留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

山奈酚对白假丝酵母生物被膜抑制作用的研究

陈岚 沈娟 严万年 范凌志 曹颖瑛

张雪婷, 云超, 陈珍珍, 陶春, 宋洪涛. 基于体外溶出度与体内生物利用度的西罗莫司增溶技术研究[J]. 药学实践与服务, 2020, 38(5): 441-446, 457. doi: 10.12206/j.issn.1006-0111.201910022
引用本文: 陈岚, 沈娟, 严万年, 范凌志, 曹颖瑛. 山奈酚对白假丝酵母生物被膜抑制作用的研究[J]. 药学实践与服务, 2020, 38(5): 413-417, 430. doi: 10.12206/j.issn.1006-0111.202004050
ZHANG Xueting, YUN Chao, CHEN Zhenzhen, TAO Chun, SONG Hongtao. Study on sirolimus solubilization technology based on in vitro dissolution and in vivo bioavailability[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(5): 441-446, 457. doi: 10.12206/j.issn.1006-0111.201910022
Citation: CHEN Lan, SHEN Juan, YAN Wannian, FAN Lingzhi, CAO Yingying. Study on the antibiofilm activity of kaempferol in Candida albicans[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(5): 413-417, 430. doi: 10.12206/j.issn.1006-0111.202004050

山奈酚对白假丝酵母生物被膜抑制作用的研究

doi: 10.12206/j.issn.1006-0111.202004050
基金项目: 国家自然科学基金面上项目(81671991)
详细信息
    作者简介:

    陈 岚,本科,副主任药师,Tel:(0571)87341668

    通讯作者: 曹颖瑛,博士,教授,研究方向:抗感染药物药理研究,Email:caoyingying608@163.com
  • 中图分类号: R379.4

Study on the antibiofilm activity of kaempferol in Candida albicans

  • 摘要:   目的  研究山奈酚抗白假丝酵母生物被膜的作用及其可能机制。  方法  测定山奈酚对白假丝酵母处于形成过程中的生物被膜和成熟生物被膜代谢活性的影响;测定山奈酚对生物被膜基质产生水平的影响;显微镜下观察山奈酚对菌丝形成的抑制作用;水-烃两相分离法测定山奈酚对白假丝酵母细胞表面疏水性的影响;实时定量RT-PCR法测定山奈酚对生物被膜形成相关基因表达的影响。  结果  山奈酚抑制白假丝酵母生物被膜形成,且呈剂量依赖性,同时具有抗成熟生物被膜作用,显著降低生物被膜基质含量;与对照组相比,山奈酚明显抑制白假丝酵母菌丝形成并降低其细胞表面疏水性;经山奈酚处理的白假丝酵母生物被膜形成相关基因BCR1NRG1TUP1的表达升高,同时HWP1EFG1CPH1ALS1ALS3CSH1的表达下降。  结论  山奈酚具有抗白假丝酵母生物被膜活性,其机制与抑制菌丝形成及降低其细胞表面疏水性相关。
  • 西罗莫司(sirolimus,SRL),又称雷帕霉素,是第三代免疫抑制剂,在临床上常用于抑制肝、肾等器官移植后的免疫排斥反应。SRL属于生物药剂学分类Ⅱ类药物,在水中的溶解度极低,而渗透性良好[1-4]。SRL药理活性高,但因水溶性差,且易被肠壁和肝中的CYP3A4同工酶广泛代谢,致使其口服生物利用度较低。这是临床应用SRL的重要缺陷之一。目前,已上市的SRL制剂主要是纳米结晶片,生物利用度约为17%[5-7]

    通过适当的制剂技术提高SRL在胃肠道中的溶解度,可提高其口服生物利用度。在前期研究中,课题组分别独立进行了含SRL的自微乳(self-microemulsifying drug delivery system,SMEDDS)、固体分散体(solid dispersion,SD)和纳米结构脂质载体(nanostructured lipid carriers,NLC)的构建,均显著改善了SRL的体外溶出。本实验在前期研究的基础上,新增环糊精衍生物对SRL的增溶研究,结合体外溶出度和体内生物利用度,综合分析和评价各增溶制剂的优势和缺陷,从而为解决口服难溶性药物的研究提供参考。

    Agilent 1200型高效液相色谱仪(美国Agilent公司);Starter 2C型pH计(上海奥豪斯仪器公司);RCZ-6BZ型药物溶出仪(上海黄海药检仪器公司);真空冷冻干燥箱(北京博医康试验仪器公司);NS1001L2K高压匀质机(意大利NiroSoavi公司);UV-2800AH型紫外可见分光光度仪(上海优尼科仪器有限公司);液相色谱-质谱联用仪(美国AB-SCIEX有限公司)。

    SRL对照品(含量99.9%)、SRL原料药(含量99.6%),购自福建科瑞药业有限公司;子囊霉素对照品(上海齐奥化工科技有限公司),Rapamune®(美国惠氏制药)。聚乙二醇6000(PEG 6000)、聚乙烯吡咯烷酮(PVP K30)均购自国药集团化学试剂有限公司;聚氧乙烯-聚氧丙烯共聚物(Poloxamer 188)、聚氧乙烯35蓖麻油(Cremophor EL)、聚氧乙烯氢化蓖麻油(Cremophor RH40)均购自德国BASF公司;油酸聚乙二醇甘油酯(Labrafil M1944CS)、二乙二醇单乙基醚(Transcutol P)、辛酸癸酸聚乙二醇甘油酯(Labrasol)、棕榈酸硬脂酸甘油酯(Precirol ATO5)、月桂酸聚乙二醇甘油酯 (Gelucire 44/14)均购自法国GATTEFOSSE公司;HP-β-CD、DM-β-CD、SBE-β-CD(山东滨州智源生物科技有限公司)。

    采用高效液相色谱仪(HPLC)测定样品中的SRL含量[8]。色谱柱为Eclipse XDB-C18(150 mm×4.6 mm,5 μm),流动相为乙腈-甲醇-水(45∶34∶21),流速为1 ml/min,检测波长为278 nm,柱温为50 ℃,进样量为20 μl。配制浓度为2、4、8、12、16、20 μg/ml的SRL对照品溶液,得标准曲线为Y=54.712X+1.221,r=0.999 9,表明在2~20 μg/ml浓度范围内线性关系良好。另外,精密度、回收率符合要求。

    2.2.1   SRL-SMEDDS的制备

    参考前期研究[9],称取1 g SRL原料药,加入19 g的助乳化剂Transcutol HP,超声至全部溶解后,加入22 g油相Labrafil M1944CS及39 g乳化剂Cremophor EL,涡旋混匀,得到淡黄色澄清溶液,即SRL-SMEDDS。

    2.2.2   SRL-NLC的制备

    参考前期研究[10-11],取Gelucire44/14和Crodamol GTCC在75 ℃水浴中完全熔融后,加入SRL原料药搅拌均匀成澄明油相,再将同温度吐温−80的水溶液迅速倒入油相,以300 r/min搅拌30 min制备初乳,再经高压匀质机90 MPa乳匀5次,即得SRL-NLC分散液,其中SRL为0.21%,Gelucire44/14:Crodamol GTCC(1∶2.1),脂质总量为10%,吐温−80为7.33%。随后,将SRL-NLC(42.6%)加入微晶纤维素和聚乙烯吡咯烷酮(50%,4∶1)中,研磨混合并放置过夜以充分吸附,加入甘露醇(冻干保护剂,3%),经冷冻干燥过夜后,所得固体粉末中加入低取代羟丙基纤维素(崩解剂,4%)和二氧化硅(助流剂,0.4%)即得固化纳米脂质体。

    2.2.3   SRL-SD的制备

    采用溶剂-熔融法制备SRL-SD。称取载体材料,于80 ℃水浴加热熔融,滴入SRL乙醇溶液,充分混匀,待乙醇挥发完全后,迅速将其倾倒于冰浴条件下的不锈钢板上成薄膜,固化,再于−18 ℃放置4 h后,将固体分散体从不锈钢板上刮下,置真空干燥器中干燥,待脆化后研细,过80目筛,即得SRL-SD。以载体种类、药物-载体比例为考察因素,以0.4% SDS中的溶出度为指标,对SRL-SD进行单因素分析。

    2.2.4   SRL-IC的制备

    称取适量β-环糊精衍生物溶于去离子水中,缓慢滴加SRL乙醇溶液,在一定温度下磁力搅拌至澄清透明,减压挥发4 h,使乙醇挥发完全,再置于4 ℃冰箱冷藏12 h,降低SRL的溶解度,从而使游离的SRL发生结晶。经0.22 μm微孔滤膜过滤除去结晶,滤液冷冻干燥24 h,所得固体研磨细化,过80目筛,即得SRL-IC。

    称取一定量的SRL-IC置10 ml容量瓶中,加入50%甲醇水溶液,超声至全部溶解后,定容至刻度,并采用HPLC测定SRL含量,根据公式:包封率(%)=[(SRL投入量-SRL测定量)/ SRL投入量]×100%,进行计算。以环糊精衍生物的种类、浓度、温度、乙醇体积和投药量为考察因素,以包封率为指标,对SRL-IC进行单因素分析。

    参考《中国药典》2015年版四部通则0931项下溶出度与释放度测定法,考察SRL原料药、市售片(Rapamune®)、SRL-SMEDDS、SRL-NLC、SRL-IC及SRL-SD的溶出曲线。除市售片外,其余样品均装入硬胶囊中,每个胶囊含1 mg SRL。采用桨法,搅拌速度为100 r/min,溶出介质体积为250 ml,分别以0.4% SDS、水、pH 1.2盐酸溶液、pH 4.5醋酸盐缓冲液、pH 6.8磷酸盐缓冲液、pH 7.4磷酸盐缓冲液为溶出介质。将两颗胶囊或药片置于沉降篮中,投入溶出介质,在10、30、45、60、90、120 min,吸取2 ml介质,并补充等温等体积的介质,采用HPLC测定样品中的药物含量,绘制溶出曲线。

    选用比格犬为实验动物,采用6周期6交叉实验设计,进行SRL原料药、市售片(Rapamune®)、SRL-SMEDDS、SRL-NLC、SRL-IC及SRL-SD的药代动力学试验。给药剂量为1 mg SRL,实验动物试验开始前12 h禁食不禁水,给药4 h后自由饮水,2次给药间隔2周以上的清洗期。于给药前,0.25、0.5、0.75、1、1.5、2、3、4、6、8、10、12、24、36、48及72 h分别经前肢小静脉采血2 ml,置于含肝素和EDTA的抗凝管中,−20 ℃保存备用。血样处理与测定方法参照课题组前期研究[12]

    3.1.1   载体种类

    图1A所示,不同载体材料制备的SRL-SD的溶出曲线显示了明显的差异,溶出速率为PEG6000>F68>PVP K30>HPMC606>HPMC-AS-MF。同时,各载体材料的溶出度均不理想(≤50%),因此进一步考察采用二元载体制备SRL-SD。

    图  1  单因素考察固体分散体的制备对体外溶出曲线的影响
    A. 单一载体种类的影响;B. 二元载体比例的影响;C. 药物与载体比例的影响

    选择PEG6000联合F68制备二元载体固体分散体[13],两者比例为3∶1、2∶1、1∶1、1∶2、1∶3。随PEG6000/F68比例的增大,则SRL溶出度呈增大趋势,在PEG6000/F68为2∶1时的溶出度达到最大(图1B)。

    3.1.2   药物-载体比例

    在PEG6000/F68=2∶1的基础上,进一步考察药物-载体比例对SRL-SD溶出的影响。药物-PEG6000/F68载体比例为1∶2∶1、1∶4∶2及1∶6∶3所制的SRL-SD的溶出曲线相似,没有明显差别,2 h的溶出度都接近100%(图1C)。因此优选载药量最大,即药物- PEG6000/F68载体比例为1∶2∶1。

    3.2.1   β-环糊精衍生物种类

    在其他条件相同的情况下,HP-β-CD、SBE-β-CD和DM-β-CD对SRL的包封率分别为(11.21±3.35)%、(8.24±3.11)%和(31.86±3.26)%,见图2A。因此,优选DM-β-CD制备SRL-IC。

    图  2  单因素考察包合物的制备工艺对包合率的影响
    A.β-环糊精衍生物种类的影响,**P<0.01,与DM-β-CD比较;B. 温度的影响,**P<0.01,与10 ℃比较;C. 环糊精衍生物浓度的影响,*P<0.05,与200 mg/ml比较;D. 乙醇体积的影响;E. SRL投药量的影响
    3.2.2   温度

    采用DM-β-CD制备SRL-IC,考察不同温度对包封率的影响。结果显示(图2B),温度越低,包封率越高,10 ℃条件下制备的SRL-IC的包封率显著高于30 ℃和50 ℃(P<0.01),为(58.61±4.16)%。因此,优选10 ℃制备SRL-IC。

    3.2.3   环糊精衍生物浓度

    DM-β-CD的浓度由200 mg/ml增大至300 mg/ml,SRL的包封率由(52.12±4.17)%增大至(58.61±4.11)%(P<0.05,图2C)。进一步增大DM-β-CD的浓度至600 mg/ml,包封率没有明显变化(P>0.05)。因此,优选DM-β-CD的浓度为300 mg/ml制备SRL-IC。

    3.2.4   乙醇体积

    乙醇体积由0.5 ml增大至2 ml,包封率呈增大趋势(图2D)。因此,优选乙醇体积为0.5 ml制备SRL-IC。

    3.2.5   投药量

    SRL的投药量6 mg增大至8 mg,包封率显著降低,6 mg SRL的包封率为(95.21±1.10)%,见图2E。因此,优选SRL的投药量为6 mg。

    考察SRL-SD、SRL-IC、SRL-SMEDDS及SRL-NLC在不同介质中的溶出曲线。如图3所示,在0.4% SDS中,各制剂在2 h的溶出度均超过80%,尤其是SMEDDS和NLC的溶出度接近100%。

    图  3  不同增溶制剂的西罗莫司在溶出介质中的溶出曲线图(n=3)

    在pH 6.8和水中,SRL-SD的溶出速率减小,2 h的溶出度分别为(65.00±4.90)%和(76.70±1.95)%。在pH 4.5和pH 7.4的介质中,SRL-SD的溶出在1 h达到最大值,分别为(53.20±4.34)%和(55.20±4.34)%,随后溶出度逐渐降低。在pH 1.2的介质中,未检测到SRL。

    在水、pH 4.5、pH 6.8和pH 7.4中,SRL-IC在40 min内的溶出速率有所减小,但2 h的累积溶出没有明显变化,均在80%以上。在pH 1.2的介质中,SRL-IC的溶出度在30 min达到最大值,为(49.84±7.21)%,随后溶出度逐渐降低。

    SRL-SMEDDS和SRL-NLC显示了与SRL-SD相似的溶出趋势,即在水和pH 6.8中的溶出度低于0.4% SDS,但大于80%。在pH 4.5和pH 7.4的介质中,溶出达到峰值(约80%)后逐渐降低。

    SRL血药浓度-时间曲线见图4,经DAS 3.2.6软件处理后,具体参数见表 1

    表  1  非房室模型体内药动学参数($ \bar x$±s
    参数SRLSRL-SDSRL-ICSRL- NLCSRL-SMEDDSRapamune®
    AUC0→72(µg·h/ml)0.70±0.132.06±0.793.66±2.648.60±2.0310.76±1.5711.02±2.73
    AUC0→t(µg·h/ml)0.73±0.152.07±0.813.78±2.848.67±1.9511.15±2.1111.75±3.13
    t1/2 (t/h)16.53±1.5014.50±2.1520.64±5.458.97±6.8712.97±5.6714.54±5.67
    tmax(t/h)1.04±0.251.25±0.281.04±0.251.13±0.311.50±0.381.83±0.26
    cmax (ng/ml)0.16±0.050.36±0.050.53±0.130.90±0.091.23±0.071.28±0.13
    下载: 导出CSV 
    | 显示表格
    图  4  参比制剂与受试试剂平均血药浓度-时间曲线 (n=6)

    以原料药为参比制剂,SRL-SD、SRL-IC、SRL-SMEDDS、SRL-NLC、Rapamune®的相对生物利用度分别为332.8%、522.9%、1 228.6%、1 537.1%、1 574.3%,表明各增溶方法都显著提高了SRL的生物利用度。

    以市售纳米晶片Rapamune®为参比制剂,SRL-SD、SRL-IC、SRL-NLC、SRL-SMEDDS的相对生物利用度分别为18.7%、33.2%、78.0%、97.6%,可见在各增溶方法中,SMEDDS对SRL体内吸收的作用最显著,与市售制剂相当。

    本研究同时制备和比较了SRL的4种增溶制剂,均显示了良好的体外溶出度。同时,各制剂都提高了SRL的生物利用度,但体内吸收程度有较明显的差异。

    首先,SRL本身的性质是影响体内吸收的重要因素。在理化性质方面,SRL在电解质溶液中可发生开环水解,特别是在强酸和碱性条件下,降解速率显著增加[14]。在生理因素方面,SRL是肠道内CYP3A4酶和P糖蛋白的底物,对肠道吸收有较大影响[15]

    其次,制剂本身的特点对体内吸收有重要影响。SMEDDS和NLC均可形成纳米级的脂质微粒,在胃肠道消化后可形成乳糜胶束[16-17]均减轻了胃肠液的pH对SRL的降解作用,因此SMEDDS和NLC对脂质微粒中的SRL有一定的保护作用。相比之下,SD中的SRL快速释放后,载体材料失去了对药物的隔离保护作用,导致SRL在极短的时间内发生降解。另外,环糊精的空腔可以容纳药物分子[18],不仅提高了SRL的溶解度,而且降低了H+和OH-对SRL的作用概率,减缓了SRL的降解。本研究的体外溶出试验也证实了不同增溶制剂中SRL稳定性的差异。

    同时,SMEDDS的辅料Labrafil M1944 CS和Cremophor EL[9, 19-21]和NLC中的脂质及其代谢产物能够抑制CYP3A4酶的代谢和P糖蛋白外排,消化后形成的乳糜胶束还可通过淋巴途径吸收[22],从而提高了生物利用度[10-11]

    另外,由于SRL分子量较大,分子结构可能仅有部分插入环糊精的空腔中。因此,尽管环糊精提高了SRL的溶出度,但包合物的稳定性较差,进入胃肠道后,药物可被胃肠液中的成分替换[23],导致SRL加速降解或发生重结晶,进而生物利用度下降。

  • 图  1  山奈酚的分子结构

    图  2  山奈酚对白假丝酵母生物被膜形成的影响

    A.山奈酚抑制白假丝酵母生物被膜形成;B.山奈酚抑制白假丝酵母生物被膜基质的产生 *P<0.05,**P<0.01,与未加药组比较。

    图  3  山奈酚抗成熟白假丝酵母生物被膜活性

    *P<0.05,**P<0.01,与未加药组比较。

    图  4  山奈酚抑制白假丝酵母菌丝形成的影响

    图  5  山奈酚对白假丝酵母细胞表面疏水性的影响

    **P<0.01,与未加药组比较。

    图  6  山奈酚对白假丝酵母生物被膜形成相关基因mRNA表达的影响

    表  1  引物序列

    引物序列(5′-3′)
    HWP1-F TGGTGCTATTACTATTCCGG
    HWP1-R CAATAATAGCAGCACCGAAG
    EFG1-F TATGCCCCAGCAAACAACTG
    EFG1-R TTGTTGTCCTGCTGTCTGTC
    CPH1-F ATGCAACACTATTTATACCTC
    CPH1-R ATGCAACACTATTTATACCTC
    ALS1-F TTGGGTTGGTCCTTAGATGG
    ALS1-R ATGATTCAAAGCGTCGTTC
    ALS3-F CTAATGCTGCTACGTATAATT
    ALS3-R CCTGAAATTGACATGTAGCA
    CSH1-F CTGTCGGTACTATGAGATTG
    CSH1-R GATGAATAAACCCAACAACT
    TUP1-F GATTGACGAG TCCTCCAACG
    TUP1-R AAACCAACCTATCGCCATCA
    NRG1-F TATCAGTATG CTGCTCCTCC
    NRG1-R GGAGTTGGCCAGTAAATCAC
    BCR1-F AGTATAATGCTCCTGGTAAGAA
    BCR1-R ACGTAAAGGAGGCACGGCATA
    18S rRNA-F AATTACCCAATCCCGACAC
    18S rRNA-R TGCAACAACTTTAATATACGC
    下载: 导出CSV
  • [1] ACHKAR J M, FRIES B C. <italic>Candida</italic> infections of the genitourinary tract[J]. ClinMicrobiolRev,2010,23(2):253-273.
    [2] ANDERSON J B. Evolution of antifungal-drug resistance: mechanisms and pathogen fitness[J]. Nat Rev Microbiol,2005,3(7):547-556.
    [3] GULATI M, NOBILE C J. <italic>Candidaalbicans</italic> biofilms: development, regulation, and molecular mechanisms[J]. Microbes Infect,2016,18(5):310-321. doi:  10.1016/j.micinf.2016.01.002
    [4] 陈育华, 周克元, 袁汉尧. 山奈酚药效的研究进展[J]. 广东医学, 2010, 31(8):1064-1066. doi:  10.3969/j.issn.1001-9448.2010.08.058
    [5] KIM B W, LEE E R, MIN H M, et al. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition[J]. Cancer Biol Ther,2008,7(7):1080-1089.
    [6] RAJENDRAN P, RENGARAJAN T, NANDAKUMAR N, et al. Kaempferol, a potential cytostatic and cure for inflammatory disorders[J]. Eur J Med Chem,2014,86:103-112.
    [7] CAO Y Y, CAO Y B, XU Z, et al. cDNA microarray analysis of differential gene expression in <italic>Candidaalbicans</italic> biofilm exposed to farnesol[J]. Antimicrob Agents Chemother,2005,49(2):584-589. doi:  10.1128/AAC.49.2.584-589.2005
    [8] NOBILE C J, ANDES D R, NETT J E, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation <italic>in vitro</italic> and <italic>in vivo</italic>[J]. PLoS Pathog,2006,2(7):e63.
    [9] YAN Y, TA NF, MIAO H, et al. Effect of shikoninagainst <italic>Candida albicans</italic>biofilms[J]. Front Microbiol,2019,10:1085. doi:  10.3389/fmicb.2019.01085
    [10] SHAO J, ZHANG M X, WANG T M, et al. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant <italic>Candidaalbicans</italic>[J]. Pharm Biol,2016,54(6):984-992. doi:  10.3109/13880209.2015.1091483
    [11] SUN F J, QU F, LING Y, et al. Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies[J]. Future Microbiol,2013,8(7):877-886. doi:  10.2217/fmb.13.58
    [12] AL-FATTANI M A, DOUGLAS L J. Biofilm matrix of <italic>Candidaalbicans</italic> and <italic>Candidatropicalis</italic>: chemical composition and role in drug resistance[J]. J Med Microbiol,2006,55(Pt 8):999-1008.
    [13] NETT J, LINCOLN L, MARCHILLO K, et al. Putative role of beta-1, 3 glucans in <italic>Candidaalbicans</italic> biofilm resistance[J]. Antimicrob Agents Chemother,2007,51(2):510-520. doi:  10.1128/AAC.01056-06
    [14] CHAFFIN W L. <italic>Candidaalbicans</italic> cell wall proteins[J]. Microbiol Mol Biol Rev,2008,72(3):495-544. doi:  10.1128/MMBR.00032-07
    [15] BRAUN B R, JOHNSON A D. Control of filament formation in <italic>Candidaalbicans</italic> by the transcriptional repressor TUP1[J]. Science,1997,277(5322):105-109. doi:  10.1126/science.277.5322.105
    [16] BRAUN B R, KADOSH D, JOHNSON A D. NRG1, a repressor of filamentous growth in <italic>C.albicans</italic>, is down-regulated during filament induction[J]. EMBO J,2001,20(17):4753-4761. doi:  10.1093/emboj/20.17.4753
    [17] CLEARY I A, MULABAGAL P, REINHARD S M, et al. Pseudohyphal regulation by the transcription factor Rfg1p in <italic>Candidaalbicans</italic>[J]. Eukaryotic Cell,2010,9(9):1363-1373. doi:  10.1128/EC.00088-10
    [18] LU Y, SU C, WANG A, et al. Hyphal development in <italic>Candidaalbicans</italic> requires two temporally linked changes in promoter chromatin for initiation and maintenance[J]. PLoS Biol,2011,9(7):e1001105. doi:  10.1371/journal.pbio.1001105
    [19] SENEVIRATNE C J, JIN L, SAMARANAYAKE L P. Biofilm lifestyle of <italic>C.andida</italic>: a mini review[J]. Oral Dis,2008,14(7):582-590. doi:  10.1111/j.1601-0825.2007.01424.x
    [20] TRONCHIN G, PIHET M, LOPES-BEZERRAL M, et al. Adherence mechanisms in human pathogenic fungi[J]. Med Mycol,2008,46(8):749-772. doi:  10.1080/13693780802206435
    [21] NOBILE C J, FOX E P, NETT J E, et al. A recently evolved transcriptional network controls biofilm development in <italic>Candidaalbicans</italic>[J]. Cell,2012,148(1-2):126-138. doi:  10.1016/j.cell.2011.10.048
  • [1] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架治疗创伤性脑损伤的研究 . 药学实践与服务, 2025, 43(2): 67-74. doi: 10.12206/j.issn.2097-2024.202406034
    [2] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 1-7. doi: 10.12206/j.issn.2097-2024.202406035
    [3] 肖农, 陆诗依, 唐文雅, 居敏俐, 徐刚锋, 杨明华.  中成药微生物计数法前处理的影响因素和优化方法 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202403014
    [4] 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟.  花椒生物碱富集纯化工艺优化及其成分分析 . 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
    [5] 宋泽成, 马闪闪, 胡巧灵, 仲华, 王彦.  小檗碱与氟康唑合用抗氟康唑耐受白念珠菌的研究 . 药学实践与服务, 2025, 43(2): 87-91. doi: 10.12206/j.issn.2097-2024.202409047
    [6] 徐璐璐, 刘爱军.  丹参白术方“异病同治”冠心病、血管性痴呆、特发性膜性肾病的网络药理学作用机制研究 . 药学实践与服务, 2025, 43(3): 143-150. doi: 10.12206/j.issn.2097-2024.202312027
    [7] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [8] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [9] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  6662
  • HTML全文浏览量:  2412
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-09
  • 修回日期:  2020-06-08
  • 刊出日期:  2020-09-25

山奈酚对白假丝酵母生物被膜抑制作用的研究

doi: 10.12206/j.issn.1006-0111.202004050
    基金项目:  国家自然科学基金面上项目(81671991)
    作者简介:

    陈 岚,本科,副主任药师,Tel:(0571)87341668

    通讯作者: 曹颖瑛,博士,教授,研究方向:抗感染药物药理研究,Email:caoyingying608@163.com
  • 中图分类号: R379.4

摘要:   目的  研究山奈酚抗白假丝酵母生物被膜的作用及其可能机制。  方法  测定山奈酚对白假丝酵母处于形成过程中的生物被膜和成熟生物被膜代谢活性的影响;测定山奈酚对生物被膜基质产生水平的影响;显微镜下观察山奈酚对菌丝形成的抑制作用;水-烃两相分离法测定山奈酚对白假丝酵母细胞表面疏水性的影响;实时定量RT-PCR法测定山奈酚对生物被膜形成相关基因表达的影响。  结果  山奈酚抑制白假丝酵母生物被膜形成,且呈剂量依赖性,同时具有抗成熟生物被膜作用,显著降低生物被膜基质含量;与对照组相比,山奈酚明显抑制白假丝酵母菌丝形成并降低其细胞表面疏水性;经山奈酚处理的白假丝酵母生物被膜形成相关基因BCR1NRG1TUP1的表达升高,同时HWP1EFG1CPH1ALS1ALS3CSH1的表达下降。  结论  山奈酚具有抗白假丝酵母生物被膜活性,其机制与抑制菌丝形成及降低其细胞表面疏水性相关。

English Abstract

张雪婷, 云超, 陈珍珍, 陶春, 宋洪涛. 基于体外溶出度与体内生物利用度的西罗莫司增溶技术研究[J]. 药学实践与服务, 2020, 38(5): 441-446, 457. doi: 10.12206/j.issn.1006-0111.201910022
引用本文: 陈岚, 沈娟, 严万年, 范凌志, 曹颖瑛. 山奈酚对白假丝酵母生物被膜抑制作用的研究[J]. 药学实践与服务, 2020, 38(5): 413-417, 430. doi: 10.12206/j.issn.1006-0111.202004050
ZHANG Xueting, YUN Chao, CHEN Zhenzhen, TAO Chun, SONG Hongtao. Study on sirolimus solubilization technology based on in vitro dissolution and in vivo bioavailability[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(5): 441-446, 457. doi: 10.12206/j.issn.1006-0111.201910022
Citation: CHEN Lan, SHEN Juan, YAN Wannian, FAN Lingzhi, CAO Yingying. Study on the antibiofilm activity of kaempferol in Candida albicans[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(5): 413-417, 430. doi: 10.12206/j.issn.1006-0111.202004050
  • 近年来,随着广谱抗生素的使用、艾滋病病毒感染、肿瘤放疗/化疗以及器官移植患者的不断增多,导管插管等越来越多的生物材料应用于人体,侵袭性真菌感染的发病率显著上升,对人类健康乃至生命造成严重威胁。在临床真菌感染中,白假丝酵母(Candida albicans)是最常见的致病真菌之一[1]。研究表明,白假丝酵母能通过黏附于人上皮及植入的导管或支架等表面,形成生物被膜(biofilm),从而在免疫功能低下的人群中导致系统性感染。白假丝酵母生物被膜的一个严重后果是对临床常用抗真菌药物呈高度耐药。与浮游型白假丝酵母相比,生物被膜型白假丝酵母对两性霉素B、氟康唑的敏感性仅是浮游菌的几十分之一。生物被膜形成是导致临床上许多系统性、反复性感染的重要因素,是抗真菌感染治疗失败的主要原因之一[2-3]。因此,研究开发抗白假丝酵母生物被膜药物对于抗真菌感染的治疗具有重要意义。

    山奈酚(kaempferol,KAE)又名山柰素、山柰黄酮醇,其分子结构见图1。山奈酚属于黄酮类化合物,主要来源于姜科植物山柰的根茎。同时,该化合物广泛存在于多种蔬菜及水果中。研究显示,山奈酚具有抗肿瘤、抗炎、抗氧化、抑制血小板聚集及抗病毒等多种生物学活性[4-6]。本文旨在研究山奈酚抗白假丝酵母生物被膜活性并探索其潜在作用机制,为临床抗真菌感染提供新思路。

    图  1  山奈酚的分子结构

    • 白假丝酵母国际通用株SC5314(C. albicans SC5314)由上海市皮肤病医院中心实验室保存。山奈酚(美国Sigma公司),二甲亚砜(DMSO,国药化学试剂有限公司)。将山奈酚溶于DMSO配制成母液,使用时以RPMI1640稀释至所需浓度。XTT(化学名:2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide)和甲萘醌试剂(美国Sigma公司),分别用PBS、丙酮溶解配制成母液。真菌RNA抽提试剂盒(北京天恩泽基因科技公司),RNA反转录、PrimeScript RT Master Mix Perfect RealTime及SYBR Premix ExTaqTM试剂(TaKaRa生物公司)。

      沙氏固体培养基(SDA):蛋白胨10 g, D-葡萄糖40 g,琼脂粉20 g,以去离子水溶解并定容至1 000 ml,高压灭菌(121 ℃,15 min),室温冷却凝固后备用。YPD液体培养基:蛋白陈10 g,酵母提取物10 g,D-葡萄糖20 g,以去离子水溶解并定容至1 000 ml,分装后高压灭菌(121 ℃,15 min)备用。RPMI1640液体培养基:将RPMI1640粉末(Gibco BRL公司)10 g,MOPS(涯泰生物科技公司)34.5 g,NaHCO32.0 g,以去离子水溶解并定容至1 000 ml,用NaOH调节pH至7.0,定容至1 000 ml,微孔滤膜过滤除菌,4 ℃保存。

    • 恒温振荡培养箱(江苏太仓市实验设备厂),高速冷冻离心机(德国Eppendorf公司),超净化工作台(苏州安泰空气技术有限公司),96孔细胞培养板(美国Corning公司),Infinite M200多功能酶标仪(Austria TECAN公司),ABl7500实时定量 RT-PCR仪(Applied Biosystems公司)。

    • 挑取白假丝酵母SC5314甘油冻存菌划于SDA平板,置于30 ℃恒温培养箱培养3 d,待长出单克隆后,挑取菌株单克隆接种于新鲜YPD液体培养基中,再于30 ℃、200 r/min振荡培养过夜(16 h),使其到达对数生长期后期。

    • 白假丝酵母生物被膜培养实验参照文献[7]进行。离心收集上述培养基至对数生长后期的白假丝酵母菌液,PBS洗涤3次,重悬于RPMI1640培养基,计数并调节菌液浓度为1×106 CFU/ml。在96孔细胞培养板每孔加入100 μl上述菌液,37 ℃静置培养2 h,弃上清液,于各孔中分别加入100 μl含有不同浓度山奈酚的RPMIl640培养基,37 ℃继续静置培养24 h。

    • 离心收集培养至对数生长后期的白假丝酵母菌液,PBS洗涤3次,重悬于RPMI1640培养基,计数并调节菌液浓度为1×106 CFU/ml。在96孔细胞培养板每孔加入100 μl上述菌液,37 ℃静置培养2 h,弃上清液,于各孔中加入新鲜RPMIl640培养基,37 ℃继续静置培养24 h,弃上清液,PBS洗涤2次,于各孔中分别加入100 μl含有不同浓度山奈酚的RPMIl640培养基,37 ℃继续静置培养24 h。

    • 取出上述培养的生物被膜,弃上清液,PBS洗2次,随后加入200 μlXTT-甲萘醌溶液(含有0.5 mg/mlXTT-1 μmol/L甲萘醌),于37 ℃黑暗处静置孵育2 h后取出。采用多功能酶标检测仪于492 nm处测定光密度(OD)值。

    • 生物被膜基质(biomass)含量测定参照文献[8]方法进行。在预先放置有硅胶片(1.5 cm×1.5 cm,美国Bentec医药公司)的12孔培养板中,每孔加入2 ml白假丝酵母菌液(1×106 CFU/ml于RPMI1640培养基中),黏附2 h,弃上清液,加入含有不同浓度山奈酚的新鲜RPMI1640培养基,37 ℃继续静置培养24 h,弃上清液,PBS洗涤2次,于各孔中分别加入100 μl含有不同浓度山奈酚的RPMIl640培养基,37 ℃继续静置培养24 h,取出上述培养的生物被膜,弃上清液,PBS洗2次,晾干至恒重并称重,所得重量减去硅胶片本身质量即为生物被膜基质量。

    • 将过夜培养至对数生长后期的白假丝酵母,于次日按照1%接种于新鲜YPD液体培养基,30 ℃继续振荡培养4 h,PBS洗涤2次,重悬于含有16 μg/ml的山奈酚YPD+FBS培养基(含有10%胎牛血清),调整菌浓度为l×l06 CFU/ml,于细胞培养板中37 ℃静置培养3.5 h,显微镜下观察白假丝酵母菌丝形成情况。

    • 采用水-烃两相分离法测定细胞表面疏水性[9]。将过夜培养至对数生长后期的白假丝酵母于次日按照1%量接种于新鲜YPD液体培养基,30 ℃继续振荡培养4 h,随后加入不同浓度山奈酚,于30 ℃继续振荡培养4 h,离心收集菌液以PBS洗涤2次,重悬于YPD液体培养基,调整菌液至OD600=1.0,每组取1.2 ml菌悬液于另一离心管中,加入0.3 ml正辛烷,涡旋振荡混匀3 min,室温静置使两相分离,立即测定上层水相的OD600值,以未加正辛烷的YPD培养基为阴性对照。白假丝酵母细胞表面疏水性值的计算公式:相对细胞表面疏水性=[(OD600对照组−OD600实验组)/OD600对照组]×100%。

    • 应用Primer Premier5软件设计用于实时定量RT-PCR扩增的目的基因引物序列(表1)。引物由上海生工生物工程技术有限公司合成。

      表 1  引物序列

      引物序列(5′-3′)
      HWP1-F TGGTGCTATTACTATTCCGG
      HWP1-R CAATAATAGCAGCACCGAAG
      EFG1-F TATGCCCCAGCAAACAACTG
      EFG1-R TTGTTGTCCTGCTGTCTGTC
      CPH1-F ATGCAACACTATTTATACCTC
      CPH1-R ATGCAACACTATTTATACCTC
      ALS1-F TTGGGTTGGTCCTTAGATGG
      ALS1-R ATGATTCAAAGCGTCGTTC
      ALS3-F CTAATGCTGCTACGTATAATT
      ALS3-R CCTGAAATTGACATGTAGCA
      CSH1-F CTGTCGGTACTATGAGATTG
      CSH1-R GATGAATAAACCCAACAACT
      TUP1-F GATTGACGAG TCCTCCAACG
      TUP1-R AAACCAACCTATCGCCATCA
      NRG1-F TATCAGTATG CTGCTCCTCC
      NRG1-R GGAGTTGGCCAGTAAATCAC
      BCR1-F AGTATAATGCTCCTGGTAAGAA
      BCR1-R ACGTAAAGGAGGCACGGCATA
      18S rRNA-F AATTACCCAATCCCGACAC
      18S rRNA-R TGCAACAACTTTAATATACGC
    • 将培养至对数生长后期的白假丝酵母菌液,PBS洗涤3次,重悬于RPMI1640培养基,计数并调节菌液浓度为l×l06 CFU/ml。将上述菌液在细胞培养瓶中37 ℃静置培养2 h,弃上清液,随后加入含有16 μg/ml山奈酚的新鲜RPMIl640培养基,37 ℃继续静置培养24 h。离心收集菌体,PBS洗涤3次,按照北京天恩泽基因科技公司真菌RNA抽提试剂盒的操作说明进行总RNA的抽提,抽提完毕后加入100 μl去除RNA酶的水(经DEPC处理)溶解RNA,采用分光光度计测定RNA纯度及含量,A260/A280比值在1.8~2.0之间为合格。按照TaKaRa生物公司的反转录试剂盒操作说明,将上述RNA反转录为cDNA。取上述逆转录产物进行PCR扩增,以18S rRNA作为内参基因。反应条件为预变性95 ℃,30 s,重复40个循环。循环参数为:95 ℃,5 s;60 ℃,20 s;72 ℃,30 s。溶解曲线采用60~95 ℃,温度改变速率为每秒0.1 ℃。扩增产物采用ABI 7500 SDS软件系统进行分析。采用2−(⊿⊿Ct)法表示基因表达水平。

    • 实验数据应用GraphPad Prism 6.0软件进行作图及统计学检验,以($\bar x \pm s$)表示,每个实验至少重复3次,以P<0.05为差异显著,P<0.01为差异极显著。

    • 以不同浓度的山奈酚作用于白假丝酵母生物被膜形成早期(黏附2 h),于37 ℃继续培养24 h后测定生物被膜代谢活性。XTT测定结果显示:山奈酚可抑制白假丝酵母生物被膜形成,且呈剂量依赖性。当山奈酚浓度为8 μg/ml时,生物被膜形成被明显抑制。当32 μg/ml的山奈酚作用于生物被膜时,其代谢活性约为对照组的35%,经128 μg/ml的山奈酚处理的白假丝酵母几乎不能形成生物被膜(图2A)。

      图  2  山奈酚对白假丝酵母生物被膜形成的影响

      由于生物被膜基质含量是显示白假丝酵母生物被膜形成能力的一个重要特征,我们进一步考察了山奈酚对生物被膜基质含量的影响。结果表明:与对照组相比,经山奈酚处理的生物被膜基质含量显著下降,呈现剂量依赖性。当32 μg/ml的山奈酚作用于白假丝酵母生物被膜时,其基质产生量不足对照组的50%(图2B)。

    • 将不同浓度的山奈酚作用于成熟白假丝酵母生物被膜(培养24 h),于37 ℃继续培养24 h后测定生物被膜代谢活性。结果显示:16 μg/ml的山奈酚具有明显的抗成熟生物被膜活性。当32 μg/ml的山奈酚作用于成熟生物被膜时,其代谢活性约为对照组的60%,经128 μg/ml的山奈酚处理的白假丝酵母生物被膜活性约为对照组的28%(图3)。

      图  3  山奈酚抗成熟白假丝酵母生物被膜活性

    • 由于白假丝酵母菌丝形成能力与生物被膜密切相关,因此,本实验进一步考察山奈酚对菌丝形成的影响。未加药的对照组白假丝酵母在含有10%胎牛血清的YPD培养基中可以形成正常菌丝,而当16 μg/ml的山奈酚作用于白假丝酵母时,菌丝生长受到明显抑制,主要以酵母型菌生长(图4)。

      图  4  山奈酚抑制白假丝酵母菌丝形成的影响

    • 黏附是白假丝酵母生物被膜形成的早期关键步骤,而细胞表面疏水性对黏附具有重要影响,因此,本实验考察山奈酚对白假丝酵母细胞表面疏水性的影响。与对照组相比,4 μg/ml的山奈酚对白假丝酵母细胞表面疏水性无明显影响,而当山奈酚的作用浓度为8 μg/ml时,其细胞表面疏水性明显下降,且呈现剂量依赖性(图5)。

      图  5  山奈酚对白假丝酵母细胞表面疏水性的影响

    • 由于山奈酚可以影响白假丝酵母菌丝形成及细胞表面疏水性,因此,本实验采用实时定量RT-PCR法测定山奈酚对白假丝酵母菌丝形成及细胞表面疏水性相关基因表达的影响。如图6所示,经16 μg/ml山奈酚处理的白假丝酵母生物被膜中菌丝形成相关基因BCR1NRG1TUP1的基因表达分别升高了2.7、2.4和3.9倍,HWP1EFG1CPH1基因表达显著下降,同时,细胞表面疏水性相关基因ALS1ALS3CSH1的表达明显下降。

      图  6  山奈酚对白假丝酵母生物被膜形成相关基因mRNA表达的影响

    • 近年来,随着免疫低下人群的不断增多以及越来越多的医疗器材应用于人体,真菌感染率大幅增加,其中,以生物被膜型白假丝酵母感染较为常见,常导致反复性感染及耐药,是临床抗感染治疗的一个重要难题。因此,寻找开发具有抗生物被膜活性的化合物对于防治真菌感染具有重要意义。

      天然化合物作为药物的一个重要组成部分,被广泛应用于各种疾病的治疗。山奈酚是最常见的膳食类黄酮化合物之一,广泛存在于花菜、茶叶及柚子等多种植物中,具有抗炎、抗氧化及抗肿瘤等多种生物学活性。Shao等报道山奈酚具有抗浮游型真菌活性并抑制耐药相关外排泵基因的表达[10]。本实验结果显示,山奈酚具有抗白假丝酵母生物被膜活性,不仅可以抑制生物被膜形成,对于成熟生物被膜也有抑制作用。研究表明,白假丝酵母生物被膜基质中富含碳水化合物及DNA,可以通过形成物理屏障阻碍抗真菌药物进入胞内,因此,其含量与耐药程度密切相关。有报道称,生物被膜基质可以隔离放射性标记的氟康唑,将两性霉素B作用于去除基质的念珠菌生物被膜,其抗菌活性与为去除基质的对照组相比明显增强[11-13]。在本实验中,经山奈酚处理的白假丝酵母生物被膜基质水平明显下降,这可能是该化合物发挥抗生物被膜活性的机制之一。

      白假丝酵母生物被膜主要由3部分构成,即基底芽生孢子层、菌丝成分以及细胞外多聚基质,其中,菌丝成分是构成完整生物被膜的重要元件,酵母态到菌丝态的转换是其形成生物被膜的关键。本实验结果显示,山奈酚可以明显抑制白假丝酵母菌丝形成。进一步的实时定量RT-PCR测定结果表明,山奈酚对菌丝形成相关基因的表达具有调控作用。HWP1是菌丝特异性表达基因,该基因缺失型生物被膜极易从附着物上脱落[14]。山奈酚对生物被膜的抑制作用可能与其下调HWP1基因表达有关。同时,经山奈酚处理的白假丝酵母中2个调控菌丝形成信号通路的重要转录因子EFG1CPH1的表达也明显下降。TUP1编码的转录因子对菌丝形成具有抑制作用,可抑制菌丝形成相关基因的表达。有研究报道,TUP1敲除型白假丝酵母即使在适于酵母菌生长条件下也表现为菌丝过度生长[15]。在白假丝酵母菌丝及生物被膜形成抑制剂farnesol处理的白色念珠菌中,TUP1基因呈过度表达[7]NRG1是另一菌丝生长抑制型转录因子,在菌丝诱导条件下其mRNA和蛋白表达水平均下降,该过程依赖cAMP/PKA信号通路。NRG1对菌丝形成具有极强的抑制作用,可与TUP1共同抑制菌丝形成[16-18]。本实验中,TUP1NRG1在山奈酚处理组中呈现高表达与菌丝形成抑制的生物学表型相一致。

        白假丝酵母生物被膜的形成分为起始黏附、微克隆形成以及生物被膜成熟3个阶段,其中,细胞表面疏水性与起始黏附密切相关,对于正常生物被膜的形成至关重要[19]。本实验结果显示,与对照组相比,经山奈酚处理的白假丝酵母细胞表面疏水性明显下降。与此相一致的是,细胞表面疏水性相关基因CSH1的表达在山奈酚处理组中明显下降。已有研究表明,ALS家族基因在促进白假丝酵母黏附及生物被膜的形成中发挥重要作用[20]。本实验中,该家族中的ALS1ALS3基因在山奈酚处理组中表达下降。文献报道转录因子BCR1位于ALS1ALS3基因上游,参与调控白假丝酵母的黏附及生物被膜形成。与ALS1ALS3基因下调相反,本实验中经山奈酚处理的白假丝酵母中BCR1基因表达升高,提示山奈酚可能通过不依赖于BCR1的其他信号通路来调控ALS1ALS3基因的表达[21]。综上所述,山奈酚可能通过抑制白假丝酵母的黏附和菌丝形成从而发挥抗生物被膜作用。

      综上所述,本研究首次揭示了山奈酚的体外抗白假丝酵母生物被膜活性,其作用机制可能与抑制白假丝酵母菌丝形成和降低其细胞表面疏水性相关,这为治疗临床真菌生物被膜相关感染提供了新思路。

参考文献 (21)

目录

/

返回文章
返回