留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

ANXA3基因及蛋白的研究进展

冯婷婷 张景翔 王彦 许维恒 张俊平

冯婷婷, 张景翔, 王彦, 许维恒, 张俊平. ANXA3基因及蛋白的研究进展[J]. 药学实践与服务, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
引用本文: 冯婷婷, 张景翔, 王彦, 许维恒, 张俊平. ANXA3基因及蛋白的研究进展[J]. 药学实践与服务, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
FENG Tingting, ZHANG Jingxiang, WANG Yan, XU Weiheng, ZHANG Junping. Research progress on ANXA3 gene and protein[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
Citation: FENG Tingting, ZHANG Jingxiang, WANG Yan, XU Weiheng, ZHANG Junping. Research progress on ANXA3 gene and protein[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023

ANXA3基因及蛋白的研究进展

doi: 10.12206/j.issn.2097-2024.202309023
详细信息
    作者简介:

    冯婷婷,硕士研究生,研究方向:药物活性评价与技术,Tel:17836215079,Email:fengting202202@163.com

    通讯作者: 张俊平,博士生导师,研究方向:药物活性评价与技术,Tel:13916104193,Email:jpzhang@163.com

Research progress on ANXA3 gene and protein

  • 摘要: 膜联蛋白A3(ANXA3)属于膜联蛋白家族成员,具有36 kDa和33 kDa两个亚型,其基因位于人第4号染色体上。ANXA3在人体骨髓、肺、胎盘、前列腺和甲状腺等组织中表达,与胞吐、血管生成、脂肪细胞成熟和白细胞迁移等生物学过程密切相关。研究发现,ANXA3在癌症、心血管疾病和炎症等疾病中异常表达,可以调控JNK、NF-κB、PI3K/Akt等多条信号通路,可能成为相关疾病的治疗靶点。该文主要就ANXA3的结构、功能、与疾病的联系以及相关机制进行综述,以期为ANXA3的相关研究提供借鉴。
  • 膜联蛋白A3 (ANXA3),又名脂皮质素Ⅲ,胎盘抗凝蛋白Ⅲ,属于膜联蛋白家族的成员。研究发现,ANXA3可以将肌醇1,2-环磷酸盐水解为肌醇1-磷酸,也可以抑制磷脂酶A2(PLA2)的活性。截至目前,关于ANXA3基因和蛋白的结构、功能及相关疾病已有许多文献报道,本文主要就这些研究进展进行综述,为ANXA3进一步深入研究提供参考。

    人ANXA3基因(ENSG00000138772)位于第4号染色体上,基因全长58678 bp;小鼠ANXA3基因(ENSMUSG00000029484)位于第5号染色体上,基因全长52584 bp;大鼠ANXA3基因(ENSRNOG00000002045)位于第14号染色体上,基因全长54010 bp。其中人和小鼠的ANXA3基因都具有14个外显子,而大鼠的ANXA3基因具有16个外显子。

    ANXA3蛋白具有36 kDa 和33 kDa 两种亚型,分别由323个氨基酸和284个氨基酸构成。ANXA3与膜联蛋白家族的其他成员,尤其是 ANXA5,具有很高程度的结构同源性,但其N端序列较ANXA5长。ANXA3的C末端核心由4个保守的膜联蛋白重复结构域(Ⅰ-Ⅳ)构成,每个结构域包含了由70个氨基酸残基组成的5个α-螺旋(A-E)。ANXA3的N末端高度可变,由20个氨基酸残基组成,该结构域对于ANXA3蛋白质稳定性以及ANXA3与细胞内钙离子和磷脂的相互作用至关重要,其中5位色氨酸参与了ANXA3对膜通透性的调节。

    通过查阅NCBI-Gene数据库(包含了95位个体的27种不同组织的RNA测序数据),结果发现ANXA3在人体骨髓和肺中的表达水平最高,其次是胎盘、前列腺和甲状腺等。而小鼠ENCODE转录组数据库显示,ANXA3在膀胱、肺和胎盘中表达较多。也有文献报道,ANXA3几乎在所有髓系细胞中均表达。此外,大量研究报道ANXA3与癌症的发生发展联系密切,其在多种肿瘤细胞或组织中表达,包括乳腺癌[1]、肝癌[2]、结肠癌[3]、胰腺癌[4]和骨癌[5]等。

    膜联蛋白家族成员的功能主要包括离子通道活性调节、膜-细胞骨架锚定、膜运输以及抗炎和抗凝血活性等。作为膜联蛋白家族的一员,ANXA3蛋白的功能主要有:①ANXA3与胞吐过程有关。②ANXA3具有血管生成活性。在人脐静脉内皮细胞中过表达ANXA3,可以激活缺氧诱导因子-1(HIF-1),增加血管内皮生长因子(VEGF)的表达,促进人脐静脉内皮细胞迁移和管状形成。③ 多项研究发现,ANXA3能够介导白细胞迁移和炎症反应,在氧化应激、免疫炎症反应中扮演重要的角色[6]。④ ANXA3可能具有抑制PLA2活性的作用,但该研究结果目前仍存在争议[7]。⑤ANXA3在脂肪细胞的成熟中发挥重要作用。ANXA3在脂肪前体细胞中表达较高,ANXA3下调可以通过过氧化物酶体增殖物激活受体 γ2 (PPARγ2)促使脂肪前体细胞分化为含脂滴的脂肪细胞。体内实验也证实,ANXA3与仓鼠肝脏组织中的脂肪含量正相关[8]

    目前,关于ANXA3的研究多数集中在肿瘤领域。研究报道,ANXA3与乳腺癌、肝癌、肺癌和结肠癌的关系密切,其作用机制涉及肿瘤细胞的增殖、凋亡、侵袭和迁移以及肿瘤血管生成等。

    Zhou等[9-10]对来自158名乳腺癌患者的样本分析发现,ANXA3 mRNA和蛋白的表达水平与乳腺癌细胞的增殖速度正相关。Kim等[11]对来自30名原发性乳腺癌患者的癌症组织以及MDA-MB 231细胞系进行研究,结果发现ANXA3低表达可以抑制肿瘤细胞的增殖和集落形成。机制研究发现,ANXA3沉默可以下调多种细胞周期蛋白依赖性激酶(CDK),诱导细胞周期停滞,抑制癌细胞增殖[11]。在肝癌中,ANXA3能够激活JNK信号通路,促进肝癌细胞增殖。Pan等[12]研究证实,ANXA3过表达会增强肝癌细胞增殖和集落形成能力,而沉默ANXA3则明显抑制这些功能。Tong等[2]研究了6种细胞系和肝细胞癌(HCC)肿瘤组织,结果发现在耐药的肝癌细胞中过表达ANXA3可以抑制依赖PKCδ/p38途径的细胞凋亡。在肺癌中,Wang等[13]研究证实,肿瘤微环境中癌症相关成纤维细胞(CAF)分泌的高水平ANXA3能够激活JNK/Survivin信号通路,促进肺癌细胞逃逸顺铂诱导的细胞凋亡。而沉默ANXA3会通过抑制p38及JNK信号传导,促进癌细胞凋亡[14]。在结肠癌中,Du等[15]研究发现,ANXA3在低氧诱导条件下呈HIF-1α依赖性表达,促进结肠癌细胞的生长。研究发现ANXA3下调会明显抑制结肠癌细胞的增殖并促进结肠癌细胞凋亡,该作用可能与p53和Bcl-2的表达有关[3]。此外,有研究发现ANXA3能够促进食管癌细胞增殖,其作用机制与NF-κB途径相关[16]

    ANXA3过表达会明显诱导乳腺癌、胃癌、胰腺癌和结直肠癌细胞的侵袭和迁移,其分子机制与增强上皮向间充质的转化(EMT)有关。研究发现靶向降解ANXA3或shRNA沉默ANXA3可以抑制Wnt/β-catenin信号通路,降低三阴性乳腺癌细胞的侵袭和迁移能力[17-18]。Wang等[19]研究发现,胃癌细胞ANXA3过表达后,间充质标志物Vimentin和β-catenin的表达增加,上皮标志物E-钙粘蛋白(E-cadherin)的表达降低,EMT相关的转录因子上调;而ANXA3沉默则与之相反,进而明显抑制胃癌细胞的侵袭和迁移。在胰腺癌中,ANXA3沉默会降低N-cadherin和Vimentin的蛋白表达水平,增加E-cadherin表达,其作用机制是通过PI3K/Akt信号通路抑制EMT和胰腺癌细胞的侵袭及迁移[4]。此外,在结直肠癌中,下调ANXA3会降低HCT116和SW480细胞的侵袭及迁移,该作用可能与ERK和JNK信号通路的抑制有关[20]。此外,ANXA3还可以促进黑色素瘤细胞的生长和迁移,该作用与HIF-1α/VEGF信号通路有关[21]。这些研究表明,Wnt、MAPK、PI3K/Akt及HIF-1α/VEGF等信号传导途径与ANXA3诱导的细胞侵袭和迁移联系密切。

    血管生成是肿瘤获取营养物质和应对肿瘤微环境缺氧状态的重要手段。研究发现,ANXA3沉默后,接受三阴性乳腺癌细胞异种移植的小鼠肿瘤中血管数量明显减少。在胰腺癌中,Wan等[4]研究证实,ANXA3沉默会抑制PI3K/Akt信号通路,降低血管内皮生长因子C(VEGF-C)、血管内皮生长因子D(VEGF-D)和血管内皮生长因子受体3(VEGFR-3)的表达水平,而VEGFR-3的表达可能与胰腺癌中的淋巴管生成有关。Guo等[22]研究发现33 kDa ANXA3低表达能够抑制PI3K/Akt-HIF信号通路进而降低HepG2细胞的血管生成能力。在结肠癌中,Du等[15]研究发现ANXA3能够通过血管生成促进肿瘤的生长,该作用可能与ANXA3呈HIF-1α依赖性表达有关。罗文等[23]发现,在结直肠癌患者的外周血中ANXA3和HIF-1α表达异常,二者与结直肠癌铂类耐药联系密切。总之,ANXA3促进肿瘤血管生成的机制可能涉及以下3个方面:①ANXA3可以诱导VEGFR-3的表达[4];②ANXA3可以激活PI3K/Akt通路,从而促进血管的生成[424];③ANXA3表达与HIF-1α相关[15]

    ANXA3在癌症治疗中具有潜在临床应用价值。例如,Li等[25]通过对379例卵巢癌患者的临床数据和基因表达谱分析发现, ANXA3过表达可以促进滤泡辅助性T细胞(TFH)和Th 17淋巴细胞的浸润,诱导更强的T细胞抗肿瘤细胞免疫。Pan等[26]的研究发现,ANXA3过表达能够升高HIF-1α水平,显著增加CD133、Notch1、Notch2的表达,上升CD133+细胞的比例并且增加其致瘤性,提示ANXA3可能通过HIF-1α/Notch信号通路调节肝癌肿瘤干细胞/肿瘤初始细胞(CSCs/CIC)的活性。Zhu等[27]研究证实ANXA3能够通过诱导肝癌细胞趋化因子的释放增加浸润性中性粒细胞/淋巴细胞的比率,从而介导肝细胞癌免疫微环境的重塑。此外,研究还发现内源性ANXA3可以通过JNK通路参与骨肉瘤干细胞的形成[5],下调ANXA3会抑制HIF-1α/VEGF通路,并且通过调节神经元兴奋性减轻骨癌疼痛[28]

    总之,ANXA3的异常表达在癌症的发生发展中发挥重要作用,能够刺激肿瘤细胞增殖,促进细胞侵袭和转移,诱导血管生成,同时与癌细胞的耐药性紧密联系,因此,ANXA3可能成为癌症治疗潜在的治疗靶点,具有重要价值。

    有研究报道,膜联蛋白家族成员在心血管领域发挥着较为重要的作用,能够调节血管内皮细胞的自噬水平,保护心肌细胞免受缺血再灌注损伤,抑制血管炎症反应,减少动脉粥样硬化的发生等[7]。ANXA3作为膜联蛋白家族的一员,与心血管系统细胞凋亡、氧化应激和心血管炎症同样存在密切的关系。首先,ANXA3可能通过促进心血管系统细胞凋亡介导心血管损伤。研究发现,大鼠在急性心肌梗死后,心肌组织中ANXA3的基因和蛋白表达均显著上调。PI3K/Akt信号通路的激活可以发挥抗凋亡作用,有利于心肌细胞的存活。研究表明ANXA3沉默可以激活PI3K/Akt信号通路促进急性心肌梗死的大鼠心肌损伤修复及愈合[29]。其次,ANXA3与心血管事件中的氧化应激存在关系。研究发现,在过氧化氢诱导的血管内皮细胞氧化应激反应中,ANXA3蛋白具有抗氧化作用,这可能与其抑制PLA2的活性有关[30]。此外,如前文所述,ANXA3具有促进血管生成的功能,这可能与血管系统疾病存在关联。有文献报道,虽然ANXA3与小鼠胚胎血管的形成没有必然联系,但其可以影响小鼠视网膜中的静脉-动脉对接,当ANXA3敲除后,小鼠视网膜会出现明显的动脉-静脉错位的情况,其类似于在视网膜分支静脉阻塞(BRVO)患者中观察到的动静脉交叉[31]

    除心血管系统外,ANXA3还与炎症密切相关。在吗啡镇痛耐受的研究中发现,ANXA3沉默后,小鼠TNF-α、IL-1β和IL-6等炎症因子的表达明显降低,可能与ERK和JNK的活性改变有关[32]。在体外实验中,虽然ANXA3的表达水平不会随着LPS或某些致病性病原体来源的炎症因子的加入而增加,但在加入干扰素家族蛋白,尤其是IFN-β后,ANXA3的表达水平会显著上调[33]。ANXA3能够以钙离子依赖的方式促进中性粒细胞的颗粒聚集,参与颗粒-颗粒和颗粒-吞噬体的融合,这些机制可能在炎症反应中发挥作用。研究发现,川崎病患者的中性粒细胞数量和血清中ANXA3的表达水平存在异常,治疗后均显著下降,表明二者可能存在潜在联系,提示ANXA3可能与该病的过度炎症和免疫异常有关[34]

    除此之外,研究发现ANXA3可能与丙肝、骨代谢、脑缺血损伤等存在联系。ANXA3能够被募集到丙肝感染细胞的脂滴组分中,是丙肝病毒在细胞间传染与传播所必需的。细胞中ANXA3蛋白水平虽然不会影响丙肝病毒RNA的复制,但会显著影响病毒颗粒的产生,是丙肝病毒成熟和释放的重要调节因子[35]。不仅如此,ANXA3还参与骨骼相关疾病的发展进程。有研究报道,ANXA3能够激活NF-κB信号通路,加速小鼠破骨细胞的形成和分化,从而影响小鼠骨代谢过程[36]。除此之外,研究发现原发性抗磷脂综合征(PAPS)患者白细胞中ANXA3的mRNA水平明显升高,表明ANXA3异常表达与动静脉血栓形成有关,尤其与该病进程中的止血途径联系密切[37]。Min等[38]研究证实,ANXA3下调能够激活PI3K/Akt信号通路对小鼠脑缺血损伤产生保护作用。

    膜联蛋白家族与多种疾病的发生发展密切相关,而ANXA3作为该家族的一员,在胞吐、血管生成、脂肪细胞成熟和白细胞迁移等过程中发挥重要作用。目前,多项研究证实ANXA3与肿瘤的发生发展存在紧密联系,能够促进肿瘤细胞增殖和侵袭,抑制肿瘤细胞凋亡,促进肿瘤血管形成等。除此之外,ANXA3还与心血管系统疾病、炎症、新冠肺炎和丙肝等其他疾病密切相关,过程涉及多种信号转导通路。目前关于ANXA3的研究较多集中在肿瘤领域,ANXA3在心血管疾病、炎症、骨骼疾病及新冠肺炎等领域的文献报道较少,其具体作用机制更是鲜有文献报道。因此,进一步深入研究ANXA3在上述疾病以及其他未知领域中的作用及机制具有重要意义。同时,围绕ANXA3的功能进行深入研究,探索其作为生物标记物进行疾病早期诊断或作为疾病的治疗靶点进行疾病干预等的可能性,将为相关疾病的治疗提供更多线索。

  • [1] OZTURK A. Role of annexin A3 in breast cancer(Review)[J]. Mol Clin Oncol, 2022, 16(6):111. doi:  10.3892/mco.2022.2544
    [2] TONG M, CHE N, ZHOU L, et al. Efficacy of annexin A3 blockade in sensitizing hepatocellular carcinoma to sorafenib and regorafenib[J]. J Hepatol, 2018, 69(4):826-839. doi:  10.1016/j.jhep.2018.05.034
    [3] 孙佳, 肖海娟, 闫克敏, 等. 下调Annexin A3基因对结肠癌HCT116/L-OHP细胞生物学特性影响[J]. 中华肿瘤防治杂志, 2019, 26(11):771-777.
    [4] WAN X H, GUO D R, ZHU Q, et al. MicroRNA-382 suppresses the progression of pancreatic cancer through the PI3K/Akt signaling pathway by inhibition of Anxa3[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319(3):G309-G322. doi:  10.1152/ajpgi.00322.2019
    [5] 王胜涛, 李朝旭. 膜联蛋白A3与肿瘤关系的研究进展[J]. 世界最新医学信息文摘, 2018, 18(24):52-53,58.
    [6] 马聪聪, 陆红祥, 史清海. 膜联蛋白A3在相关疾病诊疗中的研究进展[J]. 新疆医学, 2022, 53(6):628-631,638. doi:  10.3969/j.issn.1001-5183.2022.6.xjyx202206004
    [7] 柴嘉音, 薛可, 王雯. 膜联蛋白A3在心血管系统中的作用[J]. 中国动脉硬化杂志, 2022, 30(10):846-851. doi:  10.3969/j.issn.1007-3949.2022.10.004
    [8] LIAO C C, LIN Y L, KUO C F. Effect of high-fat diet on hepatic proteomics of hamsters[J]. J Agric Food Chem, 2015, 63(6):1869-1881. doi:  10.1021/jf506118j
    [9] ZHOU T, LIU S, YANG L, et al. The expression of ANXA3 and its relationship with the occurrence and development of breast cancer[J]. J BUON, 2018, 23(3):713-719.
    [10] ZHOU T, LI Y, YANG L, et al. Silencing of ANXA3 expression by RNA interference inhibits the proliferation and invasion of breast cancer cells[J]. Oncol Rep, 2017, 37(1):388-398. doi:  10.3892/or.2016.5251
    [11] KIM J Y, JUNG E J, PARK H J, et al. Tumor-suppressing effect of silencing of annexin A3 expression in breast cancer[J]. Clin Breast Cancer, 2018, 18(4):e713-e719. doi:  10.1016/j.clbc.2017.11.009
    [12] PAN Q Z, PAN K, WENG D S, et al. Annexin A3 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma[J]. Mol Carcinog, 2015, 54(8):598-607. doi:  10.1002/mc.22126
    [13] WANG L M, LI X Q, REN Y H, et al. Cancer-associated fibroblasts contribute to cisplatin resistance by modulating ANXA3 in lung cancer cells[J]. Cancer Sci, 2019, 110(5):1609-1620. doi:  10.1111/cas.13998
    [14] 吴敏, 李丽, 陈鹏飞, 等. 萝卜硫素通过ANXA3/p38和JNK信号通路诱导人皮肤鳞状细胞癌细胞凋亡[J]. 中国中西医结合皮肤性病学杂志, 2022, 8(5):398-403.
    [15] DU K L, REN J H, FU Z X, et al. ANXA3 is upregulated by hypoxia-inducible factor 1-alpha and promotes colon cancer growth[J]. Transl Cancer Res, 2020, 9(12):7440-7449. doi:  10.21037/tcr-20-994
    [16] GAO S H, WANG Z Z, LIU X Z, et al. The calcimedin annexin A3 displays tumor-promoting effect in esophageal squamous cell carcinoma by activating NF-κB signaling[J]. Mamm Genome, 2021, 32(5):381-388. doi:  10.1007/s00335-021-09883-3
    [17] ZHOU T, LI Y, YANG L, et al. Annexin A3 as a prognostic biomarker for breast cancer: a retrospective study[J]. Biomed Res Int, 2017, 2017:2603685.
    [18] LIANG Y X, MIN D L, FAN H L, et al. Discovery of a first-in-class ANXA3 degrader for the treatment of triple-negative breast cancer[J]. Acta Pharm Sin B, 2023, 13(4):1686-1698. doi:  10.1016/j.apsb.2022.11.023
    [19] WANG K, LI J S. Overexpression of ANXA3 is an independent prognostic indicator in gastric cancer and its depletion suppresses cell proliferation and tumor growth[J]. Oncotarget, 2016, 7(52):86972-86984. doi:  10.18632/oncotarget.13493
    [20] XU R S, YIN J, ZHANG Y, et al. Annexin A3 depletion overcomes resistance to oxaliplatin in colorectal cancer via the MAPK signaling pathway[J]. J Cell Biochem, 2019, 120(9):14585-14593. doi:  10.1002/jcb.28720
    [21] XU B, ZHANG X P, GAO Y, et al. Microglial Annexin A3 promoted the development of melanoma via activation of hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway[J]. J Clin Lab Anal, 2021, 35(2):e23622. doi:  10.1002/jcla.23622
    [22] GUO C M, LI N N, DONG C Y, et al. 33-kDa ANXA3 isoform contributes to hepatocarcinogenesis via modulating ERK, PI3K/Akt-HIF and intrinsic apoptosis pathways[J]. J Adv Res, 2021, 30:85-102. doi:  10.1016/j.jare.2020.11.003
    [23] 罗文, 张科, 刘海军. 血清膜联蛋白A3联合缺氧诱导因子-1α在结直肠癌铂类耐药预测中的应用研究[J]. 实用临床医药杂志, 2023, 27(5):67-71. doi:  10.7619/jcmp.20223174
    [24] SUN Y L, WU C S, MA J X, et al. Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling[J]. Exp Cell Res, 2016, 347(2):274-282. doi:  10.1016/j.yexcr.2016.07.009
    [25] LI D Q, LIN M, ABDELRAHMAN Z. High expression of the ANXA3 gene promotes immune infiltration and improves tumor prognosis in ovarian serous carcinoma using bioinformatics analyses[J]. Ann Transl Med, 2022, 10(19):1055. doi:  10.21037/atm-22-3726
    [26] PAN Q Z, PAN K, WANG Q J, et al. Annexin A3 as a potential target for immunotherapy of liver cancer stem-like cells[J]. Stem Cells, 2015, 33(2):354-366. doi:  10.1002/stem.1850
    [27] ZHU Q, PAN Q Z, ZHONG A L, et al. Annexin A3 upregulates the infiltrated neutrophil-lymphocyte ratio to remodel the immune microenvironment in hepatocellular carcinoma[J]. Int Immunopharmacol, 2020, 89(Pt A): 107139.
    [28] ZHANG Z L, DENG M L, HUANG J J, et al. Microglial annexin A3 downregulation alleviates bone cancer-induced pain through inhibiting the Hif-1α/vascular endothelial growth factor signaling pathway[J]. Pain, 2020, 161(12):2750-2762. doi:  10.1097/j.pain.0000000000001962
    [29] MENG H, ZHANG Y, AN S T, et al. Annexin A3 gene silencing promotes myocardial cell repair through activation of the PI3K/Akt signaling pathway in rats with acute myocardial infarction[J]. J Cell Physiol, 2019, 234(7):10535-10546. doi:  10.1002/jcp.27717
    [30] HUANG G D, ZHONG X F, DENG Z Y, et al. Proteomic analysis of ginsenoside Re attenuates hydrogen peroxide-induced oxidative stress in human umbilical vein endothelial cells[J]. Food Funct, 2016, 7(5):2451-2461. doi:  10.1039/C6FO00123H
    [31] HUANG K T, CRIST A M, PATEL N R, et al. Annexin A3 is necessary for parallel artery-vein alignment in the mouse retina[J]. Dev Dyn, 2020, 249(5):666-678. doi:  10.1002/dvdy.154
    [32] 梁冰, 方洁. 靶向沉默ANXA3对大鼠吗啡镇痛耐受及炎症反应的影响[J]. 解放军医学杂志, 2020, 45(1):68-72.
    [33] TOUFIQ M, ROELANDS J, ALFAKI M, et al. Annexin A3 in sepsis: novel perspectives from an exploration of public transcriptome data[J]. Immunology, 2020, 161(4):291-302. doi:  10.1111/imm.13239
    [34] LI M L, LIU D, JING F C, et al. The role of Annexin A3 in coronary arterial lesions in children with Kawasaki disease[J]. Front Pediatr, 2023, 11:1111788. doi:  10.3389/fped.2023.1111788
    [35] RÖSCH K, KWIATKOWSKI M, HOFMANN S, et al. Quantitative lipid droplet proteome analysis identifies annexin A3 as a cofactor for HCV particle production[J]. Cell Rep, 2016, 16(12):3219-3231. doi:  10.1016/j.celrep.2016.08.052
    [36] LIN S, LI M Z, ZHOU Y K, et al. Annexin A3 accelerates osteoclast differentiation by promoting the level of RANK and TRAF6[J]. Bone, 2023, 172:116758. doi:  10.1016/j.bone.2023.116758
    [37] JACINTHO B C, MAZETTO FONSECA B M, HOUNKPE B W, et al. Evaluation of a gene signature related to thrombotic manifestations in antiphospholipid syndrome[J]. Front Med, 2023, 10:1139906. doi:  10.3389/fmed.2023.1139906
    [38] MIN X L, HE M, SHI Y, et al. MiR-18b attenuates cerebral ischemia/reperfusion injury through regulation of ANXA3 and PI3K/Akt signaling pathway[J]. Brain Res Bull, 2020, 161:55-64. doi:  10.1016/j.brainresbull.2020.04.021
  • [1] 张强, 李静, 刘越, 储晓琴.  基于网络药理学与分子对接技术研究制痂酊治疗Ⅱ度烧伤的作用机制 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202307014
    [2] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 1-7. doi: 10.12206/j.issn.2097-2024.202406035
    [3] 张紫璇, 高苑, 张利, 李佳莉, 徐希科, 祖先鹏.  中药防治急性肺损伤的活性成分及其作用机制研究进展 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202404079
    [4] 杨彬, 王作君, 陈菡, 张敬一.  基于DRGs的医院合理用药管理机制探索实践 . 药学实践与服务, 2025, 43(1): 22-25, 46. doi: 10.12206/j.issn.2097-2024.202404030
    [5] 陈莹, 许子华, 胡北, 崔亚玲, 高欢, 吴琼.  通便灵胶囊治疗便秘的药效与机制研究 . 药学实践与服务, 2025, 43(1): 10-16. doi: 10.12206/j.issn.2097-2024.202404008
    [6] 冯一帆, 严啸东, 张文彬, 李炳锋, 郭美丽.  菸花苷长期给药对脑缺血再灌注损伤大鼠神经功能的影响 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202407038
    [7] 白云俊, 赵玉洋, 金艳, 付璐, 袁媛.  蓝草类药材基原植物叶片表皮显微结构研究 . 药学实践与服务, 2025, 43(4): 1-6. doi: 10.12206/j.issn.2097-2024.202404069
    [8] 周文艳, 胡珊珊, 张万年, 庄春林.  Keap1-Nrf2通路在炎症疾病中的研究进展 . 药学实践与服务, 2025, 43(3): 97-108, 116. doi: 10.12206/j.issn.2097-2024.202405013
    [9] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
    [10] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [11] 岳春华, 贲永光, 王海桥.  基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制 . 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
    [12] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [13] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [14] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [15] 钱淑雨, 李铁军.  耐碳青霉烯类肠杆菌耐药机制的研究进展 . 药学实践与服务, 2024, 42(10): 419-425. doi: 10.12206/j.issn.2097-2024.202405005
    [16] 李清, 郭宜银, 陈颖, 瞿发林, 董文燊, 戈煜.  夜宁胶囊对小鼠镇静催眠作用及其机制的研究 . 药学实践与服务, 2024, 42(8): 346-349. doi: 10.12206/j.issn.2097-2024.202211047
    [17] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [18] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [19] 石晓萍, 吕迁洲, 李晓宇, 许青.  泊沙康唑对比伏立康唑经验治疗或诊断驱动治疗免疫功能低下患者侵袭性霉菌病的成本-效果分析 . 药学实践与服务, 2024, 42(12): 512-519. doi: 10.12206/j.issn.2097-2024.202401050
    [20] 邹思, 吴岩斌, 吴锦忠, 吴建国, 黄家兴.  虎奶菇菌核多糖功能化纳米硒抗疲劳功效研究 . 药学实践与服务, 2024, 42(10): 426-432. doi: 10.12206/j.issn.2097-2024.202206072
  • 加载中
计量
  • 文章访问数:  1490
  • HTML全文浏览量:  775
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 修回日期:  2024-02-22
  • 网络出版日期:  2025-02-21
  • 刊出日期:  2025-02-25

ANXA3基因及蛋白的研究进展

doi: 10.12206/j.issn.2097-2024.202309023
    作者简介:

    冯婷婷,硕士研究生,研究方向:药物活性评价与技术,Tel:17836215079,Email:fengting202202@163.com

    通讯作者: 张俊平,博士生导师,研究方向:药物活性评价与技术,Tel:13916104193,Email:jpzhang@163.com

摘要: 膜联蛋白A3(ANXA3)属于膜联蛋白家族成员,具有36 kDa和33 kDa两个亚型,其基因位于人第4号染色体上。ANXA3在人体骨髓、肺、胎盘、前列腺和甲状腺等组织中表达,与胞吐、血管生成、脂肪细胞成熟和白细胞迁移等生物学过程密切相关。研究发现,ANXA3在癌症、心血管疾病和炎症等疾病中异常表达,可以调控JNK、NF-κB、PI3K/Akt等多条信号通路,可能成为相关疾病的治疗靶点。该文主要就ANXA3的结构、功能、与疾病的联系以及相关机制进行综述,以期为ANXA3的相关研究提供借鉴。

English Abstract

冯婷婷, 张景翔, 王彦, 许维恒, 张俊平. ANXA3基因及蛋白的研究进展[J]. 药学实践与服务, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
引用本文: 冯婷婷, 张景翔, 王彦, 许维恒, 张俊平. ANXA3基因及蛋白的研究进展[J]. 药学实践与服务, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
FENG Tingting, ZHANG Jingxiang, WANG Yan, XU Weiheng, ZHANG Junping. Research progress on ANXA3 gene and protein[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
Citation: FENG Tingting, ZHANG Jingxiang, WANG Yan, XU Weiheng, ZHANG Junping. Research progress on ANXA3 gene and protein[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
  • 膜联蛋白A3 (ANXA3),又名脂皮质素Ⅲ,胎盘抗凝蛋白Ⅲ,属于膜联蛋白家族的成员。研究发现,ANXA3可以将肌醇1,2-环磷酸盐水解为肌醇1-磷酸,也可以抑制磷脂酶A2(PLA2)的活性。截至目前,关于ANXA3基因和蛋白的结构、功能及相关疾病已有许多文献报道,本文主要就这些研究进展进行综述,为ANXA3进一步深入研究提供参考。

    • 人ANXA3基因(ENSG00000138772)位于第4号染色体上,基因全长58678 bp;小鼠ANXA3基因(ENSMUSG00000029484)位于第5号染色体上,基因全长52584 bp;大鼠ANXA3基因(ENSRNOG00000002045)位于第14号染色体上,基因全长54010 bp。其中人和小鼠的ANXA3基因都具有14个外显子,而大鼠的ANXA3基因具有16个外显子。

      ANXA3蛋白具有36 kDa 和33 kDa 两种亚型,分别由323个氨基酸和284个氨基酸构成。ANXA3与膜联蛋白家族的其他成员,尤其是 ANXA5,具有很高程度的结构同源性,但其N端序列较ANXA5长。ANXA3的C末端核心由4个保守的膜联蛋白重复结构域(Ⅰ-Ⅳ)构成,每个结构域包含了由70个氨基酸残基组成的5个α-螺旋(A-E)。ANXA3的N末端高度可变,由20个氨基酸残基组成,该结构域对于ANXA3蛋白质稳定性以及ANXA3与细胞内钙离子和磷脂的相互作用至关重要,其中5位色氨酸参与了ANXA3对膜通透性的调节。

      通过查阅NCBI-Gene数据库(包含了95位个体的27种不同组织的RNA测序数据),结果发现ANXA3在人体骨髓和肺中的表达水平最高,其次是胎盘、前列腺和甲状腺等。而小鼠ENCODE转录组数据库显示,ANXA3在膀胱、肺和胎盘中表达较多。也有文献报道,ANXA3几乎在所有髓系细胞中均表达。此外,大量研究报道ANXA3与癌症的发生发展联系密切,其在多种肿瘤细胞或组织中表达,包括乳腺癌[1]、肝癌[2]、结肠癌[3]、胰腺癌[4]和骨癌[5]等。

    • 膜联蛋白家族成员的功能主要包括离子通道活性调节、膜-细胞骨架锚定、膜运输以及抗炎和抗凝血活性等。作为膜联蛋白家族的一员,ANXA3蛋白的功能主要有:①ANXA3与胞吐过程有关。②ANXA3具有血管生成活性。在人脐静脉内皮细胞中过表达ANXA3,可以激活缺氧诱导因子-1(HIF-1),增加血管内皮生长因子(VEGF)的表达,促进人脐静脉内皮细胞迁移和管状形成。③ 多项研究发现,ANXA3能够介导白细胞迁移和炎症反应,在氧化应激、免疫炎症反应中扮演重要的角色[6]。④ ANXA3可能具有抑制PLA2活性的作用,但该研究结果目前仍存在争议[7]。⑤ANXA3在脂肪细胞的成熟中发挥重要作用。ANXA3在脂肪前体细胞中表达较高,ANXA3下调可以通过过氧化物酶体增殖物激活受体 γ2 (PPARγ2)促使脂肪前体细胞分化为含脂滴的脂肪细胞。体内实验也证实,ANXA3与仓鼠肝脏组织中的脂肪含量正相关[8]

    • 目前,关于ANXA3的研究多数集中在肿瘤领域。研究报道,ANXA3与乳腺癌、肝癌、肺癌和结肠癌的关系密切,其作用机制涉及肿瘤细胞的增殖、凋亡、侵袭和迁移以及肿瘤血管生成等。

    • Zhou等[9-10]对来自158名乳腺癌患者的样本分析发现,ANXA3 mRNA和蛋白的表达水平与乳腺癌细胞的增殖速度正相关。Kim等[11]对来自30名原发性乳腺癌患者的癌症组织以及MDA-MB 231细胞系进行研究,结果发现ANXA3低表达可以抑制肿瘤细胞的增殖和集落形成。机制研究发现,ANXA3沉默可以下调多种细胞周期蛋白依赖性激酶(CDK),诱导细胞周期停滞,抑制癌细胞增殖[11]。在肝癌中,ANXA3能够激活JNK信号通路,促进肝癌细胞增殖。Pan等[12]研究证实,ANXA3过表达会增强肝癌细胞增殖和集落形成能力,而沉默ANXA3则明显抑制这些功能。Tong等[2]研究了6种细胞系和肝细胞癌(HCC)肿瘤组织,结果发现在耐药的肝癌细胞中过表达ANXA3可以抑制依赖PKCδ/p38途径的细胞凋亡。在肺癌中,Wang等[13]研究证实,肿瘤微环境中癌症相关成纤维细胞(CAF)分泌的高水平ANXA3能够激活JNK/Survivin信号通路,促进肺癌细胞逃逸顺铂诱导的细胞凋亡。而沉默ANXA3会通过抑制p38及JNK信号传导,促进癌细胞凋亡[14]。在结肠癌中,Du等[15]研究发现,ANXA3在低氧诱导条件下呈HIF-1α依赖性表达,促进结肠癌细胞的生长。研究发现ANXA3下调会明显抑制结肠癌细胞的增殖并促进结肠癌细胞凋亡,该作用可能与p53和Bcl-2的表达有关[3]。此外,有研究发现ANXA3能够促进食管癌细胞增殖,其作用机制与NF-κB途径相关[16]

    • ANXA3过表达会明显诱导乳腺癌、胃癌、胰腺癌和结直肠癌细胞的侵袭和迁移,其分子机制与增强上皮向间充质的转化(EMT)有关。研究发现靶向降解ANXA3或shRNA沉默ANXA3可以抑制Wnt/β-catenin信号通路,降低三阴性乳腺癌细胞的侵袭和迁移能力[17-18]。Wang等[19]研究发现,胃癌细胞ANXA3过表达后,间充质标志物Vimentin和β-catenin的表达增加,上皮标志物E-钙粘蛋白(E-cadherin)的表达降低,EMT相关的转录因子上调;而ANXA3沉默则与之相反,进而明显抑制胃癌细胞的侵袭和迁移。在胰腺癌中,ANXA3沉默会降低N-cadherin和Vimentin的蛋白表达水平,增加E-cadherin表达,其作用机制是通过PI3K/Akt信号通路抑制EMT和胰腺癌细胞的侵袭及迁移[4]。此外,在结直肠癌中,下调ANXA3会降低HCT116和SW480细胞的侵袭及迁移,该作用可能与ERK和JNK信号通路的抑制有关[20]。此外,ANXA3还可以促进黑色素瘤细胞的生长和迁移,该作用与HIF-1α/VEGF信号通路有关[21]。这些研究表明,Wnt、MAPK、PI3K/Akt及HIF-1α/VEGF等信号传导途径与ANXA3诱导的细胞侵袭和迁移联系密切。

    • 血管生成是肿瘤获取营养物质和应对肿瘤微环境缺氧状态的重要手段。研究发现,ANXA3沉默后,接受三阴性乳腺癌细胞异种移植的小鼠肿瘤中血管数量明显减少。在胰腺癌中,Wan等[4]研究证实,ANXA3沉默会抑制PI3K/Akt信号通路,降低血管内皮生长因子C(VEGF-C)、血管内皮生长因子D(VEGF-D)和血管内皮生长因子受体3(VEGFR-3)的表达水平,而VEGFR-3的表达可能与胰腺癌中的淋巴管生成有关。Guo等[22]研究发现33 kDa ANXA3低表达能够抑制PI3K/Akt-HIF信号通路进而降低HepG2细胞的血管生成能力。在结肠癌中,Du等[15]研究发现ANXA3能够通过血管生成促进肿瘤的生长,该作用可能与ANXA3呈HIF-1α依赖性表达有关。罗文等[23]发现,在结直肠癌患者的外周血中ANXA3和HIF-1α表达异常,二者与结直肠癌铂类耐药联系密切。总之,ANXA3促进肿瘤血管生成的机制可能涉及以下3个方面:①ANXA3可以诱导VEGFR-3的表达[4];②ANXA3可以激活PI3K/Akt通路,从而促进血管的生成[424];③ANXA3表达与HIF-1α相关[15]

    • ANXA3在癌症治疗中具有潜在临床应用价值。例如,Li等[25]通过对379例卵巢癌患者的临床数据和基因表达谱分析发现, ANXA3过表达可以促进滤泡辅助性T细胞(TFH)和Th 17淋巴细胞的浸润,诱导更强的T细胞抗肿瘤细胞免疫。Pan等[26]的研究发现,ANXA3过表达能够升高HIF-1α水平,显著增加CD133、Notch1、Notch2的表达,上升CD133+细胞的比例并且增加其致瘤性,提示ANXA3可能通过HIF-1α/Notch信号通路调节肝癌肿瘤干细胞/肿瘤初始细胞(CSCs/CIC)的活性。Zhu等[27]研究证实ANXA3能够通过诱导肝癌细胞趋化因子的释放增加浸润性中性粒细胞/淋巴细胞的比率,从而介导肝细胞癌免疫微环境的重塑。此外,研究还发现内源性ANXA3可以通过JNK通路参与骨肉瘤干细胞的形成[5],下调ANXA3会抑制HIF-1α/VEGF通路,并且通过调节神经元兴奋性减轻骨癌疼痛[28]

      总之,ANXA3的异常表达在癌症的发生发展中发挥重要作用,能够刺激肿瘤细胞增殖,促进细胞侵袭和转移,诱导血管生成,同时与癌细胞的耐药性紧密联系,因此,ANXA3可能成为癌症治疗潜在的治疗靶点,具有重要价值。

    • 有研究报道,膜联蛋白家族成员在心血管领域发挥着较为重要的作用,能够调节血管内皮细胞的自噬水平,保护心肌细胞免受缺血再灌注损伤,抑制血管炎症反应,减少动脉粥样硬化的发生等[7]。ANXA3作为膜联蛋白家族的一员,与心血管系统细胞凋亡、氧化应激和心血管炎症同样存在密切的关系。首先,ANXA3可能通过促进心血管系统细胞凋亡介导心血管损伤。研究发现,大鼠在急性心肌梗死后,心肌组织中ANXA3的基因和蛋白表达均显著上调。PI3K/Akt信号通路的激活可以发挥抗凋亡作用,有利于心肌细胞的存活。研究表明ANXA3沉默可以激活PI3K/Akt信号通路促进急性心肌梗死的大鼠心肌损伤修复及愈合[29]。其次,ANXA3与心血管事件中的氧化应激存在关系。研究发现,在过氧化氢诱导的血管内皮细胞氧化应激反应中,ANXA3蛋白具有抗氧化作用,这可能与其抑制PLA2的活性有关[30]。此外,如前文所述,ANXA3具有促进血管生成的功能,这可能与血管系统疾病存在关联。有文献报道,虽然ANXA3与小鼠胚胎血管的形成没有必然联系,但其可以影响小鼠视网膜中的静脉-动脉对接,当ANXA3敲除后,小鼠视网膜会出现明显的动脉-静脉错位的情况,其类似于在视网膜分支静脉阻塞(BRVO)患者中观察到的动静脉交叉[31]

      除心血管系统外,ANXA3还与炎症密切相关。在吗啡镇痛耐受的研究中发现,ANXA3沉默后,小鼠TNF-α、IL-1β和IL-6等炎症因子的表达明显降低,可能与ERK和JNK的活性改变有关[32]。在体外实验中,虽然ANXA3的表达水平不会随着LPS或某些致病性病原体来源的炎症因子的加入而增加,但在加入干扰素家族蛋白,尤其是IFN-β后,ANXA3的表达水平会显著上调[33]。ANXA3能够以钙离子依赖的方式促进中性粒细胞的颗粒聚集,参与颗粒-颗粒和颗粒-吞噬体的融合,这些机制可能在炎症反应中发挥作用。研究发现,川崎病患者的中性粒细胞数量和血清中ANXA3的表达水平存在异常,治疗后均显著下降,表明二者可能存在潜在联系,提示ANXA3可能与该病的过度炎症和免疫异常有关[34]

      除此之外,研究发现ANXA3可能与丙肝、骨代谢、脑缺血损伤等存在联系。ANXA3能够被募集到丙肝感染细胞的脂滴组分中,是丙肝病毒在细胞间传染与传播所必需的。细胞中ANXA3蛋白水平虽然不会影响丙肝病毒RNA的复制,但会显著影响病毒颗粒的产生,是丙肝病毒成熟和释放的重要调节因子[35]。不仅如此,ANXA3还参与骨骼相关疾病的发展进程。有研究报道,ANXA3能够激活NF-κB信号通路,加速小鼠破骨细胞的形成和分化,从而影响小鼠骨代谢过程[36]。除此之外,研究发现原发性抗磷脂综合征(PAPS)患者白细胞中ANXA3的mRNA水平明显升高,表明ANXA3异常表达与动静脉血栓形成有关,尤其与该病进程中的止血途径联系密切[37]。Min等[38]研究证实,ANXA3下调能够激活PI3K/Akt信号通路对小鼠脑缺血损伤产生保护作用。

    • 膜联蛋白家族与多种疾病的发生发展密切相关,而ANXA3作为该家族的一员,在胞吐、血管生成、脂肪细胞成熟和白细胞迁移等过程中发挥重要作用。目前,多项研究证实ANXA3与肿瘤的发生发展存在紧密联系,能够促进肿瘤细胞增殖和侵袭,抑制肿瘤细胞凋亡,促进肿瘤血管形成等。除此之外,ANXA3还与心血管系统疾病、炎症、新冠肺炎和丙肝等其他疾病密切相关,过程涉及多种信号转导通路。目前关于ANXA3的研究较多集中在肿瘤领域,ANXA3在心血管疾病、炎症、骨骼疾病及新冠肺炎等领域的文献报道较少,其具体作用机制更是鲜有文献报道。因此,进一步深入研究ANXA3在上述疾病以及其他未知领域中的作用及机制具有重要意义。同时,围绕ANXA3的功能进行深入研究,探索其作为生物标记物进行疾病早期诊断或作为疾病的治疗靶点进行疾病干预等的可能性,将为相关疾病的治疗提供更多线索。

参考文献 (38)

目录

/

返回文章
返回