)排序 DDDs 构成比
(%)排序 多沙唑嗪 1 907 077.13 5.50 3 2 100 947.00 6.28 3 3 289 605.50 8.53 3 3 690 188.75 8.73 3 4 114 056.88 8.65 3 阿夫唑嗪 124 031.18 0.36 8 117 393.68 0.35 8 130 039.91 0.34 8 104 712.44 0.25 8 105 023.69 0.22 8 特拉唑嗪 1 574 817.40 4.54 4 1 691 404.90 5.06 4 1 853 448.60 4.81 5 1 974 935.80 4.67 5 1 969 612.80 4.14 5 坦索罗辛 22 579 954.25 65.08 1 20 873 691.00 62.42 1 22 967 517.25 59.59 1 25 198 064.50 59.64 1 28 186 101.00 59.29 1 赛洛多辛 164 500.00 0.47 7 361 285.75 1.08 6 689 508.75 1.79 6 870 313.50 2.06 6 1 082 145.75 2.28 6 萘哌地尔 307 684.50 0.89 6 250 103.00 0.75 7 232 475.00 0.60 7 177 454.50 0.42 7 202 812.50 0.43 7 非那雄胺 6 535 203.25 18.84 2 6 541 707.03 19.56 2 7 435 363.85 19.29 2 8 170 399.73 19.34 2 9 552 451.93 20.09 2 度他雄胺 11 072.50 0.03 9 9 112.50 0.03 9 16 852.50 0.04 9 21 650.00 0.05 9 16 776.67 0.04 9 爱普列特 1 488 867.50 4.29 5 1 492 525.00 4.46 5 1 930 231.25 5.01 4 2 041 418.75 4.83 4 2 308 650.00 4.86 4 2.4 BPH治疗药物的DDDc及B/A
2019至2023年不同良性前列腺增生治疗药物的DDDc及排序情况,详见表3和图5。由表3所示,近5年坦索罗辛的B/A值显著高于其他BPH治疗药物,可见该药品经济性较好。除多沙唑嗪和萘哌地尔外,多数良性前列腺增生治疗药物的DDDc呈逐年下降趋势,其中,特拉唑嗪、坦索罗辛、非那雄胺和度他雄胺的DDDc出现较大幅度下降,这可能与它们中选国家药品集采目录有关。由图5可知,近5年来坦索罗辛的DDDc降幅最大,高达78.37%,其次是特拉唑嗪,达77.44%。此外,由于赛洛多辛中选第九批国家药品集采目录(2024年3月执行),其执行影响在本研究数据中尚未体现。
表 3 2019至2023年样本医院BPH治疗药物的DDDc(元)、排序及B/A药品名称 2019年 2020年 2021年 2022年 2023年 DDDc 排序 B/A DDDc 排序 B/A DDDc 排序 B/A DDDc 排序 B/A DDDc 排序 B/A 多沙唑嗪 4.28 6 2.0 4.28 6 2.0 4.38 6 2.0 4.55 6 2.0 4.55 5 1.7 阿夫唑嗪 4.80 5 0.6 4.79 5 0.6 4.78 5 0.6 4.76 4 0.5 4.73 4 0.5 特拉唑嗪 3.61 8 2.0 1.99 9 2.3 1.08 9 1.8 1.01 8 1.6 0.81 9 1.8 坦索罗辛 4.13 7 7.0 3.65 7 7.0 1.09 8 8.0 0.95 9 9.0 0.89 8 8.0 赛洛多辛 8.18 2 0.3 8.27 2 0.3 8.32 1 0.2 8.23 1 0.2 7.98 1 0.2 萘哌地尔 2.12 9 1.5 2.05 8 1.1 2.10 7 1.0 2.00 7 1.0 2.15 7 1.0 非那雄胺 14.20 1 0.5 12.51 1 0.5 7.12 2 1.0 6.36 2 1.0 5.79 3 1.5 度他雄胺 7.50 3 0.3 7.50 3 0.3 6.92 3 0.3 4.71 5 0.6 3.31 6 0.7 爱普列特 6.02 4 0.8 6.01 4 0.8 6.00 4 1.0 5.99 3 0.8 5.98 2 0.5 3. 讨论
3.1 BPH治疗药物使用集中度较高
近5年,坦索罗辛和非那雄胺的DDDs在BPH治疗药物中持续排名第一、二位,多沙唑嗪的DDDs持续排在第三位,分析其原因可能有:①坦索罗辛和非那雄胺作为基本药物目录品种在样本医院的配备率较高;②坦索罗辛和非那雄胺的原研药品(商品名分别为哈乐和保列治)皆于20世纪90年代进入中国市场,患者和临床医师接受程度较高。此外,两种药物常规剂量均为1天给药1次,患者服药依从性较好;③坦索罗辛和非那雄胺皆中选第三批国家药品集采目录,坦索罗辛近五年来DDDc降幅为所有入选药品最高,达78.37%,非那雄胺DDDc降幅为59.20%;④多沙唑嗪作为选择性α1受体阻滞剂,有扩张外周血管,降低外周血管阻力的效果,临床上也可单用或联合其他类型降压药物治疗原发性高血压,因此对于BPH合并高血压的患者是较好的选择[12]。研究表明,同类型的BPH治疗药物在改善患者下尿路症状的效果上未发现明显差异[13,14],临床医生在选择药物时可综合考虑患者的合并症,对不良反应耐受情况及药物的禁忌证等因素。
3.2 集采后BPH治疗药物中选品种DDDc显著下降,呈现“量升价降”的趋势
本研究显示,国家药品集中带量采购政策实施后,BPH治疗药物中选品类DDDc显著降低,即该药品价格显著下降,未中标品类的DDDc保持相对稳定。近5年来,特拉唑嗪DDDc由3.61元降至0.81元,坦索罗辛DDDc由4.13元降至0.89元,非那雄胺DDDc由14.20元降至5.79元,度他雄胺DDDc由7.50元降至3.31元,同时上述药品DDDs呈升高趋势,B/A也有不同程度的升高,说明集采后药品销售金额与DDDs同步性更高。由此可见,集中带量采购政策切实减轻了患者的用药负担,BPH实际治疗费用明显节省,这一结论在近5年来BPH治疗药物使用总金额明显下降中也有体现,在坦索罗辛和非那雄胺纳入集采后,2021年BPH治疗药物的使用金额相比2020年下降41.88%。
4. 总结
综上所述,从2019至2023年样本医院BPH治疗药物的使用数据来看,经过多年发展及临床应用,B/A在各自品类中位居第一的坦索罗辛和非那雄胺占据市场主导地位,从经济性角度来看,α受体阻滞剂和5α还原酶抑制剂两类主流药物的使用较为合理。国家药品集中带量采购政策实施后,BPH治疗药物的用药总金额出现显著下降,国家带量采购与谈判等政策切实降低了患者使用BPH治疗药物的经济负担。
由于CEMI数据库信息源有限,本研究纳入药物未区分病种,可能有部分适应证较广药物用量存在误差;且未纳入中医药及植物类药物,及临床常用于对症治疗的M受体拮抗剂、β3受体激动剂等药物。未来还需继续收集基于具体适应证的BPH治疗药物品种使用情况,对临床药物的联合使用等情况进行研究分析。
-
表 1 小鼠引物序列
基因 上游引物 下游引物 SOD2 TCCCAGACCTGCCTTACGA TCGGTGGCGTTGAGATTG FoxO1 GTACGCCGACCTCATCACCAAG GCACGCTCTTCACCATCCACTC FoxO3 TGCTAAGCAGGCCTCATCTCAA AAGCTGTAAACGGATCACTGTC Bcl-2 AGGAGCAGGTGCCTACAAGA GCATTTTCCCACCACTGTCG bax CATCCAGGATCGAGCAGA GCCTTGAGCACCAGTTTG GAPDH TGAACGGGAAGCTAAGG TCCACCACCCTGTTGCTGGA 表 2 H2O2处理的时间与浓度对成骨细胞活力的影响
处理时间(t/h) 对照组 H2O2浓度(μmol/L) 10 20 50 100 4 0.22±0.04 0.23±0.03 0.22±0.04 0.21±0.05 0.20±0.04 12 0.31±0.05 0.33±0.04 0.30±0.04 0.27±0.02* 0.22±0.03* 24 0.38±0.03 0.39±0.03 0.34±0.02* 0.20±0.03** 0.16±0.04** *P<0.05,**P<0.01,与对照组比较。 表 3 MK4对H2O2损伤成骨细胞的影响
组别 MTT(%对照) ALP(%对照) MPP(%对照) 活性氧(%对照) MDA(μmol/g) 细胞凋亡率(%) 对照组 1.00±0.01* 1.00±0.02* 1.00±0.02* 1.00±0.01* 27.2±4.3** 2.3±0.3* H2O2组 0.87±0.02 0.84±0.03 0.78±0.05 1.13±0.02 51.0±3.7 7.3±0.3 H2O2+MK4(10 μmol/L)组 1.03±0.04* 0.99±0.03* 1.05±0.07* 1.02±0.02* 27.3±3.1** 1.8±0.2* H2O2+MK4(1 μmol/L)组 0.96±0.03 0.87±0.04 0.88±0.21 1.06±0.05 44.8±2.0 2.9±0.3* H2O2+MK4(0.1 μmol/L)组 0.85±0.03 0.80±0.03 0.82±0.09 1.09±0.05 51.6±0.3 5.7±0.4 *P<0.05,**P<0.01,与H2O2组比较。 -
[1] 中国中西医结合学会骨伤科专业委员会. 骨质疏松症中西医结合诊疗指南[J]. 中华医学杂志, 2019, 99(45):3524-3533. doi: 10.3760/cma.j.issn.0376-2491.2019.45.002 [2] 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2011)[J]. 中国全科医学, 2011, 4(1):2-17. [3] AKBARI S, RASOULI-GHAHROUDI A A. Vitamin K and bone metabolism: a review of the latest evidence in preclinical studies[J]. Biomed Res Int,2018,2018:4629383. [4] WU W J, GAO H Y, JIN J S, et al. A comparatively study of menaquinone-7 isolated from Cheonggukjang with vitamin K1 and menaquinone-4 on osteoblastic cells differentiation and mineralization[J]. Food Chem Toxicol,2019,131:110540. doi: 10.1016/j.fct.2019.05.048 [5] MUSZYŃSKA M, AMBROŻEWICZ E, GĘGOTEK A, et al. Protective effects of vitamin K compounds on the proteomic profile of osteoblasts under oxidative stress conditions[J]. Molecules,2020,25(8):E1990. doi: 10.3390/molecules25081990 [6] URAYAMA S, KAWAKAMI A, NAKASHIMA T, et al. Effect of vitamin K2 on osteoblast apoptosis: vitamin K2 inhibits apoptotic cell death of human osteoblasts induced by Fas, proteasome inhibitor, etoposide, and staurosporine[J]. J Lab Clin Med,2000,136(3):181-193. doi: 10.1067/mlc.2000.108754 [7] SALIH D A, BRUNET A. FoxO transcription factors in the maintenance of cellular homeostasis during aging[J]. Curr Opin Cell Biol,2008,20(2):126-136. doi: 10.1016/j.ceb.2008.02.005 [8] SIQUEIRA M F, FLOWERS S, BHATTACHARYA R, et al. FOXO1 modulates osteoblast differentiation[J]. Bone,2011,48(5):1043-1051. doi: 10.1016/j.bone.2011.01.019 [9] GÓMEZ-PUERTO M C, VERHAGEN L P, BRAAT A K, et al. Activation of autophagy by FoxO3 regulates redox homeostasis during osteogenic differentiation[J]. Autophagy,2016,12(10):1804-1816. doi: 10.1080/15548627.2016.1203484 [10] 李成, 梁庆威, 周志成, 等. Bim在激素诱导成骨细胞凋亡中的表达及意义[J]. 中国医科大学学报, 2015, 44(10):921-925, 929. doi: 10.12007/j.issn.0258-4646.2015.10.014 -