Studies on the binding properties of Zn2+ ion to quercetin and the antioxidant activities
-
摘要: 目的 研究槲皮素与其锌离子(Zn2+)配合物的抗氧化性能。 方法 通过紫外/可见分光光度法测定槲皮素与Zn2+的结合比例及结合常数,结合核磁共振技术确定其结合位点,以1,1-二苯基苯肼(DPPH)为探针,比较研究槲皮素与其Zn2+配合物的抗氧化性能。 结果 当槲皮素中低于2个酚羟基被中和时,槲皮素与Zn2+的饱和结合比为2:1;当超过3个酚羟基被中和时,槲皮素与Zn2+的结合比为1:1,此时槲皮素-Zn2+的表观结合常数为2.42×106 M-1。槲皮素的3'-O、4'-O参与了与Zn2+的配位。槲皮素-Zn2+配合物清除DPPH自由基的活性比槲皮素本身高出2.3倍。 结论 Zn2+可与槲皮素形成稳定的配合物,且其比槲皮素本身具有更高效的抗氧化性能,这为传统中药槲皮素的应用提供了新思路。Abstract: Objective To study the anti-oxidation properties of Zn2+-quercetin complexes. Methods The binding stoichiometric ratios and the binding constant of Zn2+ to quercetin were measured with UV-Vis spectroscopy. The binding sites on quercetin were determined via 1H NMR spectroscopy. The antioxidant activities of Zn2+-quercetin complexes were compared to quercetin by scavenging DPPH radical method. The binding ratio of Zn2+ to quercetin depends on neutralization of phenol groups of quercetin. Results The binding ratio of Zn2+ to quercetin is 1:2 when less than two OH groups were deprotonated. The binding ratio is 1:1 when more than three OH groups were deprotonated. The apparent binding constant is 2.42×106 M-1 for the 1:1 Zn2+-quercetin complex. The 3'-OH and 4'-OH of quercetin are involved in the Zn2+ binding. The scavenging DPPH radical activity of Zn2+-quercetin complex is 2.3 times of quercetin. Conclusion These results provide a new insight to expand applications of this traditional Chinese medicine.
-
Key words:
- quercetin /
- Zn2+ ion /
- binding constant /
- antioxidant activity
-
[1] Miles SL, McFarland M, Niles RM. Molecular and physiological actions of quercetin:need for clinical trials to assess its benefits in human disease[J]. Nutr Rev, 2014, 72(11):720-734. [2] Rani N, Velan LPT, Vijaykumar S, et al. An insight into the potentially old-wonder molecule-quercetin:the perspectives in foresee[J]. Chin J Integr Med, 2015, 1:1-16. [3] Nabavi SF, Russo GL, Daglia M. Role of quercetin as an alternative for obesity treatment:you are what you eat![J]. Food Chem, 2015, 179:305-310. [4] Gormaz JG, Quintremil S, Rodrigo R. Cardiovascular disease:A target for the pharmacological effects of quercetin[J]. Curr Top Med Chem, 2015, 15(17):1735-1742. [5] Xiao ZP, Wang XD, Peng ZY, et al. Molecular docking, kinetics study, and structure-activity relationship analysis of quercetin and its analogous as Helicobacter pylori urease inhibitors[J]. J Agric Food Chem, 2012, 60(42):10572-10577. [6] 夏玉明, 朴惠善, 许妍姬, 等. 槲皮素过渡金属锌配合物的合成[J]. 延边大学学报(自然科学版), 1999, 25(1):37-39. [7] de Souza RF, De Giovani WF. Synthesis, spectral and electrochemical properties of Al(Ⅲ) and Zn(Ⅱ) complexes with flavonoids[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2005, 61(9):1985-1990. [8] Tan J, Wang B, Zhu L. DNA binding, cytotoxicity, apoptotic inducing activity, and molecular modeling study of quercetin zinc(Ⅱ) complex[J]. Bioorg Med Chem, 2009, 17(2):614-620. [9] Primikyri A, Mazzone G, Lekka C, et al. Understanding zinc(Ⅱ) chelation with quercetin and luteolin:a combined NMR and theoretical study[J]. J Phys Chem B, 2015, 119(1):83-95. [10] 曾旭, 叶丹荣, 林德昌, 等. 含铋配合物与奈瑟氏菌铁结合蛋白的反应性质研究[J]. 无机化学学报, 2011, 27(11):2179-2184. [11] 王海燕, 曾秀, 张成平, 等. 槲皮素金属螯合物的研究与应用[J]. 食品科学, 2013, 34(13):361-364. [12] de Souza RF, De Giovani WF. Antioxidant properties of complexes of flavonoids with metal ions[J]. Redox Rep, 2004, 9(2):97-104. 期刊类型引用(5)
1. 翟艳珂,潘宜杏,向浩,徐黎,朱泽策,雷咪. DSAZn与槲皮素的配位结合及对槲皮素的高灵敏度检测. 光谱学与光谱分析. 2023(01): 122-128 . 百度学术
2. 曹玉天,盛万里,齐小花,张伟,谢子奇,罗云敬,邹明强. 聚乙二醇修饰的槲皮素磁性分子印迹聚合物合成及其应用. 分析科学学报. 2021(06): 719-725 . 百度学术
3. 熊振飞,汤样华,李金龙,唐德志. Zinc-ZIP8-MTF1信号通路调控骨性关节炎发生、发展及中医药作用机制的研究进展. 上海中医药杂志. 2020(08): 89-93 . 百度学术
4. 王勤,周刚,申键. 槲皮素金属配合物合成及药理作用研究现状. 北方药学. 2020(12): 192-196 . 百度学术
5. 梁洁,麦嘉妮,徐晖,陈晓思,黄光强,林婧,赵立春. 龙眼叶抗氧化和抑制α-葡萄糖苷酶活性的谱效关系研究. 中药材. 2019(06): 1328-1333 . 百度学术
其他类型引用(4)
-

计量
- 文章访问数: 5452
- HTML全文浏览量: 845
- PDF下载量: 658
- 被引次数: 9