留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

蜂斗菜总内酯对常压缺氧小鼠的保护作用研究

李炳锋 段雅倩 王旭 郭美丽 高越

关梦瑶, 夏天爽, 何旭辉, 史策, 蒋益萍, 辛海量. 黑蒜多糖抗便秘作用研究[J]. 药学实践与服务. doi: 10.12206/j.issn.2097-2024.202403059
引用本文: 李炳锋, 段雅倩, 王旭, 郭美丽, 高越. 蜂斗菜总内酯对常压缺氧小鼠的保护作用研究[J]. 药学实践与服务, 2022, 40(4): 314-319. doi: 10.12206/j.issn.1006-0111.202111085
GUAN Mengyao, XIA Tianshuang, HE Xuhui, SHI Ce, JIANG Yiping, XIN Hailiang. Study on Anti-constipation Effect of Black Garlic Polysaccharide[J]. Journal of Pharmaceutical Practice and Service. doi: 10.12206/j.issn.2097-2024.202403059
Citation: LI Bingfeng, DUAN Yaqian, WANG Xu, GUO Meili, GAO Yue. Protective effects of the total bakkenolides from Petasites tricholobus on hypoxia mice under normobaric pressure[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(4): 314-319. doi: 10.12206/j.issn.1006-0111.202111085

蜂斗菜总内酯对常压缺氧小鼠的保护作用研究

doi: 10.12206/j.issn.1006-0111.202111085
基金项目: 军队医学科技青年培育计划拔尖项目(18QNP017)
详细信息
    作者简介:

    李炳锋,硕士研究生. Tel:18758515788;Email:libf0930@163.com

    通讯作者: 郭美丽,教授,博士生导师. Tel:(021)81871302. Email:mlguo@126.com高 越,副教授,硕士生导师. Tel:(021)81871369;Email:gaoyue2000@hotmail.com
  • 中图分类号: R285

Protective effects of the total bakkenolides from Petasites tricholobus on hypoxia mice under normobaric pressure

  • 摘要:   目的  探讨蜂斗菜总内酯(PTB)对提高动物耐缺氧能力的作用。  方法  建立小鼠常压缺氧模型和PC12细胞氧糖剥夺模型(OGD),观察PTB对小鼠常压密闭空间下存活时间、血清乳酸脱氢酶(LDH)活性和丙二醛(MDA)含量,对脑组织与心脏超氧化物歧化酶(SOD)和还原型谷胱甘肽(GSH)的活性,以及对脑组织病理变化和细胞存活率的影响。  结果  PTB可以显著提高常压缺氧小鼠在密闭空间下的存活时间,提高机体SOD、GSH的活性,减少脂质过氧化物的产生,降低无氧酵解的程度,保护神经细胞的结构和功能,提高OGD处理后的细胞的存活率。  结论  PTB具有明显的提高小鼠耐缺氧能力的作用,其作用机制可能与清除氧自由基、抑制脂质过氧化反应、保护神经细胞结构和功能有关。
  • 随着社会经济发展和饮食结构改变,功能性便秘(FC)发生率逐年攀升,并具有顽固性、复发性的特点,无根治特效药[1],目前临床上对于便秘的干预措施主要包括药物、按摩、膳食调理等,但都存在依从性低、副作用明显、疗效不可靠等弊端[2],新型抗便秘产品的研发具有迫切需求。黑蒜是一种发酵大蒜,在高温高湿条件下发酵一定时间制得[3]。黑蒜主要化学成分包括多糖、类黑精、蛋白质、多酚、含硫化合物等[4],研究表明其具有显著的抗氧化、抗炎、抗肿瘤、抗肥胖[5-9]等作用,近年,黑蒜在通便相关的药食同源产品研发领域应用较多,但关于黑蒜抗便秘作用的研究较少,抗便秘功效成分更不明确,相关产品进一步研发与推广缺乏足够的科学依据。且黑蒜用于抗便秘每日需服用20 g以上[10],易导致依从性差,难以长期坚持等问题。有研究发现大蒜多糖具有一定抗便秘作用[11],而大蒜在加工成黑蒜的过程中糖类物质含量可增加数倍[12-13],可合理推测黑蒜多糖可能具有更显著的抗便秘作用,是黑蒜抗便秘作用的物质基础之一,但目前还没有相关的研究。因此,本文建立复方地芬诺酯(CO.D)诱导的小鼠FC模型,探究黑蒜多糖的抗便秘作用,为新型抗便秘产品的研发提供科学依据。

    黑蒜(批号:20231030,上海明可名生物科技有限公司);乳果糖口服液(规格:667 mg/ml,批号:22110047,北京韩美药品有限公司);复方地芬诺酯片(2.5 mg/片,批号:210804,仁和堂医药连锁股份有限公司)。

    D-无水葡萄糖(批号:S22J12H137237,源叶生物);无水乙醇(批号:P2708277,泰坦科技);生理盐水(批号:230327042,雷根生物);4%多聚甲醛(批号:HP184401,博光生物);浓硫酸(批号:20230420)、丙酮(批号:20230807)、石油醚(批号:20220507)均购自国药集团;三氯乙酸(批号:C14990699)、活性炭粉(批号:C14853603)、阿拉伯树胶粉(批号:C15109301)、苯酚(批号:C15031044)均购自麦克林生化;所有水均为超纯水机所制一级水。

    鼓风干燥箱DAG-924(满贤经贸);循环水式多用真空泵SHB-III(明杰仪器);万分之一天平JA1003(恒平仪器);电热恒温水浴锅HWS-12(一恒仪器);高速离心机M18G(创宜生物);旋转蒸发器RE-52AA(亚荣仪器);超纯水机Smart-S(和泰仪器)。

    SPF级C57雄性小鼠,体重18 ~22 g,许可证号: SCXK(浙)2019-00004,杭州子源实验动物科技有限公司。

    取10 g黑蒜,按下列步骤处理: ①脱脂:剥去外壳,研磨成泥,85%乙醇水溶液(V/V)浸渍,常温静置8 h,抽滤,滤渣用85%乙醇水溶液洗涤2次,置于烘箱60℃挥干至无醇味,充分研磨获得脱脂黑蒜粉。②水提:所得脱脂黑蒜粉用80℃热水浸提1 h,料液比为1∶50,抽滤,滤液减压浓缩至原体积1/2。③脱蛋白:在浓缩液中加入等体积10%三氯乙酸水溶液,充分混匀,4℃静置10 h,离心取上清液。④醇沉:上清液加入无水乙醇,调节乙醇水溶液浓度为80%,充分混匀,4℃静置12 h,离心取沉淀。⑤干燥:挥干有机溶剂,烘箱60℃干燥,去除残留溶剂,得黑蒜多糖干燥粉末。

    采用苯酚-硫酸法[14]测定多糖含量。

    2.2.1   葡萄糖标准曲线绘制

    精密称取D-无水葡萄糖适量,配置为0.05、0.1、0.2、0.3、0.4、0.5 mg/ml的葡萄糖标准溶液,分别吸取250 μl于离心管中,依次加入6%苯酚溶液150 μl、浓硫酸625 μl,迅速振摇,静置反应30 min,吸取200 μl于96孔板,设置3个复孔,测量490 nm处吸光度。绘制葡萄糖标准曲线,求得回归方程。

    2.2.2   样品测定

    精密称取适量黑蒜多糖干燥粉末,加入蒸馏水配制成一定浓度的多糖溶液,根据酶标仪检测范围进行稀释。吸取250 μl多糖溶液于96孔板中,按照2.2.1项下方法进行测定,计算样品中多糖的含量,进一步计算黑蒜多糖的得率和纯度。

    计算公式:黑蒜多糖得率(%)=$ \dfrac{W2}{W1}\times 100\text{%} $

    黑蒜多糖纯度(%)=$ \dfrac{C\times V\times D}{W2}\times 100\text{%} $

    式中:$ W $1为黑蒜质量(g);$ W $2为黑蒜多糖粉末质量;$ C $为样品中多糖的质量浓度(mg/ml);$ V $为提取溶剂体积(ml);$ D $为样品稀释倍数。

    乳果糖口服液:乳果糖含量为667 mg/ml,正常成人用药量15 ml/d[15],换算可得小鼠的用药剂量为4 g/(kg·d)。量取乳果糖口服液6 ml,加蒸馏水14 ml,配置成200 mg/ml的乳果糖口服液。

    CO.D混悬液:参考贾红慧等[16]研究结果,选用5 mg/kg剂量CO.D造模,模型稳定、灵敏。取CO.D 4片,研磨成细粉,加蒸馏水20 ml,配置成0.5 mg/ml的 CO.D混悬液,使用前需充分混匀。

    黑蒜多糖低、中、高剂量溶液:参考胡淼等[17]研究结果,黑蒜多糖低、中、高剂量组剂量分别选用0.25、0.5、1 g/kg。称取0.5、1、2 g黑蒜多糖干燥粉末,分别加蒸馏水20 ml,配置成25、50、100 mg/ml的黑蒜多糖溶液。

    墨汁[18]:阿拉伯树胶于蒸馏水中加热至完全溶解,料液比为1∶8。加入5 g活性炭粉末,混合均匀,重复煮沸3次,冷却后定容至100 ml,使用前需充分混匀。

    含药墨汁:取适量受试药,加入墨汁,配制成与上述受试药剂量相同的含药墨汁。

    2.4.1   小鼠小肠墨汁推进实验

    小鼠60只,适应性饲养1周,正常饮食饮水。给药前按照体重随机分为空白组、模型组、阳性组、黑蒜多糖低、中、高剂量组,每组10只。

    按照0.1 ml/10 g灌胃给药。①给药:空白组和模型组小鼠给予蒸馏水,阳性组和黑蒜多糖组小鼠分别给予乳果糖口服液和黑蒜多糖溶液。1次/d,连续给药1周,观察并记录小鼠体重变化及一般状态。②造模:末次给药后禁食12 h,自由饮水,空白组小鼠灌胃蒸馏水,其余各组小鼠灌胃CO.D溶液。③给药:30 min后空白组、模型组灌胃墨汁,其它组小鼠灌胃相应含药墨汁。25 min后处死,剖取小鼠小肠(幽门至盲肠上端),平铺成直线,测量小肠总长度和墨汁推进距离,避免拉伸小肠,影响实验结果。

    计算公式:小肠墨汁推进率(%)=墨汁推进距离(cm)/小肠总长度(cm)×100%

    2.4.2   小鼠排便实验

    分组、给药剂量及方法同“2.4.1”项下实验方法,给药后,记录每只小鼠首次排出黑便的时间、6 h内排出黑便的数量及重量,并进行粪便含水量测定,同时观察粪便性状。含水量测定方法为:将小鼠新鲜粪便置于提前干燥、称重的容器中,称重,于烘箱中干燥至重量不再变化,计算粪便含水量。

    计算公式:粪便含水量(%)=$ \dfrac{M1-M2}{M1}\times 100\text{%} $

    式中:M1为干燥前粪便质量(g),M2为干燥后粪便质量(g)。

    采用SPSS 24统计软件进行数据分析,以均数±标准差($ \bar{X} $±S)表示计量资料。两两比较采用LSD-t检验,多组比较采用单因素方差分析,P<0.05表示差异有统计学意义,P<0.01表示差异显著,P<0.001表示差异极显著。

    精密称量所得黑蒜多糖干燥粉末质量为0.832 g,代入公式计算可得黑蒜多糖的得率为8.32%。以葡萄糖浓度(mg/ml)为横坐标,吸光度为纵坐标,可得回归方程为Y=2.2829 X+0.0764,相关系数r=0.9982,线性关系较好,代入回归方程计算可得黑蒜多糖的纯度为58.23%。

    表1可以看出,与空白组相比,各组小鼠体重均正常增长,无显著性差异,表明黑蒜多糖不会对正常小鼠体重产生影响。实验过程中,各组小鼠饮食正常,状态良好,无腹泻等不良反应,为后续实验提供前提保证。

    表  1  黑蒜多糖对小鼠体重的影响
    组别 小鼠小肠墨汁推进实验 排便实验
    初始体重
    m/g)
    最终体重
    m/g)
    初始体重
    m/g)
    最终体重
    (m/g)
    空白组 21.28±1.15 22.23±1.19 21.80±1.02 22.90±0.61
    模型组 21.20±1.36 22.24±1.22 21.58±1.00 22.64±0.84
    阳性组 21.17±1.18 22.31±1.28 21.42±1.01 22.81±0.91
    黑蒜多糖
    低剂量组
    21.44±1.32 22.38±1.54 21.98±1.20 23.02±1.20
    黑蒜多糖
    中剂量组
    21.06±1.13 22.16±0.77 21.59±1.10 22.38±1.08
    黑蒜多糖
    高剂量组
    21.42±1.15 22.54±1.26 21.79±1.29 22.85±0.98
    下载: 导出CSV 
    | 显示表格

    表2可以看出,与空白组相比,模型组墨汁推进率极显著减小,表明本实验小鼠FC模型造模成功。与模型组相比,黑蒜多糖组小鼠墨汁推进率均显著增大,分别增大了24.75%、56.95%、95.25%,表明黑蒜多糖对FC模型小鼠小肠运动具有促进作用,且成剂量依赖性。

    表  2  黑蒜多糖对小鼠小肠墨汁推进的影响
    组别 碳末推进距离
    l/cm)
    小肠总长度
    l/cm)
    墨汁推进率
    (%)
    空白组 28.86±3.25 34.87±1.60 82.90±9.97
    模型组 9.60±0.73*** 34.09±2.31 29.50±1.35***
    阳性组 26.94±3.55### 34.15±1.60 79.00±9.92###
    黑蒜多糖
    低剂量组
    12.58±1.15### 34.35±1.67 36.80±4.42#
    黑蒜多糖
    中剂量组
    16.01±2.06### 34.48±3.18 46.30±4.19###
    黑蒜多糖
    高剂量组
    19.95±1.60### 34.66±1.96 57.60±4.06###
    注:*P<0.05,**P<0.01,***P<0.001,与空白组比较;#P<0.05,##P<0.01, ###P<0.001,与模型组比较。
    下载: 导出CSV 
    | 显示表格

    表3可看出,与空白组相比,模型组小鼠首次排出黑便时间极显著延长,6 h排便粒数显著减少,6 h排便重量极显著减少,粪便含水量极显著降低,粪便呈球形或短椭圆形,部分串联,质地干硬,颜色普遍偏黑,表明本实验小鼠FC模型造模成功。与模型组相比,黑蒜多糖组小鼠首次排出黑便时间均极显著缩短,分别缩短了42.55%、44.99%、45.81%;6 h排便重量显著增加,分别增加了68.42%、78.95%、78.95%;粪便含水量极显著增大,分别增大了29.96%、32.78%和35.82%,粪便呈长椭圆形,质地较软,颜色为深棕色,无腹泻现象;除黑蒜多糖低剂量组外,中、高剂量组小鼠6 h排便粒数有统计学差异,分别增加了31.45%和32.52%。表明黑蒜多糖可能通过增大FC模型小鼠粪便含水量发挥促排便作用,各剂量组间效果差异不明显。

    表  3  黑蒜多糖对小鼠排便及粪便含水量的影响
    组别 首黑便时间
    t/min)
    6 h排便数
    (粒)
    6 h排便湿重
    m/g)
    6 h排便干重
    m/g)
    含水量
    (%)
    空白组 111.50±8.98 16.50±3.51 0.46±0.10 0.22±0.04 52.16±2.53
    模型组 241.50±19.54*** 11.13±2.75** 0.19±0.02*** 0.13±0.01*** 32.58±2.35***
    阳性组 121.50±110.81### 15.13±4.09# 0.41±0.12### 0.20±0.06## 50.06±1.83###
    黑蒜多糖低剂量组 138.75±10.79### 13.75±2.71 0.32±0.08## 0.19±0.42# 42.34±2.27###
    黑蒜多糖中剂量组 132.88±8.34### 14.63±3.66# 0.34±0.10## 0.19±0.05## 43.26±2.68###
    黑蒜多糖高剂量组 130.88±9.09### 14.75±3.73# 0.34±0.12## 0.19±0.05## 44.25±6.72###
    注:*P<0.05,**P<0.01,***P<0.001,与空白组比较;#P<0.05,##P<0.01,###P<0.001,与模型组比较。
    下载: 导出CSV 
    | 显示表格

    CO.D是一种止泻药,可通过抑制肠道平滑肌上的肠黏膜感受器抑制肠道运动,减慢排便进程,减少排便次数,同时肠内容物与肠粘膜接触时间延长,可促进肠内容物水分的重吸收,降低粪便含水量,是常用的FC小鼠模型造模药[19]。因此,本研究建立CO.D诱导的小鼠FC模型,探究黑蒜多糖的抗便秘作用。实验结果表明,黑蒜多糖可显著促进CO.D诱导的FC模型小鼠小肠蠕动,缩短排便时间,增加粪便含水量,从而发挥抗便秘作用。有研究显示成人每日服用约2 g黑蒜多糖便可达到较好疗效,用量仅为黑蒜的1/10[10]。给药期间小鼠状态良好、体重正常,未产生腹泻等副作用。因此,黑蒜多糖用于FC治疗可有效规避依从性差、副作用明显、疗效不可靠等弊端,前景广阔。此外,有相关研究发现,采用CO.D 10 mg/kg和15 mg/kg灌胃造模(大鼠)都存在停药后恢复的情况[20],提示我们使用CO.D进行慢性便秘造模,在造模成功后的治疗给药阶段也需要持续用药,以维持药效。目前该便秘模型的建立没有统一标准,后续可对造模时间、造模剂量进行优化,为更深入的黑蒜多糖抗便秘机制研究提供基础。

    FC是典型的胃肠动力障碍性疾病,现代研究普遍认为,其发病机制主要与卡哈尔间质细胞(ICCs)数量、功能以及分布异常、肠神经递质水平异常、水通道蛋白表达异常、氧化应激指标失衡、肠道菌群紊乱等有关[21-22]。大蒜多糖主要为果聚糖,占干重的65%,在发酵生成黑蒜的过程中,果聚糖因高温作用大量降解为低聚果糖(FOS)、果糖等小分子糖[23]。FOS在国际营养学界被称作“具有优良难消化性的水溶性膳食纤维”,还是典型的“超强双歧因子”。因其无法被肠道吸收,可被双歧杆菌等益生菌分解利用,短时间内促进双歧杆菌增殖10~100倍,分解生成的有机酸,可有效调节肠道pH,刺激肠道蠕动,促进排便[24]。双歧杆菌还可抑制有害肠道病菌生长、抵抗病原菌感染、产生维生素并促进矿物质吸收以维持肠道健康,有研究表明人体双歧杆菌含量随年龄增长逐渐减少,是老年人易发生便秘的主要原因[25]。因此,需要进一步明确黑蒜多糖的单糖组成、相对分子质量以及结构,为后续抗便秘机制研究提供依据。此外,便秘成因复杂,可结合具体的证型如脾虚、血虚、阳虚、津亏等便秘模型进一步探究黑蒜多糖抗便秘作用的有效性。

  • 图  1  HE染色观察小鼠脑组织病理变化(40×)

    A.空白对照组; B.模型组; C.阳性对照组(诺迪康);D.PTB低剂量组; E.PTB中剂量组; F.PTB高剂量组。

    图  2  尼氏染色观察小鼠脑组织病理变化( 40×)

    A.空白对照组; B.模型组; C.阳性对照组(诺迪康);D.PTB低剂量组; E.PTB中剂量组; F.PTB高剂量组。

    表  1  PTB对常压缺氧小鼠存活时间的影响(n=10,$\bar x $±s

    组别给药剂量(mg/kg)存活时间(t/s)
    模型组859.5±84.56
    诺迪康组280991.4±140.7*
    PTB低剂量组 201023±142.7**
    PTB中剂量组 40980±120.5*
    PTB高剂量组 801055±251.9*
    *P<0.05,**P<0.01,与模型组比较。
    下载: 导出CSV

    表  2  PTB对常压缺氧小鼠血清LDH活力和MDA含量的影响(n=10,$\bar x $±s

    组别给药剂量(mg/kg)LDH(U/L)MDA(nmol/ml)
    空白组1052±59.4967.04±12.63
    模型组1280±206.6##204.3±58.42##
    诺迪康组2801092±70.16*132.5±54.02*
    PTB低剂量组 201153±82.80138.3±32.50*
    PTB中剂量组 401097±100.5*152.8±48.90*
    PTB高剂量组 801059±187.8*172.7±60.54
    *P<0.05,与模型组比较;##P<0.01,与空白组比较。
    下载: 导出CSV

    表  3  PTB对常压缺氧小鼠脑组织和心脏GSH活力的影响(n=10,$\bar x $±s

    组别给药剂量
    (mg/kg)
    脑GSH
    (μmol/g•prot)
    心脏GSH
    (μmol/g•prot)
    空白组44.17±8.6729.123±2.906
    模型组31.99±5.528##5.772±2.537#
    诺迪康组28037.47±13.568.345±2.336*
    低剂量组 2043.38±10.46**13.42±3.606**
    中剂量组 4047.57±8.106**12.07±4.191**
    高剂量组 8050.36±17.18**12.59±1.820**
    *P<0.05,**P<0.01,与模型组比较;#P<0.05,##P<0.01,与空白组比较。
    下载: 导出CSV

    表  4  PTB对常压缺氧小鼠脑组织和心脏SOD活力的影响(n=10,$\bar x $±s

    组别给药剂量
    (mg/kg)
    脑SOD
    (U/mg•prot)
    心脏SOD
    (U/mg•prot)
    空白组71.75±19.92100.7±13.16
    模型组58.06±4.552#85.26±16.80#
    诺迪康组28056.88±14.44115.6±15.00**
    低剂量组 2068.98±10.70**139.7±25.62**
    中剂量组 4080.27±18.47**124.7±21.92**
    高剂量组 8079.60±21.02**127.1±12.15**
    **P<0.01,与模型组比较;#P<0.05,与空白组比较。
    下载: 导出CSV

    表  5  PTB对常压缺氧的PC12细胞损伤存活率的影响($\bar x $±s

    组别样本数(个)给药剂量(ng/ml)存活率(%)
    空白组3100.00±3.01
    模型组337.26±3.80###
    PTB低剂量组3 2046.08±4.91**
    PTB中剂量组3 20052.90±6.85***
    PTB高剂量组3200061.09±3.53***
    下载: 导出CSV
  • [1] 侯春英, 卢多. 氧气对基因组的结构与化学影响[J]. 药学学报, 2020, 55(8):1744-1753.
    [2] KIRMES I, SZCZUREK A, PRAKASH K, et al. A transient ischemic environment induces reversible compaction of chromatin[J]. Genome Biol,2015,16:246. doi:  10.1186/s13059-015-0802-2
    [3] 刘思亮, 李燕, 于巍, 等. 活性氧簇在脑缺血-再灌注损伤中的损伤与保护作用[J]. 现代生物医学进展, 2019, 19(5):969-974.
    [4] SU L J, ZHANG J H, GOMEZ H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J]. Oxid Med Cell Longev,2019,2019:5080843.
    [5] 刘凤英, 马海英. 高原环境脑损伤与药物治疗研究进展[J]. 国际药学研究杂志, 2019, 46(6):418-422.
    [6] 黄海涛, 李楠. 高原反应的药物预防与治疗[J]. 武警医学, 2017, 28(12):1282-1285. doi:  10.3969/j.issn.1004-3594.2017.12.031
    [7] 洪丽, 申宝德, 王镜, 等. 抗高原反应的药物研究进展[J]. 中国医院用药评价与分析, 2021, 21(1):125-128.
    [8] KAYSER B, DUMONT L, LYASAKOWSKI C, et al. Reappraisal of acetazolamide for the prevention of acute mountain sickness: a systematic review and meta-analysis[J]. High Alt Med Biol,2012,13(2):82-92. doi:  10.1089/ham.2011.1084
    [9] 张瑞霞. 红景天治疗缺氧性疾病的相关机制[J]. 中国高原医学与生物学杂志, 2020, 41(2):134-138.
    [10] 王玉亮, 郭美丽, 张戈, 等. 毛裂蜂斗菜根茎的化学成分及抗炎活性[J]. 第二军医大学学报, 2006, 27(11):1210-1213. doi:  10.3321/j.issn:0258-879X.2006.11.014
    [11] 李余先, 王燕, 郭美丽. 蜂斗菜的化学成分研究[J]. 第二军医大学学报, 2010, 31(7):779-781.
    [12] 谢曜宇, 李余先, 孙一鸣, 等. 蜂斗菜根茎中的一个新倍半萜成分及其抗缺氧活性[J]. 药学学报, 2016, 51(8):1285-1289.
    [13] 王业晴, 谢曜宇, 张慧, 等. 蜂斗菜总内酯对动物高原缺氧保护作用的研究[J]. 药学实践杂志, 2017, 35(2):116-120,125. doi:  10.3969/j.issn.1006-0111.2017.02.005
    [14] 张洁, 袁东亚, 李文华, 等. 氧自由基与高原病研究进展[J]. 医学综述, 2011, 17(22):3384-3386. doi:  10.3969/j.issn.1006-2084.2011.22.009
    [15] ZHANG J X, WANG X L, VIKASH V, et al. ROS and ROS-mediated cellular signaling[J]. Oxidative Med Cell Longev,2016,2016:4350965.
    [16] 袁牧, 王昌留, 王一斐, 等. 超氧化物歧化酶的研究进展[J]. 中国组织化学与细胞化学杂志, 2016, 25(6):550-558. doi:  10.16705/j.cnki.1004-1850.2016.06.015
    [17] YOUNUS H. Therapeutic potentials of superoxide dismutase[J]. Int J Heal Sci,2018,12(3):88-93.
    [18] 袁平戈, 张大志. 还原型谷胱甘肽的作用机制及临床应用[J]. 药品评价, 2006, 3(5):385-390. doi:  10.3969/j.issn.1672-2809.2006.05.022
    [19] 黄文杰, 马建林. 脂质过氧化物临床研究进展[J]. 医学新知杂志, 2019, 29(1):78-79,82.
    [20] GĘGOTEK A, SKRZYDLEWSKA E. Biological effect of protein modifications by lipid peroxidation products[J]. Chem Phys Lipids,2019,221:46-52. doi:  10.1016/j.chemphyslip.2019.03.011
    [21] ADEVA-ANDANY M, LÓPEZ-OJÉN M, FUNCASTA-CALDERÓN R, et al. Comprehensive review on lactate metabolism in human health[J]. Mitochondrion,2014,17:76-100. doi:  10.1016/j.mito.2014.05.007
  • [1] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架治疗创伤性脑损伤的研究 . 药学实践与服务, 2025, 43(2): 67-74. doi: 10.12206/j.issn.2097-2024.202406034
    [2] 曹奇, 张嘉宝, 王培.  基于无监督自动降维分析与手动圈门联用的骨骼肌髓系细胞多色流式分析方法 . 药学实践与服务, 2025, 43(3): 118-122. doi: 10.12206/j.issn.2097-2024.202404077
    [3] 杨金润, 黎翔, 孙旸.  ORM1促肝细胞增殖的作用及其机制探索 . 药学实践与服务, 2025, 43(5): 1-6. doi: 10.12206/j.issn.2097-2024.202410014
    [4] 白云俊, 赵玉洋, 金艳, 付璐, 袁媛.  蓝草类药材基原植物叶片表皮显微结构研究 . 药学实践与服务, 2025, 43(4): 1-6. doi: 10.12206/j.issn.2097-2024.202404069
    [5] 何静, 安晔, 张朝绅.  复方黑参滴丸与复方黑参丸药效学实验比较研究 . 药学实践与服务, 2025, 43(1): 17-21. doi: 10.12206/j.issn.2097-2024.202404009
    [6] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [7] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [8] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
    [9] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [10] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [11] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [12] 黄韵, 张正银, 金英, 郑怡菁, 李铁军, 孙莉莉.  耐碳青霉烯类肺炎克雷伯菌及大肠埃希菌临床分离株耐药性及耐药基因分析 . 药学实践与服务, 2024, 42(10): 439-444. doi: 10.12206/j.issn.2097-2024.202309059
    [13] 钱淑雨, 李铁军.  耐碳青霉烯类肠杆菌耐药机制的研究进展 . 药学实践与服务, 2024, 42(10): 419-425. doi: 10.12206/j.issn.2097-2024.202405005
    [14] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  4077
  • HTML全文浏览量:  1874
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2022-04-19
  • 网络出版日期:  2022-07-27
  • 刊出日期:  2022-07-25

蜂斗菜总内酯对常压缺氧小鼠的保护作用研究

doi: 10.12206/j.issn.1006-0111.202111085
    基金项目:  军队医学科技青年培育计划拔尖项目(18QNP017)
    作者简介:

    李炳锋,硕士研究生. Tel:18758515788;Email:libf0930@163.com

    通讯作者: 郭美丽,教授,博士生导师. Tel:(021)81871302. Email:mlguo@126.com高 越,副教授,硕士生导师. Tel:(021)81871369;Email:gaoyue2000@hotmail.com
  • 中图分类号: R285

摘要:   目的  探讨蜂斗菜总内酯(PTB)对提高动物耐缺氧能力的作用。  方法  建立小鼠常压缺氧模型和PC12细胞氧糖剥夺模型(OGD),观察PTB对小鼠常压密闭空间下存活时间、血清乳酸脱氢酶(LDH)活性和丙二醛(MDA)含量,对脑组织与心脏超氧化物歧化酶(SOD)和还原型谷胱甘肽(GSH)的活性,以及对脑组织病理变化和细胞存活率的影响。  结果  PTB可以显著提高常压缺氧小鼠在密闭空间下的存活时间,提高机体SOD、GSH的活性,减少脂质过氧化物的产生,降低无氧酵解的程度,保护神经细胞的结构和功能,提高OGD处理后的细胞的存活率。  结论  PTB具有明显的提高小鼠耐缺氧能力的作用,其作用机制可能与清除氧自由基、抑制脂质过氧化反应、保护神经细胞结构和功能有关。

English Abstract

关梦瑶, 夏天爽, 何旭辉, 史策, 蒋益萍, 辛海量. 黑蒜多糖抗便秘作用研究[J]. 药学实践与服务. doi: 10.12206/j.issn.2097-2024.202403059
引用本文: 李炳锋, 段雅倩, 王旭, 郭美丽, 高越. 蜂斗菜总内酯对常压缺氧小鼠的保护作用研究[J]. 药学实践与服务, 2022, 40(4): 314-319. doi: 10.12206/j.issn.1006-0111.202111085
GUAN Mengyao, XIA Tianshuang, HE Xuhui, SHI Ce, JIANG Yiping, XIN Hailiang. Study on Anti-constipation Effect of Black Garlic Polysaccharide[J]. Journal of Pharmaceutical Practice and Service. doi: 10.12206/j.issn.2097-2024.202403059
Citation: LI Bingfeng, DUAN Yaqian, WANG Xu, GUO Meili, GAO Yue. Protective effects of the total bakkenolides from Petasites tricholobus on hypoxia mice under normobaric pressure[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(4): 314-319. doi: 10.12206/j.issn.1006-0111.202111085
  • 氧气是生命活动的基本物质,在机体内主要参与能量代谢过程。作为一种至关重要的生命物质,氧气在多个层面影响着机体,甚至可以通过多种渠道影响基因[1]。Kirmes等的研究表明:在缺氧条件下,细胞在全基因组水平上会产生结构变化,染色质会发生聚集现象[2]。机体缺氧时,通过氧化呼吸链产生过多的活性氧簇(ROS),包括超氧阴离子、过氧化氢、羟自由基等。ROS不仅可以直接损伤脂质、蛋白质及核酸等生物大分子,还可以通过Fas/FasL、TNF-α/TNFRl、MAPK等信号通路诱导细胞凋亡[3-4]。目前,针对缺氧的防治,西药主要有碳酸酐酶抑制剂、糖皮质激素、茶碱等,中药较为成熟的有藏药红景天,胡黄连、黄芪等也被认为具有一定的抗缺氧损伤的能力[5]。乙酰唑胺作为FDA认可的唯一一种防治急性缺氧的药物,更多的是用来治疗急性缺氧,且其存在过敏反应、四肢麻木、疲劳、困倦等不良反应,肝肾功能异常的人不宜使用[6-8]。藏药红景天目前已被高原边防部队作为防治高原缺氧的常规药物。大部分学者认为红景天可以通过抑制氧化应激、抗凋亡、保护神经细胞等方式治疗缺氧性损伤,但其主要活性成分的抗缺氧作用机制仍不清楚[9]。作为预防用药,红景天需要提前7~15 d服用,才能较好起到提高抗缺氧能力的作用,疗程较长。目前,针对缺氧的治疗仍以给予高浓度氧气最为直接有效,而对于提高耐缺氧能力,目前尚无安全高效的药物。

    毛裂蜂斗菜(Petasites tricholobuson)是菊科蜂斗菜属下的一种,在民间广泛用于消肿止痛、解毒祛瘀,治跌打损伤、毒蛇咬伤等。课题组前期实验已经证明,其醇提取物具有抗炎作用[10-12]。本实验通过观察PTB对小鼠存活时间、血清乳酸脱氢酶(LDH)活性和丙二醛(MDA)含量变化,对脑组织与心脏超氧化物歧化酶(SOD)和还原型谷胱甘肽(GSH)活性变化、脑组织病理变化,以及对大鼠肾上腺嗜铬细胞瘤细胞(PC12)制成糖氧剥夺模型(OGD)后存活率的影响,进一步探讨PTB的抗缺氧能力及可能的作用机制。

    • 昆明种小鼠110只,雄性,SPF级,体质量23~25 g,合格证号:SCXK(京)2019-0010(斯贝福生物技术有限公司),饲养于清洁级动物房,人工照明模拟昼夜变化;PC12细胞(美国ATCC细胞库)。

    • 蜂斗菜总内酯(自提):经高效液相色谱(HPLC)检测,蜂斗菜总内酯含量为74.8%,其中,内酯B、内酯Ⅲa、内酯Ⅳa的含量分别为13.4%、46.8%、14.6%,各单体成分分子结构式均已明确[13];诺迪康胶囊(规格:0.28 g/粒,西藏诺迪康药业股份有限公司,批号:200402);0.9%氯化钠溶液(500 ml,济民健康管理股份有限公司,批号:S200516E52);LDH试剂盒、GSH试剂盒、总蛋白定量测试盒、MDA试剂盒、SOD测试盒(南京建成生物工程研究所),规格:96T,批号:20210914、20211012、20210603、20211012、20211012;MTT(3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide)(美国Sigma 公司);高糖DMEM培养基、胎牛血清(美国Hyclone公司);混合气体(95%N2,5%CO2)(上海成功气体工业有限公司);CO2气体(海军军医大学热卫系)。

    • 全自动酶标仪、1300 SERIES A2型超净台(美国Thermo科技公司);SHIMADZU LC-20高效液相色谱仪(岛津有限公司);Pico17高速离心机(ThermoFisher科技公司);L-420低速离心机(湘仪离心机仪器有限公司);Tissuelyser-48多样品组织研磨机(上海净信实业发展有限公司);DHG.9.23A型电热恒温鼓风干燥箱(上海精宏实验设备有限公司);DK-8D型电热恒温水槽(上海一恒科技有限公司)。

    • 小鼠适应性饲养3 d,常规进食,自由饮水。根据预实验结果,采用随机数字法将小鼠分为空白对照组、模型组、阳性对照组(诺迪康280 mg/kg)、PTB低剂量组(20 mg/kg)、PTB中剂量组(40 mg/kg)、PTB高剂量组(80 mg/kg),其中空白对照组10只小鼠,其余各组20只小鼠。适应性饲养3 d后,按照小鼠质量10 ml/kg灌胃给药,连续给药3 d,空白对照组和模型组给予等体积的溶剂CMC-Na。本实验过程遵守动物福利、动物保护和伦理原则及相关规定。

    • 第3天给药1 h后,除空白对照组外,取其余每组小鼠各10只分别置于125 ml磨口广口瓶中(瓶内放置5 g钠石灰,用于吸附CO2),瓶口涂抹凡士林保证绝对密封,自盖上瓶盖开始计时,以小鼠呼吸心跳停止为小鼠窒息死亡判定依据,记录并统计各组小鼠死亡时间。

    • 根据小鼠常压密闭缺氧实验结果,将小鼠最短死亡时间(12 min)设为时间节点。除空白对照组外,将其余5组剩余小鼠分别置于125 ml磨口广口瓶中(瓶内放置5 g钠石灰,用于吸附CO2),瓶口涂抹凡士林保证绝对密封。自盖上瓶盖开始计时,到达时间节点后立即将小鼠取出,眼眶取血,血液样品放置于冰盒中保存。空白对照组于常压未缺氧条件下直接眼眶取血。各组小鼠眼眶取血后,立即脱颈处死,解剖并小心分离出脑组织,于冰盘上快速分离出右侧大脑半球,置4%多聚甲醛固定液中。左侧大脑半球保存在清洁干燥离心管中。脑组织固定后,解剖分离出小鼠心脏,用生理盐水充分灌洗后,用清洁滤纸吸干。所有样品均放置于液氮中临时保存。

    • 将各组小鼠右侧大脑半球切片制作成石蜡切片,分别通过脱蜡、染色、分化、封片等步骤,进行HE和尼氏染色。染色切片制作完成后进行显微镜镜检,图像采集分析。

    • 将取得的血液样品进行离心处理(4000 r/min,10 min),取上清液进行LDH活性、MDA含量的测定。将取得的心脏、左侧大脑半球称重,按照组织与生理盐水1∶9的比例,低温条件下制成10%的组织匀浆,进行SOD、GSH活性的测定。MDA含量、LDH活性、SOD活性、GSH活性的检测按照试剂盒说明书进行。

    • 将PC12细胞置于CO2细胞培养箱内培养(95%空气和5%CO2,37 ℃,饱和湿度),培养基由90%高糖DMEM和10%胎牛血清(FBS)组成,每3 d更换新的培养基。当细胞的生长达到80%~90%汇合度时,对细胞进行传代培养。细胞传代时,先弃去培养瓶内的培养基,用磷酸盐缓冲液(PBS)冲洗2次,加入不含EDTA的胰酶消化细胞,按照1:4的比例进行传代分瓶培养。待细胞生长状态稳定处于对数期生长时进行后续实验。

    • 称取适量蜂斗菜总内酯,加入无糖培养基配制成2000 ng/ml的溶液。按照比例,用无糖培养基将液体分别稀释为200 ng/ml和20 ng/ml的溶液。

    • 待铺于细胞培养板内的细胞汇合度达到80%且生长状态良好时,将原有培养基弃去,PBS冲洗2次后,模型组加入无糖培养基,给药组加入含有不同浓度PTB(20 、200、2000 ng/ml)的无糖培养基,置于缺氧装置(95% N2,5% CO2)内缺氧2 h后,将该装置移入37 ℃的恒温培养箱继续孵育12 h形成OGD模型。空白对照组照常更换培养基一次,在正常细胞培养环境下培养。

    • 将状态良好的细胞以5×104个/ml的密度铺于96孔细胞培养板,MTT法检测细胞存活率。MTT实验检测开始时,在各细胞培养孔中加入20 μl MTT溶液(5 mg/ml, 即0.5%MTT),继续在37 ℃细胞培养箱内孵育4 h。弃细胞上清液,每个细胞孔加入150 μl DMSO溶液,摇床上低速震荡10 min,使沉积在细胞内的结晶充分溶解。在酶标仪490 nm处测量各孔的吸光值(A值)。根据各组所得的A值,计算细胞的存活率,其中,未经OGD处理的空白组细胞的存活率均一化为100%,其余各组细胞的存活率是相对于空白组比值的百分比。细胞的存活率=(A实验组/ A空白组)×100%。

    • 采用SPSS21.0统计分析软件处理。计量资料数据以($\bar{x}$±s)表示,组间比较采用单因素方差分析,当P<0.05时,表示差异有统计学意义。

    • 常压缺氧条件下,模型组小鼠的平均存活时间为859.5 s。与模型组相比,阳性对照组(诺迪康)小鼠的存活时间延长了131.9 s(P<0.05),PTB低、中、高剂量均能显著延长小鼠的存活时间(P<0.05,P<0.01),结果见表1

      表 1  PTB对常压缺氧小鼠存活时间的影响(n=10,$\bar x $±s

      组别给药剂量(mg/kg)存活时间(t/s)
      模型组859.5±84.56
      诺迪康组280991.4±140.7*
      PTB低剂量组 201023±142.7**
      PTB中剂量组 40980±120.5*
      PTB高剂量组 801055±251.9*
      *P<0.05,**P<0.01,与模型组比较。
    • 与空白对照组相比,模型组的LDH活力明显增高(P<0.01);与模型组相比,阳性对照组(诺迪康)、PTB中、高剂量组LDH活力降低至空白组水平(P<0.05);低剂量组的LDH活力较模型组有所降低,但没有统计学差异(P>0.05),见表2

      表 2  PTB对常压缺氧小鼠血清LDH活力和MDA含量的影响(n=10,$\bar x $±s

      组别给药剂量(mg/kg)LDH(U/L)MDA(nmol/ml)
      空白组1052±59.4967.04±12.63
      模型组1280±206.6##204.3±58.42##
      诺迪康组2801092±70.16*132.5±54.02*
      PTB低剂量组 201153±82.80138.3±32.50*
      PTB中剂量组 401097±100.5*152.8±48.90*
      PTB高剂量组 801059±187.8*172.7±60.54
      *P<0.05,与模型组比较;##P<0.01,与空白组比较。

      与空白对照组相比,模型组的MDA含量显著增高(P<0.01);与模型组相比,阳性对照组(诺迪康)、PTB低、中剂量组MDA含量降低(P<0.05);PTB高剂量组MDA含量有所降低,但没有统计学差异(P>0.05),见表2

    • 在脑组织中,与空白对照组相比,模型组的GSH活力降低(P<0.01);与模型组相比,阳性对照组(诺迪康)的GSH活力有所升高,但是没有统计学差异(P>0.05);与模型组相比,PTB低、中、高3个剂量组的GSH活力均显著升高(P<0.01),见表3

      表 3  PTB对常压缺氧小鼠脑组织和心脏GSH活力的影响(n=10,$\bar x $±s

      组别给药剂量
      (mg/kg)
      脑GSH
      (μmol/g•prot)
      心脏GSH
      (μmol/g•prot)
      空白组44.17±8.6729.123±2.906
      模型组31.99±5.528##5.772±2.537#
      诺迪康组28037.47±13.568.345±2.336*
      低剂量组 2043.38±10.46**13.42±3.606**
      中剂量组 4047.57±8.106**12.07±4.191**
      高剂量组 8050.36±17.18**12.59±1.820**
      *P<0.05,**P<0.01,与模型组比较;#P<0.05,##P<0.01,与空白组比较。

      在心脏中,与空白对照组相比,模型组的GSH活力降低(P<0.05);与模型组相比,阳性对照组(诺迪康)的GSH活力升高(P<0.05);与模型组相比,PTB低、中、高3个剂量组的GSH活力均显著升高(P<0.01),见表3

    • 在脑组织中,与空白对照组相比,模型组的SOD活力降低(P<0.05);与模型组相比,阳性对照组(诺迪康)的SOD活力变化没有统计学差异(P>0.05);与模型组相比,PTB低、中、高3个剂量组的SOD活力均显著升高(P<0.01),见表4

      表 4  PTB对常压缺氧小鼠脑组织和心脏SOD活力的影响(n=10,$\bar x $±s

      组别给药剂量
      (mg/kg)
      脑SOD
      (U/mg•prot)
      心脏SOD
      (U/mg•prot)
      空白组71.75±19.92100.7±13.16
      模型组58.06±4.552#85.26±16.80#
      诺迪康组28056.88±14.44115.6±15.00**
      低剂量组 2068.98±10.70**139.7±25.62**
      中剂量组 4080.27±18.47**124.7±21.92**
      高剂量组 8079.60±21.02**127.1±12.15**
      **P<0.01,与模型组比较;#P<0.05,与空白组比较。

      在心脏中,与空白对照组相比,模型组的SOD活力降低(P<0.05);与模型组相比,阳性对照组(诺迪康)、PTB低、中、高3个剂量组的SOD活力均显著升高(P<0.01),见表4

    • 图1所示,与空白对照组相比,模型组小鼠神经细胞排列明显紊乱,细胞之间存在大量空泡(箭头所示);与模型组相比,阳性对照组及PTB中、高剂量组的小鼠脑组织排列较整齐,细胞间空泡较少,神经纤维束的走行较为整齐统一。

      图  1  HE染色观察小鼠脑组织病理变化(40×)

      尼氏染色下,与空白对照组相比,模型组海马区尼氏小体(箭头所示)明显减少,海马区细胞排列紊乱;与模型组相比,阳性对照组及PTB各剂量组的尼氏小体明显增加,细胞排列规则,见图2

      图  2  尼氏染色观察小鼠脑组织病理变化( 40×)

    • 表5所示,空白组细胞存活率为100.00%,模型组细胞存活率下降至(37.26±3.80) %,与空白组相比存在非常显著性差异(P<0.001)。PTB在20、200、2000 ng/ml浓度下的细胞存活率分别为(46.08±4.91) %、(52.90±6.85) %、(61.09±3.53) %,各浓度组相对于OGD组均有显著性差异(P<0.01,P<0.001,P<0.001)。

      表 5  PTB对常压缺氧的PC12细胞损伤存活率的影响($\bar x $±s

      组别样本数(个)给药剂量(ng/ml)存活率(%)
      空白组3100.00±3.01
      模型组337.26±3.80###
      PTB低剂量组3 2046.08±4.91**
      PTB中剂量组3 20052.90±6.85***
      PTB高剂量组3200061.09±3.53***
    • 缺氧条件下,由于ATP代谢障碍、机体代谢增强、体内Ca2+浓度增加等原因,产生过量的氧自由基。氧自由基通过损伤生物膜、蛋白质、DNA和糖分子,影响细胞信号传导和细胞凋亡,对机体产生损伤[14-15]

      课题组前期通过建立减压缺氧模型,测定实验动物存活率、血糖、肝糖原、肌糖原、ATP、乳酸(LD)、LDH等指标,论证了PTB具有维持血糖稳定,提高机体主要脏器中的糖原以及ATP的含量,减少LD积蓄以及LDH的活性,改善机体能量代谢的作用[13]。本论文采用常压缺氧模型进一步检测了在缺氧条件下,PTB对实验动物体内SOD、GSH、LDH活性、MDA含量、脑组织病理改变、对OGD处理后细胞存活状态等指标的影响,进一步完善了其对缺氧实验动物的保护作用。SOD被认为是抗氧化系统的第一道防线,是一种能够专一清除氧自由基的酶。它通过降低氧化活性部位金属离子的活性,以两步快速反应使${\rm{O}}^-_2$转变为H2O2和O2。H2O2再被过氧化氢酶还原成H2O[16-17]。GSH是一种非酶性抗氧化剂,通过其巯基氧化-还原态的转换,作为可逆的供氢体,和过氧化物及自由基结合,保护细胞膜中含巯基的蛋白质不被破坏[18]。在本实验中,PTB在低、中、高3个剂量下,均能显著增强缺氧小鼠心、脑组织中SOD、GSH的活性,提高机体清除氧自由基的能力,减轻缺氧损伤。

      脂质过氧化物(LPO)是人体内多聚不饱和脂肪酸和氧自由基结合后形成的。在缺氧条件下,LPO水平升高,机体细胞及细胞膜产生氧化反应,溶解细胞膜表面的磷脂,破坏细胞膜的生理结构[19]。LPO还能和细胞内的DNA、脂质、蛋白质形成复合物,刺激新陈代谢改变,导致细胞内信号传导的紊乱、功能障碍,甚至凋亡。MDA是LPO稳定的终产物[20]。LDH是生物体内氧化还原的重要酶系之一,它能可逆地催化乳酸氧化为丙酮酸。当机体缺氧时,主要参与葡萄糖的无氧代谢。LDH活性的升高是机体无氧酵解程度升高的重要提示之一[21]。在本实验中,PTB中、高剂量组小鼠的血清LDH含量较模型组相比明显降低,说明中、高剂量组小鼠的无氧酵解相对较少,反应出机体缺氧程度较轻。低、中剂量组小鼠的MDA含量较模型组相比明显降低,说明小鼠体内发生脂质过氧化反应相对较低。这说明PTB可以抑制缺氧条件下机体的脂质过氧化反应,改善机体缺氧程度。

      行为学实验结果显示,PTB在各剂量下均可延长常压缺氧小鼠在密闭空间下的存活时间。脑组织HE染色和尼氏染色表明,PTB具有保护神经细胞,维持细胞形态及功能的作用。体外实验结果表明,PTB在20、200、2000 ng/ml浓度下均能够提高OGD诱导的PC12细胞损伤存活率,存在一定的剂量依赖性,说明PTB对神经细胞的损伤具有保护作用。

      综上所述,蜂斗菜总内酯具有明显的提高小鼠耐缺氧能力的作用,其作用机制可能与清除氧自由基、抑制脂质过氧化反应、保护神经细胞结构和功能有关。相比于藏药红景天,蜂斗菜总内脂的用药量明显减少,可作为抗缺氧的天然药物,进一步研究其作用的通路机制。

参考文献 (21)

目录

/

返回文章
返回