-
结直肠癌是最常见的恶性肿瘤之一,在中国,其发病率和病死率均逐年增加[1]。对具有高危因素、病理分期II期及分期更严重的患者,推荐使用术后化疗药物,对于已转移的和无法I期切除的结直肠癌患者则推荐行新辅助化疗[2]。所以,化疗是治疗结直肠癌的主要方法之一,但无论是以氟尿嘧啶、奥沙利铂或伊立替康为基础的术后化疗方案,还是增加贝伐单抗或抗表皮生长因子的对转移性结直肠癌的新辅助化疗方案[3],它们均有明显的药物不良反应及易出现耐药性的缺点[4]。通过拓展结直肠癌化疗药物的种类,可以为患者提供更多的化疗方案以优化治疗效果,降低肿瘤细胞对化疗药物的耐药性。
紫杉醇(PTX)是一种常见的天然抗肿瘤药物,是紫杉烷类药物中的一员。已有研究证明促使细胞有丝分裂停滞是PTX诱导细胞凋亡的主要作用机制,可与β-微管蛋白结合并稳定微管丝[5],干扰细胞分裂中的微管分解过程,使细胞周期停留至G2/M期,从而导致所作用的细胞凋亡、有丝分裂功能障碍,因此具有较强的抗肿瘤活性[6]。但由于PTX水溶性较低,导致其成药性差,限制了其在临床中的应用。此外,PTX还会引起超敏反应、骨髓抑制、外周神经病变等毒副作用[7]。2008年我国批准上市由美国生物科学公司研制的紫杉醇白蛋白纳米粒,部分解决了PTX成药性差、具有多种毒副作用的问题,使PTX成为治疗卵巢癌、乳腺癌、小细胞肺癌和胰腺癌等恶性肿瘤的一线化疗药物。但对于结直肠癌,部分患者仍然存在的过敏反应以及结直肠癌细胞对PTX的耐药性,令其无法广泛应用于结直肠癌的治疗中。据报道,有几种可能的机制解释了这种耐药性,例如,P-糖蛋白的过表达、微管蛋白的突变、异常信号通路的激活[8]和细胞总抗氧化能力的增加[9]等。近年来,许多研究尝试研制PTX新型药物递送系统或针对其耐药机制与其他药物联用等,给PTX治疗结直肠癌提供了依据和可行性方案。笔者对如何增强紫杉醇对结直肠癌化疗疗效的研究进行综述,以期为后续实验研究奠定基础。
The research progress on the efficacy enhancement of paclitaxel in chemotherapy for colorectal cancer
-
摘要: 结直肠癌作为我国发病率逐年增高的一种恶性肿瘤,由于其隐匿的临床表现及有限的筛查手段,许多患者确诊时已发生较深的肿瘤浸润或出现了远处转移,此时则需要做术后化疗或新辅助化疗。而现有的结直肠癌化疗方案由于其不良反应多且易产生耐药性,故许多学者均在积极探索新的其他可用于结直肠癌的化疗药物。紫杉醇是治疗乳腺癌、卵巢癌、胰腺癌等恶性肿瘤的一线化疗药物,但结直肠癌细胞却易对其产生耐药性,治疗效果不理想,但可以通过开发新的给药系统、与其他药物联合用药等方式增强对结直肠癌的疗效。针对紫杉醇治疗结直肠癌的有效治疗策略进行综述,以期为结直肠癌更有效的化疗方案提供新的思路。Abstract: Colorectal cancer is a malignant tumor with increasing incidence in China. Chemotherapy or neoadjuvant therapy are needed when the patients have deep tumor invasion of distant metastasis due to the hidden clinical manifestations and limited screening methods for the colorectal cancer. With many side effects of the current chemo-medications and the drug resistance, researchers are actively exploring new chemotherapy drugs for colorectal cancer. Paclitaxel is a first-line chemotherapy drug for the treatment of breast cancer, ovarian cancer, pancreatic cancer and other malignant tumors. Colorectal cancer cells are prone to become resistant to paclitaxel and the treatment efficiency was limited. However, new drug delivery systems and the combination drug therapy can enhance the treatment efficiency. This article reviews the effective treatment strategies of paclitaxel for colorectal cancer with the hope for new ideas and more effective chemotherapy.
-
Key words:
- paclitaxel /
- colorectal cancer /
- chemotherapy
-
[1] 蔡建, 王磊. 回眸2018: 聚焦结直肠癌研究领域[J]. 中华胃肠外科杂志, 2019, 22(1):9-16. doi: 10.3760/cma.j.issn.1671-0274.2019.01.002 [2] BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Rectal cancer, version 2.2018, nccn clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw,2018,16(7):874-901. doi: 10.6004/jnccn.2018.0061 [3] VAN CUTSEM E, CERVANTES A, ADAM R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer[J]. Ann Oncol,2016,27(8):1386-1422. doi: 10.1093/annonc/mdw235 [4] TEMRAZ S, MUKHERJI D, ALAMEDDINE R, et al. Methods of overcoming treatment resistance in colorectal cancer[J]. Crit Rev Oncol,2014,89(2):217-230. doi: 10.1016/j.critrevonc.2013.08.015 [5] BHALLA K N. Microtubule-targeted anticancer agents and apoptosis[J]. Oncogene,2003,22(56):9075-9086. doi: 10.1038/sj.onc.1207233 [6] AHMED A A, WANG X, LU Z, et al. Modulating microtubule stability enhances the cytotoxic response of cancer cells to paclitaxel[J]. Cancer Res,2011,71(17):5806-5817. doi: 10.1158/0008-5472.CAN-11-0025 [7] GUPTA N, HATOUM H, DY G K. First line treatment of advanced non-small-cell lung cancer-specific focus on albumin bound paclitaxel[J]. Int J Nanomedicine,2014,9:209-221. [8] ORR G A, VERDIER-PINARD P, MCDAID H, et al. Mechanisms of Taxol resistance related to microtubules[J]. Oncogene,2003,22(47):7280-7295. doi: 10.1038/sj.onc.1206934 [9] RAMANATHAN B, JAN K Y, CHEN C H, et al. Resistance to paclitaxel is proportional to cellular total antioxidant capacity[J]. Cancer Res,2005,65(18):8455-8460. doi: 10.1158/0008-5472.CAN-05-1162 [10] JOSHI N, SHANMUGAM T, KAVIRATNA A, et al. Proapoptotic lipid nanovesicles: synergism with paclitaxel in human lung adenocarcinoma A549 cells[J]. J Control Release,2011,156(3):413-420. doi: 10.1016/j.jconrel.2011.07.025 [11] SLEDGE G W, NEUBERG D, BERNARDO P, et al. Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193)[J]. J Clin Oncol,2003,21(4):588-592. doi: 10.1200/JCO.2003.08.013 [12] JOSHI N, SHANMUGAM T, DESHMUKH A, et al. Apoptotic cascade inspired lipid nanovesicles show synergism with encapsulated paclitaxel in chemoresistant colon carcinoma[J]. Nanomedicine (Lond),2014,9(12):1789-1805. doi: 10.2217/nnm.13.182 [13] SUN H L, KLOK H A, ZHONG Z Y. Polymers from nature and for nature[J]. Biomacromolecules,2018,19(6):1697-1700. doi: 10.1021/acs.biomac.8b00830 [14] PHAM D T, SAELIM N, TIYABOONCHAI W. Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy[J]. Colloids Surfaces B: Biointerfaces,2019,181:705-713. doi: 10.1016/j.colsurfb.2019.06.011 [15] PHAM D T, SAELIM N, TIYABOONCHAI W. Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: physicochemical properties, crystallinity and structure[J]. J Mater Sci,2018,53(20):14087-14103. doi: 10.1007/s10853-018-2635-3 [16] PHAM D T, SAELIM N, TIYABOONCHAI W. Paclitaxel loaded EDC-crosslinked fibroin nanoparticles: a potential approach for colon cancer treatment[J]. Drug Deliv Transl Res,2020,10(2):413-424. doi: 10.1007/s13346-019-00682-7 [17] BU H, HE X, ZHANG Z, et al. A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer[J]. Int J Pharm,2014,471(1-2):206-213. doi: 10.1016/j.ijpharm.2014.05.039 [18] CHOUDHURY H, GORAIN B, KARMAKAR S, et al. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform[J]. Int J Pharm,2014,460(1-2):131-143. doi: 10.1016/j.ijpharm.2013.10.055 [19] DESAI A, VYAS T, AMIJI M. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations[J]. J Pharm Sci,2008,97(7):2745-2756. doi: 10.1002/jps.21182 [20] ZOU H, LI L, GARCIA CARCEDO I, et al. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis[J]. Int J Nanomedicine,2016,11:1947-1958. doi: 10.2217/nnm-2016-0147 [21] KELLEHER R J III, SHEN J. Presenilin-1 mutations and Alzheimer's disease[J]. PNAS,2017,114(4):629-631. doi: 10.1073/pnas.1619574114 [22] YONG Y L, ZHANG R Y, LIU Z K, et al. Gamma-secretase complex-dependent intramembrane proteolysis of CD147 regulates the Notch1 signaling pathway in hepatocellular carcinoma[J]. J Pathol,2019,249(2):255-267. doi: 10.1002/path.5316 [23] VAN ES J H, VAN GIJN M E, RICCIO O, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells[J]. Nature,2005,435(7044):959-963. doi: 10.1038/nature03659 [24] AKIYOSHI T, NAKAMURA M, YANAI K, et al. Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells[J]. Gastroenterology,2008,134(1):131-144. doi: 10.1053/j.gastro.2007.10.008 [25] LU Y, LI C S, DONG Q. Chinese herb related molecules of cancer-cell-apoptosis: a minireview of progress between Kanglaite injection and related genes[J]. J Exp Clin Cancer Res,2008,27(1):1-5. doi: 10.1186/1756-9966-27-1 [26] WANG Y J, ZHANG C Z, ZHANG S W, et al. Kanglaite sensitizes colorectal cancer cells to Taxol via NF-κΒ inhibition and connexin 43 upregulation[J]. Sci Rep,2017,7:1280. doi: 10.1038/s41598-017-01480-2 [27] BLAJ C, SCHMIDT E M, LAMPRECHT S, et al. Oncogenic effects of high MAPK activity in colorectal cancer mark progenitor cells and persist irrespective of RAS mutations[J]. Cancer Res,2017,77(7):1763-1774. doi: 10.1158/0008-5472.CAN-16-2821 [28] FRIDAY B B, ADJEI A A. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy[J]. Clin Cancer Res,2008,14(2):342-346. doi: 10.1158/1078-0432.CCR-07-4790 [29] KATAYAMA K, YOSHIOKA S, TSUKAHARA S, et al. Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein[J]. Mol Cancer Ther,2007,6(7):2092-2102. doi: 10.1158/1535-7163.MCT-07-0148 [30] ENGELMAN J A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations[J]. Nat Rev Cancer,2009,9(8):550-562. doi: 10.1038/nrc2664 [31] XU R, NAKANO K, IWASAKI H, et al. Dual blockade of phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways overcomes paclitaxel-resistance in colorectal cancer[J]. Cancer Lett,2011,306(2):151-160. doi: 10.1016/j.canlet.2011.02.042 [32] CHAPUIS N, TAMBURINI J, GREEN A S, et al. Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia[J]. Clin Cancer Res,2010,16(22):5424-5435. doi: 10.1158/1078-0432.CCR-10-1102 [33] MANARA M C, NICOLETTI G, ZAMBELLI D, et al. NVP-BEZ235 as a new therapeutic option for sarcomas[J]. Clin Cancer Res,2010,16(2):530-540. doi: 10.1158/1078-0432.CCR-09-0816 [34] ROPER J, RICHARDSON M P, WANG W V, et al. The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer[J]. PLoS One,2011,6(9):e25132. doi: 10.1371/journal.pone.0025132
计量
- 文章访问数: 4914
- HTML全文浏览量: 3345
- PDF下载量: 50
- 被引次数: 0