留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制

岳春华 贲永光 王海桥

丁杰, 倪喆鑫, 程雯, 俞超芹. 基于网络药理学探讨活血化瘀药治疗子宫内膜异位症的作用机制[J]. 药学实践与服务, 2020, 38(6): 516-522. doi: 10.12206/j.issn.1006-0111.202006002
引用本文: 岳春华, 贲永光, 王海桥. 基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制[J]. 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
DING Jie, NI Zhexin, CHEN Wen, YU Chaoqin. A network pharmacology approach to explore mechanisms of activating blood circulation and removing blood stasis herbs in the treatment of endometriosis[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 516-522. doi: 10.12206/j.issn.1006-0111.202006002
Citation: YUE Chunhua, BEN Yongguang, WANG Haiqiao. Exploration of the antidepressant mechanism of Baihe Zhimu decoction based on NLRP1 inflammasome[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033

基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制

doi: 10.12206/j.issn.2097-2024.202401033
基金项目: 国家自然科学基金(82274254);广东省中医药局科研项目(20221220)
详细信息
    作者简介:

    岳春华,硕士,讲师,Email:yuechunhua2004@126.com

    通讯作者: 王海桥,博士,副主任医师,研究方向:中医药物质基础与作用机制研究,Email:haiqiaodr@163.com
  • 中图分类号: R285[

Exploration of the antidepressant mechanism of Baihe Zhimu decoction based on NLRP1 inflammasome

  • 摘要:   目的  基于NLRP1炎症小体研究百合知母汤抗抑郁的作用机制。  方法  构建慢性不可预测轻度应激(CUMS)诱导的抑郁症小鼠模型,将C57BL/6J小鼠随机分为对照组、模型组、百合知母汤低剂量组、百合知母汤高剂量组以及MDP组(NLRP1激活剂)。连续给药4周,考察小鼠行为学特征。ELISA检测小鼠海马炎症因子IL-1β、IL-6、TNF-α和神经递质5-HT、NE 、DA的水平。Western blot检测炎症小体相关蛋白NLRP1、ASC和caspase-1的表达,以及BDNF/TrkB和ERK/AKT/mTOR信号通路相关蛋白的变化,免疫荧光检测小鼠海马BDNF表达的变化。  结果  百合知母汤能抑制CUMS 小鼠海马NLRP1炎症小体的活化,改善小鼠行为特征,提高小鼠海马神经递质水平,降低炎症反应。 NLRP1激活剂MDP能逆转百合知母汤的上述作用。百合知母汤能上调下游分子BDNF、TrkB的表达水平,提高ERK、AKT和mTOR蛋白磷酸化水平,而MDP能逆转上述作用。  结论  百合知母汤通过抑制NLRP1炎症小体活化,抑制CUMS抑郁症小鼠海马神经炎症反应,进而激活BDNF/TrkB信号通路和ERK/AKT/mTOR信号通路来改善CUMS小鼠的抑郁样行为。
  • 子宫内膜异位症(endometriosis,EM)是临床上最为常见的慢性妇科疾病之一,以慢性盆腔疼痛、月经紊乱和不孕为主要的临床表现。EM本质是血瘀证,临床治疗时以活血化瘀为主,常用的药物有桃仁、红花、泽兰、丹参、益母草、川牛膝、王不留行等,能够有效缓解患者痛经、非经期盆腔痛等症状[1]

    目前活血化瘀类中药对EM治疗的具体机制不是很清晰,其针对的靶点也不是很明了。网络药理学将生物网络作为研究对象,探究药物、靶点、疾病之间的联系,系统完整地研究药物的机制,可展现出药物对于多个靶点、多个通路不同影响。因为和中医整体观念天然契合,网络药理学现已广泛应用于中药研究中[2-3] 。在本研究中,笔者采用网络药理学的方法探究活血化瘀类中药治疗EM的作用机制,构建“化合物-靶标-通路-疾病”网络,并初步探析何种活血化瘀药在EM治疗中更具优势,为临床用药以及进一步实验研究提供理论依据。

    根据卫生部“十一五”规划教材《中药学》分类,确认桃仁、红花、泽兰、丹参、益母草、川牛膝、王不留行七味活血化瘀药为本次主要研究对象。

    利用中药化学成分数据库TCMSP平台(http:// lsp.nwu.edu.cn/tcmsp.php),检索七味中药所含活性成分。依据数据库指南要求,将口服生物利用度(oral bioavailability,OB)≥30%以及类药性(drug-like,DL)≥0.18作为筛选条件,对活性成分进行筛选[4]。OB值是评价药物能否发挥药效的重要药动学参数,DL值是指化合物与所有已知药物之间的相似程度。上述2个参数是评价中药化学成分吸收、分布、代谢、排泄的关键参数。获得符合OB、DL参数有效活性成分后,利用TCMSP数据库查询各有效活性成分对应相关靶点。利用Venn图工具(https://bioinfogp.cnb.csic.es/tools/venny/)对药物化学成分以及相关靶点进行共同点分析,寻找活血化瘀中药共有成分和作用靶点。

    利用美国国立生物技术信息中心Gene数据库(https://www.ncbi.nlm.nih.gov/gene/)将所获靶点信息转换成基因名称。查询GeneCards(https://www.genecards.org/)数据库,获得与EM相关基因靶点。最后将每种中药的作用靶点对应的Gene Symbol与EM基因进行比对,获得每种中药可能影响EM的相关基因,利用Cytoscape 3.6.0软件构建化合物-靶点网络[5]

    为进一步研究靶点之间的相互关系,将活血化瘀药共同靶点上传至线上软件 STRING(http://string db.org),构建蛋白互作网络。物种选择为Homosapiens,minimum required interaction score调整为highest confidence,隐藏网络图中游离节点,获取PPI网络。

    利用KEGG数据库(https://www.keg g.jp/)查询每种中药针对EM的相关基因,获得相关KEGG通路信息。筛选各中药KEGG通路中相关基因富集情况,并利用Prism 8.0软件绘制通路靶点富集热图。

    按照要求从TCMSP数据库中筛选出各中药有效成分,删除重复项,共有94种有效成分(supplementary materials table S1)。其中丹参有效活性成分达到65个,而泽兰有效活性成分只有2个。未能发现七味活血化瘀药共同有效成分,但β-谷固醇为川牛膝、红花、桃仁、泽兰所共有,槲皮素为川牛膝、红花、王不留行、益母草所共有,是涉及活血化瘀类中药最多的2种有效成分(supplementary materials table S2)。与此同时,我们找到了七味中药所共有的19个作用靶点(表1),包括孕酮受体(progesterone receptor)、前列腺素G/H合成酶1(prostaglandin G/H synthase 1)、前列腺素G/H合成酶2(prostaglandin G/H synthase 2)、凋亡调节剂Bcl-2(apoptosis regulator Bcl-2)、核受体共激活剂(nuclear receptor coactivator 2)等。

    表  1  七种活血化瘀中药共有的19个靶点
    序号蛋白名称基因名称靶点标识码
    1钠通道蛋白5型亚基SCN5ATAR00070
    2前列腺素G/H合成酶1PTGS1TAR00006
    3Beta-2型肾上腺素受体ADRB2TAR00261
    4毒蕈碱型乙酰胆碱受体M3CHRM3TAR00016
    5孕酮受体PGRTAR00209
    6半胱天冬酶3CASP3TAR04087
    7热休克蛋白HSP 90HSP90TAR00444
    8钾电压门控通道亚家族H成员2KCNH2TAR00037
    9凋亡调节剂Bcl-2BCL2TAR00086
    10PKA催化亚基C-alphaPRKACATAR00699
    11半胱天冬酶9CASP9TAR04090
    12γ-氨基丁酸受体亚基α-1GABRA1TAR00309
    13毒蕈碱型乙酰胆碱受体M1CHRM1TAR00038
    14前列腺素G/H合酶2PTGS2TAR00094
    15转录因子AP-1JUN,FOSTAR00414
    16磷脂酰肌醇-4,5-双磷酸3-激酶催化亚基,γ亚型PIK3CGTAR00491
    17毒蕈碱型乙酰胆碱受体M2CHRM2TAR00210
    18核受体共激活剂2NCOA2TAR03276
    19维甲酸受体RXR-alphaRARATAR00158
    下载: 导出CSV 
    | 显示表格

    利用人类基因数据库查找EM作用靶点,与七味中药有效成分对应靶点进行比对,发现红花所含相关靶点数量最多,达到103个;而桃仁、泽兰所含相关靶点数量最少,为14个(图1A);王不留行所含相关靶点占有效成分作用靶点比例最高,为54.7%;而桃仁最低,为29.8%(图1B)。经过去重处理后,七味中药所含EM相关靶点共119个(supplementary materials table S3)。利用Cytoscape3.6.0软件进行成分-靶点网络分析,获得图2,其中共计216个节点,其中黄色节点为活血化瘀药有效活性成分,而蓝色节点代表EM相关靶点。利用软件自带分析功能,对于网络各节点度值进行分析,网络中某些节点度值较高,提示该节点为网络中的关键节点(supplementary materials table S4)。在各中药所含有效成分中,槲皮素展现出极高的连接度(度值=87),远超其他有效成分,而其余较高连接度值依次是木犀草素(度值=43)、山柰酚(度值=33)、黄芩素(度值=23)、丹参酮A(度值=20)、花生四烯酸(度值=20)、β-谷固醇(度值=18)。中药是一个多有效成分的复杂系统,一个有效成分可作用于多个靶点,协同作用于某种疾病的治疗。而在靶点的分析中,较高连接度的靶点可能在EM的治疗作用中起着重要的作用。前列腺素G/H合酶2(PTGS2,度值=82)、前列腺素G/H合酶1(PTGS1,度值=39)两者拥有最高的度值,是临床上炎性疾病治疗的主要靶点;核受体辅活化子2(NCOA2,度值=35)、核受体辅活化子1(NCOA1,度值=34)紧跟其后,同样在各炎症通路中作用显著;凝血酶(度值=31)是临床上治疗出血的重要靶点,直接作用于血液凝固过程的最后一环;Mu-type阿片受体(OPRM1,度值=30)则涉及到中枢镇痛功能。上述靶点均和EM症状及病机之间有着密切的关系。

    图  1  七味活血化瘀中药EM相关靶点数量及所占比例
    A.基于OB≥30%和DL≥0.18标准,各中药EM相关靶点个数;B.基于OB≥30%、DL≥0.18标准,各中药EM相关靶点的比例
    图  2  活血化瘀中药主要成分−靶点图

    利用STRING软件构建靶点PPI网络,图中包含119个节点,505条边,所有节点平均度值为8.49,具体见图3。根据“度值>均值”筛选出PPI网络中关键节点56个(supplementary materials table S6),前9位关键节点,平均度值为88,见表2,与PPI网络74%节点存在相互作用关系,提示它们在网络调控中起着关键作用,可能是活血化瘀药物治疗EM的关键所在。

    表  2  PPI网络中关键节点
    节点名称度值节点名称度值节点名称度值
    ALB97IL692PTGS283
    AKT195TNF86CASP380
    VEGFA94MAPK883MAPK180
    下载: 导出CSV 
    | 显示表格
    图  3  119个节点PPI网络图

    利用KEGG数据库查询每种中药针对EM的相关基因,获得相关KEGG通路信息。整理各中药KEGG通路相关基因富集情况,发现七味中药共有信号通路44条(supplementary materials table S5),筛选出与EM密切相关的19条通路(表3)。从表3中,不难发现,19条通路涉及性激素、炎症、细胞调亡以及血管生成等各个方面,其中炎症相关通路达到7条,为所有通路中最多。利用Prism 8.0软件绘制通路靶点富集热图,根据图4可知,在系列通路中,泽兰与桃仁作用均弱于其他五味中药。而在PI3K-Akt、IL-17、TNF三条信号通路中,多味中药靶点存在高度富集,红花在PI3K-Akt信号通路中显著富集,远超该药其他通路,值得注意。

    表  3  七味活血化瘀中药的19条KEGG通路
    序号标识码信号通路名称类别
    1hsa04151PI3K-Akt信号通路炎症相关
    2hsa04668TNF信号通路炎症相关
    3hsa04657IL-17信号通路炎症相关
    4hsa04625C型凝集素受体信号通路炎症相关
    5hsa04064NF-κB信号通路炎症相关
    6hsa04115p53信号通路炎症相关
    7hsa00590花生四烯酸代谢炎症相关
    8hsa01522内分泌抵抗激素相关
    9hsa04915雌激素信号通路激素相关
    10hsa04919甲状腺激素信号通路激素相关
    11hsa04921催产素信号通路激素相关
    12hsa04210细胞凋亡细胞凋亡
    13hsa04071鞘脂信号通路细胞凋亡
    14hsa01521EGFR酪氨酸激酶抑制剂拮抗血管相关
    15hsa04370VEGF信号通路血管相关
    16hsa01521血小板活化血管相关
    17hsa04722神经营养蛋白信号通路疼痛相关
    18hsa04725胆碱能突触疼痛相关
    19hsa04726血清素能突触疼痛相关
    下载: 导出CSV 
    | 显示表格
    图  4  七味活血化瘀中药KEGG信号通路热图

    本研究采用网络药理学的研究方法,从TCMSP数据库中提取出了94个符合标准的成分,通过VENE图去重以及分析网络图的拓扑特性后,发现槲皮素为四味活血化瘀药所共有,与83种EM相关靶点存在关联。现代研究表明,槲皮素具有抑制炎症、血小板聚集和血管平滑肌细胞增殖的作用,通过抗氧化作用诱导细胞凋亡,还可通过雌激素受体,调控受体下游多种底物及信号通路而调节雌激素[6-7]。木犀草素与41种EM靶点相关联,具有抗炎、抗纤维化、抑制血管生成等作用[8]。EM发生发展过程中慢性炎症反应一直贯穿始终,且存在纤维化病变,木犀草素或在EM治疗中有一定作用[9-10]

    通过VENE图,发现七味中药共有作用靶点19个,部分共有靶点与Cytoscape网络图以及PPI网络中关键节点高度对应,进一步强调了该部分共有靶点在EM中的作用。如PTGS2,该靶点所调控环氧合酶(COX-2)的高表达会导致细胞的高增殖性、高侵袭性,诱导血管生成从而加重EM的疼痛和不孕症状[11]。NCOA2、NCOA1的水平异常与EM的进展关联密切。趋化因子参与子宫内膜异位种植过程中趋化、黏附、侵袭、血管形成及细胞生长分化等多个重要环节[12]。Xiu等发现,在分泌期,NCOA1和趋化因子CXCL12在异位子宫内膜中的表达明显高于正常子宫内膜;活化血小板对异位内膜具有促炎、促血管生成的作用,促使异位内膜细胞的侵袭和增殖[13-14],子宫内膜基质细胞可分泌F2,以密集依赖的方式诱导血小板活化和聚集,从而影响EM的进展[15-16] 。VEGFA可促进新生血管形成并使血管通透性增加,陈晓莉等[17]研究表明,内异症组血清和腹腔液VEGF水平明显高于对照组,且重度患者腹腔液中VEGF水平高于轻度患者,VEGF在EMT患者血管生成中起促进性作用,在血清与腹腔液中的高表达与疾病发生发展相关。尉伟东等[18]发现CASP3蛋白在异位内膜和在位内膜中的评分明显低于正常对照组,caspase-3的水平下降提示内膜细胞活性下降,促使子宫内膜细胞自发性凋亡增加以及凋亡信号敏感性增强,诱导或加重EM。

    利用KEGG数据库,找到了七味活血化瘀药共有EM相关通路19条,涉及性激素、炎症、细胞凋亡以及血管生成等方面。所有通路中,炎症通路达到36%。其中PI3K-Akt、IL-17、TNF三条信号通路是靶点富集最多的通路,提示活血化瘀药主要通过抗炎作用来对EM起治疗作用。与正常女性相比,EM患者的子宫内膜在位和异位内膜细胞的PI3K表达增加,AKT磷酸化水平升高,证实PI3K/AKT信号通路可影响EM进展[19]。EM是一种雌激素依赖性疾病,呈现出慢性炎症反应,多种炎性因子参与其病理过程,包括NF-κB、TNF-α、IL-1、IL-17等[20]。许丽华等[21]通过实验发现,EM患者血清及腹腔液中TNF-α水平显著高于对照组。EM患者Ⅲ和Ⅳ期血清和腹腔液中TNF-α水平均高于Ⅰ和Ⅱ期,证实了TNF-α与子宫内膜异位症的发生发展密切相关,有助于子宫内膜异位症的诊断。IL-1家族在EM发生发展中作用显著,与正常女性相比,EM患者静脉血中IL-1β浓度显著增高。不仅仅是IL-1β,研究显示,IL-1β前体蛋白(proIL-1β)也可以加重炎症反应,EM患者腹腔液中IL-1β、proIL-1β水平均高于健康女性。IL-1家族细胞因子的损伤,导致EM患者腹腔免疫机制的紊乱,局部以及全身IL-1β、IL-18调控机制的缺陷,使得内膜组织的侵袭性以及生长性大幅增加,从而导致EM[22-24]。炎症相关通路的高富集也与之前网络图中TNF、IL-6等炎性相关靶点的高度值相对应,进一步强调了活血化瘀药物通过抗炎作用治疗EM的作用机制。细胞凋亡是一种独特的程序性细胞死亡,细胞的有效清除而不会引起炎症反应,EM特征为异位内膜细胞凋亡率下降。与健康女性子宫内膜相比,EM异位内膜抗凋亡因子表达增加,促凋亡因子表达减少,证实了细胞凋亡在EM的发病中确有作用,并和炎症反应存在一定关联[25]。EM发生发展过程中亦伴随着血管生成增多以及局部病灶周期性出血,EM患者异位内膜血管内皮生长因子(VEGF)表达量增高,抗血管生成因子(sFlt-1)表达量下降,证实VEGF信号通路、血小板激活通路均参与此过程,与前面靶点分析也形成呼应[26-27] 。脑源性神经营养因子是各种慢性疾病中慢性疼痛形成和维持的调节因子,EM伴有疼痛的患者血清和腹膜液中神经营养因子浓度明显高于无疼痛EM患者[28]。利用KEGG通路分析,可以发现活血化瘀药对于炎症、凋亡、疼痛、血管生成等相关通路均具备调控作用,进一步强调了临床上活血化瘀药对于EM的治疗价值。

    综上所述,活血化瘀中药可通过多靶点、多通路协同作用方式对EM进行治疗,体现了中医药治疗疾病特色。上述七味中药中,桃仁、泽兰对于EM的作用低于其余活血化瘀药,而红花、益母草在EM治疗体系中,EM相关靶点高于其余中药,可能会起到更好的疗效,在临床上可尝试推广使用。本研究从网络药理学角度出发,根据活血化瘀中药有效成分和作用靶点,在一定程度上对活血化瘀中药治疗EM进行了机制的解析,为指导临床用药提供了一定的依据。但本研究仅仅基于TCMSP数据库,利用计算机软件从理论上对活血化瘀中药治疗EM作用机制做了探析,还需要通过实验和临床实践来进一步证实,而且还需要扩大活血化瘀药物探究范围,结合临床实际,深入剖析活血化瘀药共同点与差异之处。

  • 图  1  百合知母汤对CUMS小鼠行为学影响(n=6)

    A. 糖水消耗实验; B. 悬尾实验;C. 强迫游泳实验;D. 旷场实验*P<0.05,**P<0.01,与对照组比较;P<0.05,△△P<0.01,与模型组比较;P<0.05,▲▲P<0.01,与百合知母汤高剂量组比较。

    图  2  百合知母汤对CUMS小鼠海马单胺类神经递质DA、5-HT、NE水平的影响(n=6)

    A.小鼠海马DA水平;B.小鼠海马5-HT水平;C.小鼠海马NE水平 *P<0.05,**P<0.01,与对照组比较;P<0.05,△△P<0.01,与模型组比较;P<0.05,▲▲P<0.01,与百合知母汤高剂量组比较。

    图  3  百合知母汤对抑郁症相关炎症因子IL-1β、IL-6和TNF-α的影响(n=6)

    A.小鼠海马IL-1β水平;B.小鼠海马IL-6水平;C.小鼠海马TNF-α水平*P<0.05,**P<0.01,与对照组比较;P<0.05,△△P<0.01,与模型组比较;P<0.05,▲▲P<0.01,与百合知母汤高剂量组比较。

    图  4  百合知母汤对小鼠海马NLRP1炎症小体相关蛋白NLRP1、ASC和caspase-1表达的影响(n=6)

    A.Western blot检测小鼠海马NLRP1、ASC和caspase-1表达条带图;B.NLRP1表达量统计结果;C.ASC表达量统计结果;D.caspase-1表达量统计结果*P<0.05,**P<0.01,与对照组比较;P<0.05,△△P<0.01,与模型组比较;P<0.05,▲▲P<0.01,与百合知母汤高剂量组比较。

    图  5  百合知母汤对小鼠海马BDNF表达的影响(n=6)

    A. Western blot检测BDNF在不同组小鼠海马中的表达;B. 免疫荧光检测小鼠海马中的BDNF表达*P<0.05,**P<0.01,与对照组比较;P<0.05,△△P<0.01,与模型组比较;P<0.05,▲▲P<0.01,与百合知母汤高剂量组比较。

    图  6  百合知母汤对小鼠海马TrkB和下游ERK/AKT/mTOR通路相关蛋白表达的影响(n=6)

    A.Western blot检测TrkB在不同组小鼠海马中的表达;B.Western blot检测p-ERK/ERK在不同组小鼠海马中的表达;C.Western blot检测p-AKT/AKT在不同组小鼠海马中的表达;D.Western blot检测p-mTOR/mTOR在不同组小鼠海马中的表达*P<0.05,**P<0.01,与对照组比较;P<0.05,△△P<0.01,与模型组比较;P<0.05,▲▲P<0.01,与百合知母汤高剂量组比较。

  • [1] PAOLI C, MISZTAK P, MAZZINI G, et al. DNA methylation in depression and depressive-like phenotype: biomarker or target of pharmacological intervention?[J]. Curr Neuropharmacol, 2022, 20(12):2267-2291. doi:  10.2174/1570159X20666220201084536
    [2] SIRASANGI M I, ROOHI T F, KRISHNA K L, et al. Dietary Co-supplements attenuate the chronic unpredictable mild stress-induced depression in mice[J]. Behav Brain Res, 2024, 459:114788. doi:  10.1016/j.bbr.2023.114788
    [3] BAREEQA S B, AHMED S I, SAMAR S S, et al. Prevalence of depression, anxiety and stress in China during COVID-19 pandemic: a systematic review with meta-analysis[J]. Int J Psychiatry Med, 2021, 56(4):210-227. doi:  10.1177/0091217420978005
    [4] HOFFART A, JOHNSON S U, EBRAHIMI O V. Loneliness and social distancing during the COVID-19 pandemic: risk factors and associations with psychopathology[J]. Front Psychiatry, 2020, 11:589127. doi:  10.3389/fpsyt.2020.589127
    [5] MILLER A H, MALETIC V, RAISON C L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression[J]. Biol Psychiatry, 2009, 65(9):732-741. doi:  10.1016/j.biopsych.2008.11.029
    [6] RETHORST C D, TOUPS M S, GREER T L, et al. Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder[J]. Mol Psychiatry, 2013, 18(10):1119-1124. doi:  10.1038/mp.2012.125
    [7] SHELTON R C, CLAIBORNE J, SIDORYK-WEGRZYNOWICZ M, et al. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression[J]. Mol Psychiatry, 2011, 16(7):751-762. doi:  10.1038/mp.2010.52
    [8] KÖHLER O, BENROS M E, KROGH J. Anti-inflammatory intervention in depression: reply[J]. JAMA Psychiatry, 2015, 72(5):512-513.
    [9] KOHLER O, KROGH J, MORS O, et al. Inflammation in depression and the potential for anti-inflammatory treatment[J]. Curr Neuropharmacol, 2016, 14(7):732-742. doi:  10.2174/1570159X14666151208113700
    [10] 贾竑晓, 李自艳. 基于伤寒方证思想的精神疾病辨治体系的构建[J]. 中华中医药杂志, 2022, 37(9):5055-5059.
    [11] 张辉, 王来法, 王雪琴, 等. 知母及其活性成分抗抑郁作用机制研究进展[J]. 现代中医药, 2023, 43(6):1-7.
    [12] 徐海玉, 司国民. 司国民运用越鞠丸合百合知母汤治疗郁证经验[J]. 辽宁中医药大学学报, 2022, 24(10):143-146.
    [13] DU H L, WANG K Q, SU L, et al. Metabonomic identification of the effects of the Zhimu-Baihe saponins on a chronic unpredictable mild stress-induced rat model of depression[J]. J Pharm Biomed Anal, 2016, 128:469-479. doi:  10.1016/j.jpba.2016.06.019
    [14] WANG H Q, LIU H T, WANG L, et al. Uncovering the active components, prospective targets, and molecular mechanism of Baihe Zhimu Decoction for treating depression using network pharmacology-based analysis[J]. J Ethnopharmacol, 2021, 281:114586. doi:  10.1016/j.jep.2021.114586
    [15] BI F F, BAI Y, ZHANG Y Y, et al. Ligustroflavone exerts neuroprotective activity through suppression of NLRP1 inflammasome in ischaemic stroke mice[J]. Exp Ther Med, 2022, 25(1):8. doi:  10.3892/etm.2022.11707
    [16] SONG A Q, GAO B, FAN J J, et al. NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice[J]. J Neuroinflammation, 2020, 17(1):1-13. doi:  10.1186/s12974-020-01848-8
    [17] SHARMA B R, KANNEGANTI T D. Inflammasome signaling in colorectal cancer[J]. Transl Res, 2023, 252:45-52. doi:  10.1016/j.trsl.2022.09.002
    [18] YANG T, NIE Z, SHU H F, et al. The role of BDNF on neural plasticity in depression[J]. Front Cell Neurosci, 2020, 14:82.
    [19] LI J Y, ZHANG M, PEI Y Y, et al. The total alkaloids of Sophora alopecuroides L. improve depression-like behavior in mice via BDNF-mediated AKT/mTOR signaling pathway[J]. J Ethnopharmacol, 2023, 316:116723. doi:  10.1016/j.jep.2023.116723
    [20] WANG B, JIN K L. Current perspectives on the link between neuroinflammation and neurogenesis[J]. Metab Brain Dis, 2015, 30(2):355-365. doi:  10.1007/s11011-014-9523-6
    [21] WANG Y C, LI W Z, WU Y, et al. Acid-sensing ion channel 1a contributes to the effect of extracellular acidosis on NLRP1 inflammasome activation in cortical neurons[J]. J Neuroinflammation, 2015, 12(1):246. doi:  10.1186/s12974-015-0465-7
    [22] DELLAROLE A, MORTON P, BRAMBILLA R, et al. Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity are dependent on TNFR1 signaling[J]. Brain Behav Immun, 2014, 41:65-81. doi:  10.1016/j.bbi.2014.04.003
    [23] LI M M, LI C L, YU H J, et al. Lentivirus-mediated interleukin-1β (IL-1β)knock-down in the hippocampus alleviates lipopolysaccharide (LPS)-induced memory deficits and anxiety- and depression-like behaviors in mice[J]. J Neuroinflammation, 2017, 14(1):1-12. doi:  10.1186/s12974-017-0964-9
    [24] NORMAN G J, KARELINA K, ZHANG N, et al. Stress and IL-1beta contribute to the development of depressive-like behavior following peripheral nerve injury[J]. Mol Psychiatry, 2010, 15(4):404-414. doi:  10.1038/mp.2009.91
    [25] SINGHAL G, JAEHNE E J, CORRIGAN F, et al. Inflammasomes in neuroinflammation and changes in brain function: a focused review[J]. Front Neurosci, 2014, 8:315.
    [26] HU W, ZHANG Y D, WU W N, et al. Chronic glucocorticoids exposure enhances neurodegeneration in the frontal cortex and hippocampus via NLRP-1 inflammasome activation in male mice[J]. Brain Behav Immun, 2016, 52:58-70. doi:  10.1016/j.bbi.2015.09.019
    [27] DAVIS B K, WEN H T, TING J P Y. The inflammasome NLRs in immunity, inflammation, and associated diseases[J]. Annu Rev Immunol, 2011, 29:707-735. doi:  10.1146/annurev-immunol-031210-101405
    [28] KOWIAŃSKI P, LIETZAU G, CZUBA E, et al. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity[J]. Cell Mol Neurobiol, 2018, 38(3):579-593. doi:  10.1007/s10571-017-0510-4
    [29] JIN Y, SUN L H, YANG W, et al. The role of BDNF in the neuroimmune axis regulation of mood disorders[J]. Front Neurol, 2019, 10:515. doi:  10.3389/fneur.2019.00515
    [30] TRIPP A, OH H, GUILLOUX J P, et al. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder[J]. Am J Psychiatry, 2012, 169(11):1194-1202. doi:  10.1176/appi.ajp.2012.12020248
    [31] CALABRESE F, ROSSETTI AC, RACAGNI G, et al. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity[J]. Front Cell Neurosci, 2014, 8(8):430.
    [32] MOLENDIJK M L, SPINHOVEN P, POLAK M, et al. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9 484)[J]. Mol Psychiatry, 2013, 19(7):791-800. doi:  10.1038/mp.2013.105
    [33] DUMAN R S, VOLETI B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents[J]. Trends Neurosci, 2012, 35(1):47-56. doi:  10.1016/j.tins.2011.11.004
    [34] FIRST M, GIL-AD I, TALER M, et al. The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression[J]. J Mol Neurosci, 2011, 45(2):246-255. doi:  10.1007/s12031-011-9515-5
    [35] YUAN P X, ZHOU R L, WANG Y, et al. Altered levels of extracellular signal-regulated kinase signaling proteins in postmortem frontal cortex of individuals with mood disorders and schizophrenia[J]. J Affect Disord, 2010, 124(1-2):164-169. doi:  10.1016/j.jad.2009.10.017
    [36] GOLDWATER D S, PAVLIDES C, HUNTER R G, et al. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery[J]. Neuroscience, 2009, 164(2):798-808. doi:  10.1016/j.neuroscience.2009.08.053
    [37] FUKUMOTO K, FOGAÇA M V, LIU R J, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2 R, 6 R)-hydroxynorketamine[J]. Proc Natl Acad Sci USA, 2019, 116(1):297-302. doi:  10.1073/pnas.1814709116
  • [1] 晁亮, 王辉, 沈淑琦, 游飘雪, 冀凯宏, 洪战英.  基于UHPLC-Q/TOF-MS代谢组学策略的葛根-知母药对防治阿尔茨海默病的药效与作用机制研究 . 药学实践与服务, 2025, 43(1): 30-40. doi: 10.12206/j.issn.2097-2024.202409035
    [2] 李想, 陆鸿远, 张明玉, 高欢, 姚东, 许子华.  米格列醇激活UCP1介导棕色脂肪改善冷暴露小鼠损伤的研究 . 药学实践与服务, 2025, 43(1): 1-5, 16. doi: 10.12206/j.issn.2097-2024.202404005
    [3] 王燕, 方铭, 宋红卫, 钟超, 徐峰, 周婷.  2021−2023年某院药品不良反应的特点分析 . 药学实践与服务, 2025, 43(4): 200-204. doi: 10.12206/j.issn.2097-2024.202404041
    [4] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [5] 曹金发, 钟玲, 何苗, 田泾.  炎症性肠病合并心房颤动患者的用药分析与监护 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202403004
    [6] 张俊丽, 李媛媛, 尹静, 杨鸿源, 白耀武.  咪达唑仑调节PINK1/PARKIN信号通路对缺血性脑卒中大鼠神经元损伤的影响 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202405024
    [7] 周文艳, 胡珊珊, 张万年, 庄春林.  Keap1-Nrf2通路在炎症疾病中的研究进展 . 药学实践与服务, 2025, 43(3): 97-108, 116. doi: 10.12206/j.issn.2097-2024.202405013
    [8] 张莲卿, 骆岩, 杨提, 姚佳晨, 李文艳.  基于FAERS数据库的艾塞那肽微球不良事件信号挖掘与研究 . 药学实践与服务, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
    [9] 唐淑慧, 凤美娟, 薛智霞, 鲁桂华.  帕博利珠单抗治疗所致免疫相关不良反应与中医体质的相关性研究 . 药学实践与服务, 2024, 42(5): 217-222. doi: 10.12206/j.issn.2097-2024.202311029
    [10] 陈金涛, 乔子婴, 马明华, 张若曦, 王振伟, 年华.  基于网络药理学和分子对接技术研究金芪清疏颗粒治疗社区获得性肺炎的潜在机制 . 药学实践与服务, 2024, 42(11): 471-478. doi: 10.12206/j.issn.2097-2024.202312014
  • 加载中
图(6)
计量
  • 文章访问数:  9486
  • HTML全文浏览量:  1748
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 修回日期:  2024-03-26
  • 网络出版日期:  2024-08-22
  • 刊出日期:  2024-08-25

基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制

doi: 10.12206/j.issn.2097-2024.202401033
    基金项目:  国家自然科学基金(82274254);广东省中医药局科研项目(20221220)
    作者简介:

    岳春华,硕士,讲师,Email:yuechunhua2004@126.com

    通讯作者: 王海桥,博士,副主任医师,研究方向:中医药物质基础与作用机制研究,Email:haiqiaodr@163.com
  • 中图分类号: R285[

摘要:   目的  基于NLRP1炎症小体研究百合知母汤抗抑郁的作用机制。  方法  构建慢性不可预测轻度应激(CUMS)诱导的抑郁症小鼠模型,将C57BL/6J小鼠随机分为对照组、模型组、百合知母汤低剂量组、百合知母汤高剂量组以及MDP组(NLRP1激活剂)。连续给药4周,考察小鼠行为学特征。ELISA检测小鼠海马炎症因子IL-1β、IL-6、TNF-α和神经递质5-HT、NE 、DA的水平。Western blot检测炎症小体相关蛋白NLRP1、ASC和caspase-1的表达,以及BDNF/TrkB和ERK/AKT/mTOR信号通路相关蛋白的变化,免疫荧光检测小鼠海马BDNF表达的变化。  结果  百合知母汤能抑制CUMS 小鼠海马NLRP1炎症小体的活化,改善小鼠行为特征,提高小鼠海马神经递质水平,降低炎症反应。 NLRP1激活剂MDP能逆转百合知母汤的上述作用。百合知母汤能上调下游分子BDNF、TrkB的表达水平,提高ERK、AKT和mTOR蛋白磷酸化水平,而MDP能逆转上述作用。  结论  百合知母汤通过抑制NLRP1炎症小体活化,抑制CUMS抑郁症小鼠海马神经炎症反应,进而激活BDNF/TrkB信号通路和ERK/AKT/mTOR信号通路来改善CUMS小鼠的抑郁样行为。

English Abstract

丁杰, 倪喆鑫, 程雯, 俞超芹. 基于网络药理学探讨活血化瘀药治疗子宫内膜异位症的作用机制[J]. 药学实践与服务, 2020, 38(6): 516-522. doi: 10.12206/j.issn.1006-0111.202006002
引用本文: 岳春华, 贲永光, 王海桥. 基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制[J]. 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
DING Jie, NI Zhexin, CHEN Wen, YU Chaoqin. A network pharmacology approach to explore mechanisms of activating blood circulation and removing blood stasis herbs in the treatment of endometriosis[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 516-522. doi: 10.12206/j.issn.1006-0111.202006002
Citation: YUE Chunhua, BEN Yongguang, WANG Haiqiao. Exploration of the antidepressant mechanism of Baihe Zhimu decoction based on NLRP1 inflammasome[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
  • 抑郁症是一种使人衰弱的精神障碍,其特征是持续情绪低落,对几乎所有活动都失去兴趣或愉悦感,并与疲劳、睡眠障碍、焦虑和神经认知障碍症状有关[1],是全球残疾的第三大原因。抑郁症患者工作低下、具有较高的自杀倾向,严重影响患者的生活,造成沉重的社会经济负担[2]。由于疫情的影响,社会心理健康问题正在急剧增加[3,4]。目前,临床上使用的大多数抗抑郁药都具有耐药性,并伴有各种不良反应。因此,寻找安全性更高、不良反应更少的抑郁症治疗方法具有重要意义。既往研究表明,炎症反应在抑郁症中起着至关重要的作用[5]。抑郁症患者血液及额叶皮层中的促炎细胞因子增加[6,7]。抗炎治疗可以产生抗抑郁作用,而抗抑郁药可以减弱抑郁症中促炎细胞因子的表达[8,9]。因此,抑制神经炎症是治疗抑郁症的重要方向。

    百合知母汤是中国东汉张仲景医典《金匮要略》中记载的一种经典中药方剂,用于治疗“百合病”[10]。中医“百合病”被认为与现代抑郁症的表现具有较高的相似性[11]。目前,百合知母汤在中医临床上被广泛用于治疗抑郁症[12]。药理学研究表明,百合知母汤在动物模型中具有显著的抗抑郁作用[13]。然而,百合知母汤治疗抑郁症的作用机制并未完全明了。前期研究发现百合知母汤能够通过抑制CUMS抑郁模型小鼠的神经炎症,降低海马IL-1β、 IL-6和TNF-α等促炎细胞因子的表达,来发挥抗抑郁作用[14]。鉴于NLRP1炎症小体在炎症反应过程中的重要的作用[15],且最近研究发现NLRP1炎症小体在抑郁症的发展过程中扮演重用角色[16]。该研究基于NLRP1炎症小体的活化,对百合知母汤的抗抑郁作用进行进一步的探索。

    • 取百合药材400 g、知母药材200 g,浸泡0.5 h后,加10倍量水,煎煮两次,每次2 h,煎液过滤后,将两次滤液混合并浓缩至600 ml。

    • Muramyl dipeptide(MDP)购自Sigma-Aldrich公司;IL-1β、IL-6、TNF-α、5-HT、NE、DA试剂盒和ELISA试剂盒均购自美国R&D公司;BSA购自美国Sigma-Aldric公司;去离子水采用Milli-Q纯水机制备(Millipore公司);NLRP1、ASC、caspase-1、BDNF、TrkB、ERK、AKT、mTOR、β-actin等抗体均购自 Cell Signaling公司; BCA蛋白测定试剂盒与RIPA裂解液购自碧云天公司。

    • 雄性C57BL/6J小鼠8周龄,体质量22 g~25 g,购自浙江维通利华实验动物技术有限公司,生产许可证: SCXK(浙)[2019-0001]。所有小鼠均在标准条件下饲养(12 h光/暗循环,温度:22 ℃~24 ℃,湿度:55%±10%),在整个实验过程小鼠自由摄取食物和水。实验前对所有小鼠进行适应性喂养1周。该研究经上海交通大学医学院附属仁济医院伦理委员会审批通过,实验操作严格按照动物福利和伦理原则进行。

    • CUMS造模过程参考前期研究,通过给予小鼠不同刺激构建抑郁症模型小鼠,主要过程如下:①禁食24 h;②禁水 24 h;③空瓶刺激 1 h;④昼夜照明 24 h;⑤笼子倾斜45 ,24 h;⑥潮湿垫料24 h;⑦摇笼30 min;⑧夹尾1 min;⑨冰水游泳5 min。小鼠每天接受不同的应激,持续5周。

    • 根据前期研究[14],百合知母汤给药采用6 g生药量/kg(相当于百合4 g,知母2 g)和12 g生药量/kg(相当于百合8 g,知母4 g)两个剂量。将30只雄性C57BL/6J小鼠随机分为5组(n=6):对照组、模型组、百合知母汤低剂量组(百合知母汤,6 g/kg,i.g.)、百合知母汤高剂量组(百合知母汤,12 g/kg,i.g.)、百合知母汤+MDP组(百合知母汤,12 g/kg,i.g.;MDP,脑立体定位注射)。除对照组外,各组小鼠接受CUMS刺激,持续5周,对照组被放置在不受干扰的笼子里。从第6周开始,给药组按剂量通过灌胃给予百合知母汤浓缩液,1次/d,持续4周。模型组小鼠给予等量的蒸馏水。为考察NLRP1在百合知母汤抗抑郁过程中的重要作用,设立百合知母汤+MDP组,给药前接受脑立体定位注射NLRP1激活剂MDP,过程如下:经异氟烷麻醉的小鼠俯卧位固定于脑立体定位仪上,将眼中线靠后 2~3 cm 处用 75% 乙醇消毒、剪皮露出头骨,用注射器针头将头骨表层骨膜轻挑剥离,前后囟在同一水平,暴露前囟(冠状缝)。选择小鼠双侧海马CA1 区为注射位置,进针 1.6 mm 至海马区,注射MDP,剂量5 mg/kg,结束后使用可吸收缝合线进行无菌缝合。

    • 每只小鼠置于单独的笼子里孤养,放置2瓶含有1%蔗糖溶液,进行24 h的适应。然后其中一瓶蔗糖溶液用蒸馏水代替,进行另一次24 h的适应。随后禁水、禁食 24 h。最后,放置2个预先称重的含有1%蔗糖溶液或蒸馏水的瓶子。3 h后,记录蔗糖溶液消耗量和水消耗量,计算蔗糖偏好指数。

    • 用胶带固定每只小鼠的尾部,头部向下,离台面50 cm。在实验过程中,将小鼠隔开以避免互相干扰。记录6 min内小鼠的累计不动时间。

    • 在室温下,将每只小鼠分别放入直径12 cm的塑料桶中,桶中装满25 cm深的水。在正式实验前24 h,进行15 min的预游泳适应训练。记录5 min内小鼠的累计漂浮不动时间。

    • 将小鼠单独放置在敞箱装置中,给予6 min的自由探索时间,使其适应,然后记录其4 min内穿越的格子数。

    • 各组小鼠用10%(w/v)水合氯醛深度麻醉。迅速取脑,置于冰上。分离海马,液氮预冷冻,于−80 ℃下储存,分析用。检测时,取海马,加入磷酸盐缓冲液(PBS:137 nmol/L NaCl、2.7 nmol/L KCl、10 nmol/L Na2HPO4、1.8 nmol/L KH2PO4),于冰上匀浆,4 ℃下以12000 r/min,离心10 min,收集上清液。使用ELISA试剂盒检测小鼠海马中的炎症因子水平。IL-1β、IL-6、TNF-α、5-HT、NE 和DA的水平,操作均按照说明书进行。

    • 迅速取小鼠大脑放置冰上,分离海马,用液氮预冷冻,并在−80 ℃下储存。使用冷冻切片机将海马组织切成5 μm的切片。切片用PBS缓冲液洗涤2次。然后用含0.5% Triton X-100的PBS 缓冲液透化,并用0.5% BSA固定,加入一抗,4℃,孵育过夜。加入荧光素标记的二抗孵育(室温,1 h)。通过荧光显微镜对切片成像。

    • 取小鼠海马组织,加入含1%蛋白酶抑制剂的RIPA裂解液,于冰上研磨,在4℃下,12000 r/min,离心10 min。收集上清液,用BCA蛋白浓度测定试剂盒测定蛋白浓度后,用10%十二烷基硫酸钠/聚丙烯酰胺凝胶电泳(SDS-PAGE)分离总蛋白,分离后转移到聚偏氟乙烯(PVDF)膜上,用5%牛血清白蛋白(BSA)在室温下封闭2 h,随后孵上一抗,4 ℃,孵育过夜。过夜后用TBST洗涤3次,每次洗涤10 min。然后与辣根过氧化物酶标记的二抗孵育1 h,TBST洗涤3次,每次10 min。最后使用ECL显影液进行显影。

    • 使用GraphPad Prism 8.0(GraphPad Software,USA)进行统计分析。数据以平均值±标准差(SD)表示。使用单向方差分析和Tukey HSD检验评估各组之间的差异。P<0.05的显著性水平被认为是统计学显著性的指示。

    • 为了评估百合知母汤的药理作用,首先进行糖水消耗实验、悬尾实验、强迫游泳实验和旷场实验,观察百合知母汤对CUMS小鼠行为学的影响。如图1所示,与对照组相比,CUMS模型组在糖水消耗实验中的蔗糖消耗百分比和旷场实验中的格子穿越数显著减少(P<0.01,P<0.05),而悬尾实验和强迫游泳实验的不动时间显著增加(P<0.01)。而百合知母汤能显著提高这些参数(P<0.05,P<0.01),并呈明显的剂量依赖性。表明百合知母汤能改善抑郁小鼠的行为学特征。值得注意的是,NLRP1炎症小体激活剂MDP能够显著的逆转百合知母汤对抑郁症小鼠行为学的作用(P<0.05,P<0.01),提示百合知母汤通过抑制NLRP1炎症小体活化来发挥抗抑郁作用。

      图  1  百合知母汤对CUMS小鼠行为学影响(n=6)

    • 中枢神经系统单胺类神经递质水平降低与抑郁症的产生具有密切关系。图2结果表明,CUMS模型组的DA、5-HT、NE水平与对照组相比显著降低(P<0.05,P<0.01),而CUMS+BZD6组和CUMS+BZD12组上述神经递质的含量明显高于模型组(P<0.05,P<0.01)。NLRP1激活能够显著的逆转百合知母汤对上述神经递质的影响(P<0.05,P<0.01)。

      图  2  百合知母汤对CUMS小鼠海马单胺类神经递质DA、5-HT、NE水平的影响(n=6)

    • 越来越多的研究表明炎症在抑郁症的病因中起着关键作用。因此,用ELISA法测定了几种关键的促炎细胞因子。如图3所示,与对照组相比,CUMS模型组小鼠海马中的IL-1β、IL-6和TNF-α水平显著升高(P<0.01),而百合知母汤显著抑制了由CUMS引起的这些炎症因子的升高(P<0.05,P<0.01),NLRP1激活剂MDP能够显著的逆转百合知母汤对上述神经递质的影响(P<0.01)。

      图  3  百合知母汤对抑郁症相关炎症因子IL-1β、IL-6和TNF-α的影响(n=6)

    • NLRP1炎症小体在神经炎症相关疾病中扮演重用角色,NLRP1炎症小体的活化能促进各种炎症因子的产生[17]。因此,采用Western blot检测NLRP1炎症小体的活化。图4结果显示,CUSM刺激显著增加了NLRP1、ASC和caspase-1的蛋白表达(P<0.01),表明NLRP1炎症小体在CUSM抑郁模型中被激活。而百合知母汤显著抑制了由CUMS引起NLRP1、ASC和caspase-1表达升高(P<0.05)。表明百合知母汤能抑制NLRP1炎症小体的激活。值得注意的是,NLRP1激活剂MDP能够显著逆转百合知母汤对上述蛋白表达的抑制作用(P<0.05,P<0.01),进一步表明百合知母汤通过抑制NLRP1炎症小体活化来发挥抗神经炎症的作用。

      图  4  百合知母汤对小鼠海马NLRP1炎症小体相关蛋白NLRP1、ASC和caspase-1表达的影响(n=6)

    • 由于BDNF与抑郁症的发生发展密切相关[18],通过Western blot检测BDNF在不同组小鼠海马中的表达(图5A)。与对照组相比,CUMS模型组小鼠海马表达BDNF水平显著降低(P<0.01),而百合知母汤以量效依赖方式显著上调BDNF表达水平(P<0.01)。MDP能够显著阻断百合知母汤对BDNF表达水平的作用(P<0.01)。

      图  5  百合知母汤对小鼠海马BDNF表达的影响(n=6)

      随后,用免疫荧光对小鼠海马的BDNF表达进行检测(图5B)。结果发现,与对照组相比,CUMS模型组小鼠海马表达BDNF水平显著降低,而百合知母汤治疗组BDNF表达水平显著上调。NLRP1激活剂MDP能够显著的逆转百合知母汤对BDNF表达水平表达的上调作用。

    • BDNF能够与TrkB结合,从而激活AKT/mTOR级联反应,最终通过调节突触蛋白合成和细胞骨架发育来增强树突的复杂性[19]。因此,继续探讨百合知母汤对TrkB及下游ERK/AKT/mTOR通路关键蛋白表达的影响。百合知母汤对小鼠海马TrkB表达的影响如图6A所示。与对照组相比CUMS模型组小鼠海马TrkB的表达显著降低(P<0.01),百合知母汤给药组小鼠海马TrkB的表达水平显著升高(P<0.01)。而MDP能够逆转百合知母汤对TrkB表达水平的上调作用(P<0.05)。

      图  6  百合知母汤对小鼠海马TrkB和下游ERK/AKT/mTOR通路相关蛋白表达的影响(n=6)

      图6B-D所示,与对照组相比,CUMS组小鼠海马ERK、AKT和mTOR的磷酸化水平显著降低,而百合知母汤给药可显著促进抑郁小鼠ERK、AKT和mTOR的磷酸化水平(P<0.05,P<0.01)。NLRP1激活剂MDP能够显著的逆转百合知母汤对上述蛋白磷酸化水平的促进作用(P<0.05,P<0.01)。

    • 神经炎症是一种对组织损伤的先天免疫反应,在许多中枢神经系统疾病中发挥着重要作用,被认为与抑郁症的发生发展息息相关[20, 21]。大量证据表明,海马体的神经炎症对抑郁和焦虑障碍的发展至关重要。神经性疼痛诱导的抑郁样行为的发作与海马TNF及其受体TNFR1水平的增加相关[22]。敲减海马中IL-1β可以减轻LPS诱导的小鼠焦虑和抑郁样行为[23]。而给予IL-1受体拮抗剂可以改善神经性疼痛对抑郁样行为的影响[24]。以上研究结果表明,海马神经炎症在抑郁症的病理过程中起着重要作用。

      炎症小体是先天免疫反应的关键成分,据报道与炎症相关神经系统疾病的机制有关[25]。NLRP1炎症小体由受体蛋白NLRP1、衔接蛋白ASC和效应蛋白caspase-1组成,在神经炎症相关疾病中起重要作用。NLRP1可被多种刺激激活,包括炭疽杆菌致死毒素、弓形虫、胞壁酰二肽、宿主细胞内ATP耗竭等[21]。NLRP1炎症小体的激活导致Caspase-1的直接成熟,随后诱导促炎细胞因子(如IL-1β和IL-18)的产生,从而触发神经炎症反应[26]。据报道,NLRP1炎症小体驱动的炎症途径与许多神经系统疾病有关,如脑损伤、神经退行性疾病、伤害感受和癫痫[27]

      百合知母汤抗抑郁作用及其机制既往已有研究[13,14],然而基于NLRP1炎症小体的活化对其抗抑郁机制的研究未见报道。该研究旨在通过探讨百合知母汤对NLRP1炎症小体的活化作用来阐释百合知母汤抗抑郁的作用机制。结果显示,百合知母汤抑制了CUMS抑郁症小鼠海马NLRP1、ASC和Caspase-1的表达升高。表明百合知母汤能够抑制NLRP1炎症小体的活化。为了证实百合知母汤通过NLRP1/Caspase-1通路发挥抗抑郁作用,采用NLRP1激活剂MDP注射抑郁症小鼠。结果发现,MDP逆转了百合知母汤对CUMS小鼠的抑郁样行为和神经炎症的改善作用。因此,百合知母汤可能通过抑制NLRP1炎症小体的活化,以调节抑郁症小鼠的神经炎症反应,来发挥抗抑郁作用。

      BDNF属于神经营养因子家族,在神经的生成、发展和功能维持中起着至关重要的作用[28]。大量研究表明,BDNF与抑郁症的病理生理学和抗抑郁疗效有关[29]。研究发现,抑郁症动物和患者以及抑郁症受试者的尸检样本中,大脑BDNF水平降低[28, 30]。此外,给予LPS或促炎细胞因子可显著降低海马和大脑皮层的BDNF水平[31]。这表明炎症会影响BDNF的表达。抗抑郁药物治疗可以有效改善抑郁症引起的BDNF含量的降低,进一步促进神经发生,增强神经可塑性,并起到抗抑郁的作用[32]。研究发现,BDNF的释放以及与TrkB的结合能够触发多种下游信号级联,包括RAS/MAPK通路和PI3K/AKT通路,这些信号通路与抑郁症的发生发展密切相关[33]。慢性应激可抑制ERK信号的传递,抗抑郁治疗则可逆转这种抑制[34],表明ERK信号阻断会导致抑郁和焦虑行为。这与抑郁症患者的尸检报告一致[35]。此外,慢性应激还会导致内侧前额叶皮层锥体神经元的树突形态发生变化,具体表现为树突回缩和树突棘丢失[36]。而抗抑郁治疗可以通过AKT/mTOR途径逆转这一现象,并有效改善小鼠的抑郁样症状[37]。上述研究表明,BDNF与TrkB结合,进而通过ERK和AKT/mTOR信号通路引发的信号级联反应可能是抗抑郁药物发挥治疗作用的关键分子机制。本研究结果显示,百合知母汤能显著促进抑郁症小鼠海马BDNF和TrkB的表达水平,表明百合知母汤能上调BDNF/TrkB信号通路。同时,百合知母汤能显著促进RK、AKT和mTOR的磷酸化水平。表明百合知母汤能同时激活下游的ERK/AKT/mTOR信号通路。而采用NLRP1激活剂MDP活化NLRP1炎症小体后,百合知母汤对BDNF/TrkB信号通路和ERK/AKT/mTOR信号通路上调作用被显著逆转,表明百合知母汤通过抑制NLRP1炎症小体活化,激活BDNF/TrkB信号通路和ERK/AKT/mTOR信号通路。

      综上所述,百合知母汤通过抑制NLRP1炎症小体活化,抑制CUMS抑郁症小鼠海马的神经炎症反应,进而激活BDNF/TrkB信号通路和ERK/AKT/mTOR信号通路来改善CUMS小鼠的抑郁样行为。

参考文献 (37)

目录

/

返回文章
返回