-
人类AGP是位于9号染色体长臂上的AGP-A、AGP-B和AGP-B′3个相邻基因簇的产物[7]。AGP-A基因编码血清AGP的主要成分AGP1(占血浆AGP的75%),而其他2个基因则编码AGP2 [8]。AGP1有AGP1*S、AGP1*F1和AGP1*F2三种等位基因,其中,AGP1*S和AGP1*F1在全球人群范围内均有分布,AGP1*F2(由AGP1*S和AGP1*F1演变而来[9])在欧洲人、北非人和西亚人中很常见。相反,AGP2基因在大多数群体中是单态的。到目前为止,大约30个罕见的变异等位基因已通过电泳技术在相应的位点被区分开。在大鼠中,每个基因组只有一个AGP基因,位于第5染色体上。在小鼠中,AGP的3个主要基因(AGP1、AGP2和AGP3)在4号染色体上排列成一个簇,分别编码AGP1、AGP2和AGP3,这些基因与人类和大鼠的AGP基因结构相同,有6个外显子和5个内含子。一些研究表明,组成型的AGP-1水平远远高于AGP2(5倍),AGP1信使RNA(mRNA)的增加而不是AGP2 mRNA的增加是急性期反应期间小鼠AGP mRNA变化的主要原因[10]。此外,尽管AGP3基因序列与AGP2基因序列非常相似,但存在一定的差异。AGP3在内含子1中缺少86个核苷酸,而AGP2在内含子5中有一个额外的(GT碱基起始)28区。已在哺乳动物中观察到同源AGP基因,包括啮齿动物、猫、狗、猪、猴子和人类。小鼠、大鼠、兔和猪的AGP基因与人AGP的同源性分别为44%、59%、70%和70%[11]。
-
AGP蛋白含有遗传多态性[12]。急性期刺激只能诱导AGP-A,因此AGP1是AGP家族中唯一的急性期蛋白。在人类中,AGP1前体是由201个残基组成的单个多肽链[13]。在蛋白质加工过程中,前18个残基的一个N-末端分泌信号肽被裂解,最终得到含有183个氨基酸的单链多肽,其中包括两个2硫键。AGP1和AGP2之间有22个氨基酸的差异。其他氨基酸可以出现在位置32和47上,导致多态性[14]。大鼠AGP蛋白的成熟形式分子量为40~44kDa[15],是一种187个氨基酸的蛋白质,只有一个二硫键,每个分子含有6个N-键复合型低聚糖[16]。
-
AGP是一种高酸性蛋白质,其等电点(pI)很低,在2.8~3.8之间[2]. 这种特性使AGP主要与碱性药物(如利多卡因、普萘洛尔、维拉帕米)结合,但也可与中性亲脂性分子(如类固醇激素)和酸性药物(如苯巴比妥)结合,而白蛋白则主要与酸性药物结合[17-18]。大多数药物以不同程度的亲和力与两种血浆蛋白结合。AGP的广泛和可变的唾液酸化是其低且宽pI的原因,这一特性可以影响药物亲和力,并最终影响药物代谢动力学(PK)[6]。由于大多数疾病状态下AGP水平增加[19],具有高亲和力的药物可能表现出更高的结合状态,从而改变药物的PK特性,表现为药物的总清除率(CL)和静脉输注稳态分布容积(Vss)降低。AGP的酸性特质与大量唾液酸化的聚糖相关。人类AGP含有5个多肽主链的N-连接聚糖,每个N-连接聚糖可形成多个(2个、3个或4个)分支,这些分支都是唾液酸化的位点[20]。去涎酸可导致pI从4.2增加到4.7[21-22]。去涎酸和升高血浆pH值可降低药物与AGP的结合[23-24]。AGP在血清中去涎酸,无唾液酸AGP的内吞和降解由肝脏无唾液酸糖蛋白受体介导,即所谓的“肝结合蛋白”(HBP)[25]。
-
蛋白质通常经历翻译后修饰,影响生理功能和半衰期(t1/2)。糖基化寡糖链(聚糖)是常见的翻译后修饰之一,在真核蛋白质中的发生率约为50%[26]。AGP在不同的物种中有不同数量的N-连接的潜在糖基化位点[27],糖基化主要有3种变化:分支度、唾液酸化和岩藻糖基化。理论上,这种高度的结构多样性将产生超过105种不同的AGP糖型,每种糖型在每个糖基化位点上都可以进行独特的聚糖组合[2],但在健康人血浆中仅观察到约12~20种聚糖组合。此外,聚糖链上的终末糖是造成聚糖多样性的主要原因,并且这种微异质性强烈依赖于病理生理条件。例如,在急性期反应的早期阶段,表达二氨基聚糖的糖类显著增加,同时AGP岩藻糖基化程度增加明显[28];在特应性哮喘患者中,尽管血浆和支气管肺泡灌洗液AGP水平在两组之间相似,但与非哮喘患者相比,聚糖分支的程度发生了变化[27]。AGP的糖基化可能受饮食模式的影响,更高的糖基化与更健康的饮食模式相关。糖基化改变与多种疾病的发生发展有关,特别是癌症和2型糖尿病,研究表明饮食可能通过AGP糖基化改变影响疾病状态[29]。
-
AGP主要由肝细胞和实质细胞合成[30]。AGP的肝外产生在40多年前就被描述过。人乳腺上皮细胞、Ⅱ型肺泡上皮细胞、人微血管内皮细胞、人粒细胞、单核细胞系THP-1、单核细胞、巨噬细胞和多形核白细胞已被证明能合成和分泌AGP。然而,在T和B淋巴细胞中未发现AGP[24]。组成型AGP基因在肝外器官如肺、乳腺、肾脏和脂肪组织中均有表达[2]。AGP属于先天免疫关键因素的APP家族一员,具有多样化的生物学活性。AGP活性的调节是复杂的。其中炎症不仅诱导AGP血清浓度的增加,而且诱导其碳水化合物部分质的改变,产生大量的糖型,每一种糖型都可能具有不同的活性[31]。AGP的调控主要包括内源性与外源性两方面的因素。
-
炎性细胞因子TNFα、IL-1 、IL-8、IL-11和IL-6,以及C-反应蛋白(CRP)、结合珠蛋白(Hp)、血清淀粉样蛋白A(SAA)和血凝素等其他APP,已被证明可调节AGP表达水平[32-35]。研究发现肝、肠、血管壁、胰腺和肾脏中表达的核胆汁酸受体法尼类X受体(FXR)[36],可以通过小鼠AGP1启动子上游的FXR反应元件激活小鼠肝脏AGP的表达[37]。小鼠AGP基因的诱导更为复杂,涉及到正、负两种转录因子(C/EBPβ[38] 和因子B [39-40],两者均为核仁蛋白,包含在启动子180 bp区域中),它们在急性期反应中对AGP基因的转录诱导起协同作用。雌激素可以降低肌肉细胞和肝脏细胞的AGP蛋白表达及其启动子活性,阻断雌激素受体或者抑制p38丝裂原活化蛋白激酶可消除这种作用[41]。胆汁酸超载可以诱导肝细胞因子AGP表达[42]。另外,miR-362-3p被鉴定为AGP1的上游调节性miRNA,并对H/R损伤心肌细胞AGP1的mRNA和蛋白表达水平产生负调控[43]。
-
反复服用苯巴比妥和利福平可通过独立于炎症途径的机制提高AGP血清水平[44]。维甲酸通过激活维甲酸受体α和维甲酸X受体α,在转录水平上以剂量依赖的方式增加AGP的表达[45]。铅可诱导AGP基因过度表达,可能与NF-κB途径的激活相关[46]。维生素D可诱导人单核细胞AGP1的表达[47]。大环内酯类抗生素影响着AGP的表达水平。例如,克拉霉素可以剂量依赖性地增加正常和糖尿病大鼠血清中AGP蛋白水平以及肝脏中AGP mRNA的稳态水平[48];红霉素在体外和体内均以剂量和时间依赖的方式增加AGP蛋白的表达[49]。此外,临床研究发现用异丙肾上腺素、儿茶酚胺、纤溶酶原激活物抑制物1、他汀类药物或β受体阻滞剂治疗2型糖尿病或冠心病患者可以调节AGP水平[50]。
-
脂肪组织是一种高度异质性和动态的器官,在调节能量代谢和胰岛素敏感性方面起着重要作用。除了在营养传感和能量储存/耗散方面的经典作用外,脂肪组织还分泌大量生物活性分子(称为脂肪因子),通过旁分泌和/或内分泌作用参与免疫应答和代谢调节[51]。最近,AGP被鉴定为一种脂肪因子,在中枢通过与瘦素受体结合减少食物摄入,在外周通过抑制NF-κB和丝裂原活化蛋白激酶信号减轻脂肪组织炎症分别发挥作用[52-53]。研究发现AGP增加3T3-L1脂肪细胞的葡萄糖摄取活性,并减轻高血糖诱导的胰岛素抵抗以及TNF-α介导的脂肪细胞脂解,改善了肥胖和糖尿病db/db小鼠的葡萄糖和胰岛素耐受性[52],表明AGP可以通过整合炎症和代谢信号保护脂肪组织免受过度炎症,从而避免引起脂肪组织的代谢功能障碍。另外的研究也表明AGP抑制脂肪组织中脂肪的生成可能是通过抑制胰岛素介导的葡萄糖氧化实现的[54]。最新的研究又将AGP的代谢功能定义为一种新的胆汁酸调节的肝细胞因子。宋浩利等人研究发现胆汁酸诱导肝脏AGP分泌,阻断脂肪细胞分化。在脂肪细胞分化过程中,AGP抑制C/EBPβ、KLF5、C/EBPα和PPARγ等成脂转录因子的基因表达,拮抗脂肪生成信号[42]。肝源性胆汁酸不仅是乳化膳食脂类的天然表面活性剂,而且是葡萄糖和脂类稳态的重要代谢调节剂[36],这样的能量代谢调节作用可能是通过刺激AGP分泌产生的。脂肪组织中细胞外基质(ECM)的过量沉积被定义为脂肪组织纤维化,是代谢紊乱如肥胖和2型糖尿病的主要原因。近期王鹏源等人研究发现,AGP可以通过激活AMPK抑制TGF-β1的表达,在脂肪组织中发挥直接的抗纤维化作用[55]。定期规律运动克服肥胖所带来的益处,部分源于运动过程中分泌的一些细胞因子(包括蛋白质、肽、酶和代谢物),增加了白色脂肪组织中棕色脂肪细胞特异性基因的表达而诱导白色脂肪组织的褐变[56]。同时,研究发现适当的运动训练能够升高血浆AGP水平[57-58],基于AGP与脂肪组织的密切关系,它很有可能在促进运动引起的白色脂肪棕色化中发挥一定的作用。
-
拉姆塞等[59]研究发现急性期蛋白AGP可以与骨骼肌相互作用,抑制胰岛素刺激的葡萄糖氧化。另外,研究表明AGP具有抗疲劳作用,通过与细胞膜上CCR5受体结合激活AMPK,从而促进肌肉糖原合成增强肌肉耐力[49, 60]。同时,万静静等[49]发现大环内酯类药物红霉素通过升高AGP的表达增强骨骼肌细胞线粒体呼吸链氧化磷酸化能力,促进ATP生成水平来调节肌肉耐力。AMPK是一种关键的细胞能量传感器,在细胞能量水平降低(AMP:ATP和ADP:ATP比率升高)或某些激素刺激(如脂联素)下被激活[61]。在脂肪组织中,AMPK激活促进脂肪酸氧化,抑制脂质合成[62]。研究已经证明脂肪组织中AGP与AMPK存在相互作用[55],因此,AGP在脂肪组织能量代谢方面的作用以及AGP如何作用于脂肪细胞的AMPK信号,是值得进一步研究的。
-
AGP与糖尿病风险的增加密切相关。研究表明1型糖尿病儿童和青少年的血清和尿AGP水平均显著升高,是糖尿病微血管并发症的一个重要独立因素[63]。ChinaMAP通过全基因组关联分析探索了中国人群中2型糖尿病和肥胖遗传相关因素,发现AGP是2型糖尿病风险高频基因位点,进一步的血糖相关分析发现AGP1与空腹血糖(FBG)升高显著正相关[64]。在健康的年轻成年人中,高水平的体脂百分比与血浆AGP的升高具有相关性[65],表明肥胖作为糖尿病的独立危险因素可能与AGP的升高有关。同时临床研究表明,AGP可以作为一个有意义的生物标志物,可用于区分患有代谢综合征的超重/肥胖女性和代谢健康的女性,而不依赖于体重、脂肪质量和体力活动/体能[66]。在慢性疲劳综合征患者和啮齿动物疲劳模型中,AGP在血液和肌肉等多种组织中显著升高,表明其作为一种抗疲劳蛋白具有指示性生物标志物的潜能[67]。研究发现代谢综合征患者组血清AGP值(P<0.001)显著高于对照组[68],血清AGP水平与代谢综合征相关临床危险因素密切相关[69],这些研究发现为利用AGP诊断青少年代谢综合征,以预防未来并发症提供了可能性。这些进一步验证了AGP在调节代谢稳态的作用,其在代谢相关疾病发生发展中可能发挥着重要作用。
-
鉴于蛋白质组学和高分辨率质谱技术的最新进展,AGP定量和/或定性分析在疾病诊断、预后和特征描述方面的应用日益增多,使得AGP有可能成为提高相关疾病治疗成功率的鉴别标准。在此我们主要综述了AGP的结构特征、生化特性以及表达的调控,重点总结了AGP在调节代谢中的最新研究进展,表明它可能是一个与肥胖、代谢综合征等代谢性疾病相关的有前景的因素,为代谢性疾病的诊断、预防与治疗提供了一个新的策略方向。
The research progress on the basic characteristics and metabolic regulation of α1-acid glycoprotein
-
摘要: 代谢稳态是机体生存必需的基础性功能。α1-酸性糖蛋白(AGP)是一种急性期蛋白,糖基化程度高达45%,具有高亲和力、低容量的特性。虽然AGP的生物学作用尚不完全清楚,但已经证明它可以调节免疫和代谢,并在携带药物转运,维持毛细血管屏障功能等方面发挥着重要作用。综述AGP的结构特征、生化特性,以及AGP的表达调控和代谢调节作用,提示其可能是代谢通路上的一个潜在关键因子,成为代谢性疾病的一个新的研究方向。Abstract: Metabolic homeostasis is a basic function necessary for the survival of the organism. α1-acid glycoprotein (AGP) is an acute phase protein with a glycosylation degree of up to 45%. It has high affinity and low capacity. Although the biological role of AGP is not fully understood, it has been proven that it can regulate immunity and metabolism, and play an important role in transporting drugs and maintaining capillary barrier function. In this review, the structural characteristics, biochemical characteristics and the regulation of AGP expression were reviewed, with emphasis on the regulatory role of AGP in metabolism, suggesting that AGP may be a potential key factor in metabolic pathways, which provides a new research direction for metabolic diseases.
-
随着社会经济发展和饮食结构改变,功能性便秘(FC)发生率逐年攀升,并具有顽固性、复发性的特点,无根治特效药[1],目前临床上对于便秘的干预措施主要包括药物、按摩、膳食调理等,但都存在依从性低、副作用明显、疗效不可靠等弊端[2],新型抗便秘产品的研发具有迫切需求。黑蒜是一种发酵大蒜,在高温高湿条件下发酵一定时间制得[3]。黑蒜主要化学成分包括多糖、类黑精、蛋白质、多酚、含硫化合物等[4],研究表明其具有显著的抗氧化、抗炎、抗肿瘤、抗肥胖[5-9]等作用,近年,黑蒜在通便相关的药食同源产品研发领域应用较多,但关于黑蒜抗便秘作用的研究较少,抗便秘功效成分更不明确,相关产品进一步研发与推广缺乏足够的科学依据。且黑蒜用于抗便秘每日需服用20 g以上[10],易导致依从性差,难以长期坚持等问题。有研究发现大蒜多糖具有一定抗便秘作用[11],而大蒜在加工成黑蒜的过程中糖类物质含量可增加数倍[12-13],可合理推测黑蒜多糖可能具有更显著的抗便秘作用,是黑蒜抗便秘作用的物质基础之一,但目前还没有相关的研究。因此,本文建立复方地芬诺酯(CO.D)诱导的小鼠FC模型,探究黑蒜多糖的抗便秘作用,为新型抗便秘产品的研发提供科学依据。
1. 材料与仪器
1.1 实验材料
黑蒜(批号:20231030,上海明可名生物科技有限公司);乳果糖口服液(规格:667 mg/ml,批号:22110047,北京韩美药品有限公司);复方地芬诺酯片(2.5 mg/片,批号:210804,仁和堂医药连锁股份有限公司)。
1.2 实验试剂
D-无水葡萄糖(批号:S22J12H137237,源叶生物);无水乙醇(批号:P2708277,泰坦科技);生理盐水(批号:230327042,雷根生物);4%多聚甲醛(批号:HP184401,博光生物);浓硫酸(批号:
20230420)、 丙酮(批号:20230807 )、石油醚(批号:20220507 )均购自国药集团;三氯乙酸(批号:C14990699)、活性炭粉(批号:C14853603)、阿拉伯树胶粉(批号:C15109301)、苯酚(批号:C15031044)均购自麦克林生化;所有水均为超纯水机所制一级水。1.3 实验仪器
鼓风干燥箱DAG-924(满贤经贸);循环水式多用真空泵SHB-III(明杰仪器);万分之一天平JA1003(恒平仪器);电热恒温水浴锅HWS-12(一恒仪器);高速离心机M18G(创宜生物);旋转蒸发器RE-52AA(亚荣仪器);超纯水机Smart-S(和泰仪器)。
1.4 实验动物
SPF级C57雄性小鼠,体重18 ~22 g,许可证号: SCXK(浙)2019-00004,杭州子源实验动物科技有限公司。
2. 方法
2.1 黑蒜多糖的提取
取10 g黑蒜,按下列步骤处理: ①脱脂:剥去外壳,研磨成泥,85%乙醇水溶液(V/V)浸渍,常温静置8 h,抽滤,滤渣用85%乙醇水溶液洗涤2次,置于烘箱60℃挥干至无醇味,充分研磨获得脱脂黑蒜粉。②水提:所得脱脂黑蒜粉用80℃热水浸提1 h,料液比为1∶50,抽滤,滤液减压浓缩至原体积1/2。③脱蛋白:在浓缩液中加入等体积10%三氯乙酸水溶液,充分混匀,4℃静置10 h,离心取上清液。④醇沉:上清液加入无水乙醇,调节乙醇水溶液浓度为80%,充分混匀,4℃静置12 h,离心取沉淀。⑤干燥:挥干有机溶剂,烘箱60℃干燥,去除残留溶剂,得黑蒜多糖干燥粉末。
2.2 多糖含量的测定
采用苯酚-硫酸法[14]测定多糖含量。
2.2.1 葡萄糖标准曲线绘制
精密称取D-无水葡萄糖适量,配置为0.05、0.1、0.2、0.3、0.4、0.5 mg/ml的葡萄糖标准溶液,分别吸取250 μl于离心管中,依次加入6%苯酚溶液150 μl、浓硫酸625 μl,迅速振摇,静置反应30 min,吸取200 μl于96孔板,设置3个复孔,测量490 nm处吸光度。绘制葡萄糖标准曲线,求得回归方程。
2.2.2 样品测定
精密称取适量黑蒜多糖干燥粉末,加入蒸馏水配制成一定浓度的多糖溶液,根据酶标仪检测范围进行稀释。吸取250 μl多糖溶液于96孔板中,按照2.2.1项下方法进行测定,计算样品中多糖的含量,进一步计算黑蒜多糖的得率和纯度。
计算公式:黑蒜多糖得率(%)=
$ \dfrac{W2}{W1}\times 100\text{%} $ 黑蒜多糖纯度(%)=
$ \dfrac{C\times V\times D}{W2}\times 100\text{%} $ 式中:
$ W $ 1为黑蒜质量(g);$ W $ 2为黑蒜多糖粉末质量;$ C $ 为样品中多糖的质量浓度(mg/ml);$ V $ 为提取溶剂体积(ml);$ D $ 为样品稀释倍数。2.3 动物实验给药剂量及配置
乳果糖口服液:乳果糖含量为667 mg/ml,正常成人用药量15 ml/d[15],换算可得小鼠的用药剂量为4 g/(kg·d)。量取乳果糖口服液6 ml,加蒸馏水14 ml,配置成200 mg/ml的乳果糖口服液。
CO.D混悬液:参考贾红慧等[16]研究结果,选用5 mg/kg剂量CO.D造模,模型稳定、灵敏。取CO.D 4片,研磨成细粉,加蒸馏水20 ml,配置成0.5 mg/ml的 CO.D混悬液,使用前需充分混匀。
黑蒜多糖低、中、高剂量溶液:参考胡淼等[17]研究结果,黑蒜多糖低、中、高剂量组剂量分别选用0.25、0.5、1 g/kg。称取0.5、1、2 g黑蒜多糖干燥粉末,分别加蒸馏水20 ml,配置成25、50、100 mg/ml的黑蒜多糖溶液。
墨汁[18]:阿拉伯树胶于蒸馏水中加热至完全溶解,料液比为1∶8。加入5 g活性炭粉末,混合均匀,重复煮沸3次,冷却后定容至100 ml,使用前需充分混匀。
含药墨汁:取适量受试药,加入墨汁,配制成与上述受试药剂量相同的含药墨汁。
2.4 实验动物分组及给药方法
2.4.1 小鼠小肠墨汁推进实验
小鼠60只,适应性饲养1周,正常饮食饮水。给药前按照体重随机分为空白组、模型组、阳性组、黑蒜多糖低、中、高剂量组,每组10只。
按照0.1 ml/10 g灌胃给药。①给药:空白组和模型组小鼠给予蒸馏水,阳性组和黑蒜多糖组小鼠分别给予乳果糖口服液和黑蒜多糖溶液。1次/d,连续给药1周,观察并记录小鼠体重变化及一般状态。②造模:末次给药后禁食12 h,自由饮水,空白组小鼠灌胃蒸馏水,其余各组小鼠灌胃CO.D溶液。③给药:30 min后空白组、模型组灌胃墨汁,其它组小鼠灌胃相应含药墨汁。25 min后处死,剖取小鼠小肠(幽门至盲肠上端),平铺成直线,测量小肠总长度和墨汁推进距离,避免拉伸小肠,影响实验结果。
计算公式:小肠墨汁推进率(%)=墨汁推进距离(cm)/小肠总长度(cm)×100%
2.4.2 小鼠排便实验
分组、给药剂量及方法同“2.4.1”项下实验方法,给药后,记录每只小鼠首次排出黑便的时间、6 h内排出黑便的数量及重量,并进行粪便含水量测定,同时观察粪便性状。含水量测定方法为:将小鼠新鲜粪便置于提前干燥、称重的容器中,称重,于烘箱中干燥至重量不再变化,计算粪便含水量。
计算公式:粪便含水量(%)=
$ \dfrac{M1-M2}{M1}\times 100\text{%} $ 式中:M1为干燥前粪便质量(g),M2为干燥后粪便质量(g)。
2.5 统计学方法
采用SPSS 24统计软件进行数据分析,以均数±标准差(
$ \bar{X} $ ±S)表示计量资料。两两比较采用LSD-t检验,多组比较采用单因素方差分析,P<0.05表示差异有统计学意义,P<0.01表示差异显著,P<0.001表示差异极显著。3. 结果与分析
3.1 黑蒜多糖的得率和纯度
精密称量所得黑蒜多糖干燥粉末质量为0.832 g,代入公式计算可得黑蒜多糖的得率为8.32%。以葡萄糖浓度(mg/ml)为横坐标,吸光度为纵坐标,可得回归方程为Y=
2.2829 X+0.0764 ,相关系数r=0.9982 ,线性关系较好,代入回归方程计算可得黑蒜多糖的纯度为58.23%。3.2 黑蒜多糖对小鼠体重的影响
从表1可以看出,与空白组相比,各组小鼠体重均正常增长,无显著性差异,表明黑蒜多糖不会对正常小鼠体重产生影响。实验过程中,各组小鼠饮食正常,状态良好,无腹泻等不良反应,为后续实验提供前提保证。
表 1 黑蒜多糖对小鼠体重的影响组别 小鼠小肠墨汁推进实验 排便实验 初始体重
(m/g)最终体重
(m/g)初始体重
(m/g)最终体重
(m/g)空白组 21.28±1.15 22.23±1.19 21.80±1.02 22.90±0.61 模型组 21.20±1.36 22.24±1.22 21.58±1.00 22.64±0.84 阳性组 21.17±1.18 22.31±1.28 21.42±1.01 22.81±0.91 黑蒜多糖
低剂量组21.44±1.32 22.38±1.54 21.98±1.20 23.02±1.20 黑蒜多糖
中剂量组21.06±1.13 22.16±0.77 21.59±1.10 22.38±1.08 黑蒜多糖
高剂量组21.42±1.15 22.54±1.26 21.79±1.29 22.85±0.98 3.3 黑蒜多糖对小鼠小肠墨汁推进的影响
从表2可以看出,与空白组相比,模型组墨汁推进率极显著减小,表明本实验小鼠FC模型造模成功。与模型组相比,黑蒜多糖组小鼠墨汁推进率均显著增大,分别增大了24.75%、56.95%、95.25%,表明黑蒜多糖对FC模型小鼠小肠运动具有促进作用,且成剂量依赖性。
表 2 黑蒜多糖对小鼠小肠墨汁推进的影响组别 碳末推进距离
(l/cm)小肠总长度
(l/cm)墨汁推进率
(%)空白组 28.86±3.25 34.87±1.60 82.90±9.97 模型组 9.60±0.73*** 34.09±2.31 29.50±1.35*** 阳性组 26.94±3.55### 34.15±1.60 79.00±9.92### 黑蒜多糖
低剂量组12.58±1.15### 34.35±1.67 36.80±4.42# 黑蒜多糖
中剂量组16.01±2.06### 34.48±3.18 46.30±4.19### 黑蒜多糖
高剂量组19.95±1.60### 34.66±1.96 57.60±4.06### 注:*P<0.05,**P<0.01,***P<0.001,与空白组比较;#P<0.05,##P<0.01, ###P<0.001,与模型组比较。 3.4 黑蒜多糖对小鼠排便的影响
从表3可看出,与空白组相比,模型组小鼠首次排出黑便时间极显著延长,6 h排便粒数显著减少,6 h排便重量极显著减少,粪便含水量极显著降低,粪便呈球形或短椭圆形,部分串联,质地干硬,颜色普遍偏黑,表明本实验小鼠FC模型造模成功。与模型组相比,黑蒜多糖组小鼠首次排出黑便时间均极显著缩短,分别缩短了42.55%、44.99%、45.81%;6 h排便重量显著增加,分别增加了68.42%、78.95%、78.95%;粪便含水量极显著增大,分别增大了29.96%、32.78%和35.82%,粪便呈长椭圆形,质地较软,颜色为深棕色,无腹泻现象;除黑蒜多糖低剂量组外,中、高剂量组小鼠6 h排便粒数有统计学差异,分别增加了31.45%和32.52%。表明黑蒜多糖可能通过增大FC模型小鼠粪便含水量发挥促排便作用,各剂量组间效果差异不明显。
表 3 黑蒜多糖对小鼠排便及粪便含水量的影响组别 首黑便时间
(t/min)6 h排便数
(粒)6 h排便湿重
(m/g)6 h排便干重
(m/g)含水量
(%)空白组 111.50±8.98 16.50±3.51 0.46±0.10 0.22±0.04 52.16±2.53 模型组 241.50±19.54*** 11.13±2.75** 0.19±0.02*** 0.13±0.01*** 32.58±2.35*** 阳性组 121.50±110.81### 15.13±4.09# 0.41±0.12### 0.20±0.06## 50.06±1.83### 黑蒜多糖低剂量组 138.75±10.79### 13.75±2.71 0.32±0.08## 0.19±0.42# 42.34±2.27### 黑蒜多糖中剂量组 132.88±8.34### 14.63±3.66# 0.34±0.10## 0.19±0.05## 43.26±2.68### 黑蒜多糖高剂量组 130.88±9.09### 14.75±3.73# 0.34±0.12## 0.19±0.05## 44.25±6.72### 注:*P<0.05,**P<0.01,***P<0.001,与空白组比较;#P<0.05,##P<0.01,###P<0.001,与模型组比较。 4. 讨论
CO.D是一种止泻药,可通过抑制肠道平滑肌上的肠黏膜感受器抑制肠道运动,减慢排便进程,减少排便次数,同时肠内容物与肠粘膜接触时间延长,可促进肠内容物水分的重吸收,降低粪便含水量,是常用的FC小鼠模型造模药[19]。因此,本研究建立CO.D诱导的小鼠FC模型,探究黑蒜多糖的抗便秘作用。实验结果表明,黑蒜多糖可显著促进CO.D诱导的FC模型小鼠小肠蠕动,缩短排便时间,增加粪便含水量,从而发挥抗便秘作用。有研究显示成人每日服用约2 g黑蒜多糖便可达到较好疗效,用量仅为黑蒜的1/10[10]。给药期间小鼠状态良好、体重正常,未产生腹泻等副作用。因此,黑蒜多糖用于FC治疗可有效规避依从性差、副作用明显、疗效不可靠等弊端,前景广阔。此外,有相关研究发现,采用CO.D 10 mg/kg和15 mg/kg灌胃造模(大鼠)都存在停药后恢复的情况[20],提示我们使用CO.D进行慢性便秘造模,在造模成功后的治疗给药阶段也需要持续用药,以维持药效。目前该便秘模型的建立没有统一标准,后续可对造模时间、造模剂量进行优化,为更深入的黑蒜多糖抗便秘机制研究提供基础。
FC是典型的胃肠动力障碍性疾病,现代研究普遍认为,其发病机制主要与卡哈尔间质细胞(ICCs)数量、功能以及分布异常、肠神经递质水平异常、水通道蛋白表达异常、氧化应激指标失衡、肠道菌群紊乱等有关[21-22]。大蒜多糖主要为果聚糖,占干重的65%,在发酵生成黑蒜的过程中,果聚糖因高温作用大量降解为低聚果糖(FOS)、果糖等小分子糖[23]。FOS在国际营养学界被称作“具有优良难消化性的水溶性膳食纤维”,还是典型的“超强双歧因子”。因其无法被肠道吸收,可被双歧杆菌等益生菌分解利用,短时间内促进双歧杆菌增殖10~100倍,分解生成的有机酸,可有效调节肠道pH,刺激肠道蠕动,促进排便[24]。双歧杆菌还可抑制有害肠道病菌生长、抵抗病原菌感染、产生维生素并促进矿物质吸收以维持肠道健康,有研究表明人体双歧杆菌含量随年龄增长逐渐减少,是老年人易发生便秘的主要原因[25]。因此,需要进一步明确黑蒜多糖的单糖组成、相对分子质量以及结构,为后续抗便秘机制研究提供依据。此外,便秘成因复杂,可结合具体的证型如脾虚、血虚、阳虚、津亏等便秘模型进一步探究黑蒜多糖抗便秘作用的有效性。
-
[1] TOKITA K, SCHMID K. Variants of alpha-1-acid glycoprotein[J]. Nature,1963,200:266. doi: 10.1038/200266a0 [2] FOURNIER T, MEDJOUBI-N N, PORQUET D. Alpha-1-acid glycoprotein[J]. Biochim Biophys Acta,2000,1482(1-2):157-171. doi: 10.1016/S0167-4838(00)00153-9 [3] HEEGAARD P M, MILLER I, SORENSEN N S, et al. Pig α1-acid glycoprotein: characterization and first description in any species as a negative acute phase protein[J]. PLoS One,2013,8(7):e68110. doi: 10.1371/journal.pone.0068110 [4] BLAIN P G, MUCKLOW J C, RAWLINS M D, et al. Determinants of plasma alpha 1-acid glycoprotein (AAG) concentrations in health[J]. Br J Clin Pharmacol,1985,20(5):500-502. doi: 10.1111/j.1365-2125.1985.tb05107.x [5] BIENVENU J, SANN L, BIENVENU F, et al. Laser nephelometry of orosomucoid in serum of newborns: reference intervals and relation to bacterial infections[J]. Clin Chem,1981,27(5):721-726. doi: 10.1093/clinchem/27.5.721 [6] KREMER J M, WILTING J, JANSSEN L H. Drug binding to human alpha-1-acid glycoprotein in health and disease[J]. Pharmacol Rev,1988,40(1):1-47. [7] UMETSU K, YUASA I, HARADA A, et al. Orosomucoid phenotyping with monoclonal antibodies: polymorphic occurrence of ORM1*Q0 in aboriginal Taiwanese populations[J]. Hum Hered,1995,45(4):181-185. doi: 10.1159/000154286 [8] DENTE L, PIZZA M G, METSPALU A, et al. Structure and expression of the genes coding for human alpha 1-acid glycoprotein[J]. EMBO J,1987,6(8):2289-2296. doi: 10.1002/j.1460-2075.1987.tb02503.x [9] YUASA I, UMETSU K, VOGT U, et al. Human orosomucoid polymorphism: molecular basis of the three common ORM1 alleles, ORM1*F1, ORM1*F2, and ORM1*S[J]. Hum Genet,1997,99(3):393-398. doi: 10.1007/s004390050378 [10] CARTER K C, POST D J, PAPACONSTANTINOU J. Differential expression of the mouse alpha 1-acid glycoprotein genes (AGP-1 and AGP-2) during inflammation and aging[J]. Biochim Biophys Acta,1991,1089(2):197-205. doi: 10.1016/0167-4781(91)90008-A [11] COOPER R, PAPACONSTANTINOU J. Evidence for the existence of multiple alpha 1-acid glycoprotein genes in the mouse[J]. J Biol Chem,1986,261(4):1849-1853. doi: 10.1016/S0021-9258(17)36019-2 [12] FITOS I, VISY J, ZSILA F, et al. Specific ligand binding on genetic variants of human alpha1-acid glycoprotein studied by circular dichroism spectroscopy[J]. Biochem Pharmacol,2004,67(4):679-688. doi: 10.1016/j.bcp.2003.09.039 [13] SCHMID K, KAUFMANN H, ISEMURA S, et al. Structure of 1 -acid glycoprotein. The complete amino acid sequence, multiple amino acid substitutions, and homology with the immunoglobulins[J]. Biochemistry,1973,12(14):2711-2724. doi: 10.1021/bi00738a026 [14] KOPECKÝ V Jr, ETTRICH R, HOFBAUEROVÁ K, et al. Structure of human alpha1-acid glycoprotein and its high-affinity binding site[J]. Biochem Biophys Res Commun,2003,300(1):41-46. doi: 10.1016/S0006-291X(02)02765-1 [15] RICCA G A, HAMILTON R W, MCLEAN J W, et al. Rat alpha 1-acid glycoprotein mRNA. Cloning of double-stranded cDNA and kinetics of induction of mRNA levels following acute inflammation[J]. J Biol Chem,1981,256(20):10362-10368. doi: 10.1016/S0021-9258(19)68627-8 [16] YOSHIMA H, MATSUMOTO A, MIZUOCHI T, et al. Comparative study of the carbohydrate moieties of rat and human plasma alpha 1-acid glycoproteins[J]. J Biol Chem,1981,256(16):8476-8484. doi: 10.1016/S0021-9258(19)68868-X [17] SCHLEY J, MÜLLER-OERLINGHAUSEN B. Investigation of the binding of various tricyclic neuroleptics and antidepressants to alpha 1-acid glycoprotein[J]. J Pharm Pharmacol,1986,38(2):102-106. [18] KERKAY J, WESTPHAL U. Steroid-protein interactions. XIX. Complex formation between alpha 1-acid glycoprotein and steroid hormones[J]. Biochim Biophys Acta,1968,170(2):324-333. doi: 10.1016/0304-4165(68)90012-3 [19] WRIGHT J D, BOUDINOT F D, UJHELYI M R. Measurement and analysis of unbound drug concentrations[J]. Clin Pharmacokinet,1996,30(6):445-462. doi: 10.2165/00003088-199630060-00003 [20] SCHMID K. Human plasma alpha 1-acid glycoprotein: biochemical properties, the amino acid sequence and the structure of the carbohydrate moiety, variants and polymorphism[J]. Prog Clin Biol Res,1989,300:7-22. [21] EAP C B, CUENDET C, BAUMANN P. Orosomucoid (alpha-1 acid glycoprotein) phenotyping by use of immobilized pH gradients with 8 M urea and immunoblotting. A new variant encountered in a population study[J]. Hum Genet,1988,80(2):183-185. doi: 10.1007/BF00702865 [22] IIJIMA S, SHIBA K, KIMURA M, et al. Changes of alpha1-acid glycoprotein microheterogeneity in acute inflammation stages analyzed by isoelectric focusing using serum obtained postoperatively[J]. Electrophoresis,2000,21(4):753-759. doi: 10.1002/(SICI)1522-2683(20000301)21:4<753::AID-ELPS753>3.0.CO;2-Y [23] PONGANIS K V, STANSKI D R. Factors affecting the measurement of lidocaine protein binding by equilibrium dialysis in human serum[J]. J Pharm Sci,1985,74(1):57-60. doi: 10.1002/jps.2600740115 [24] WONG A K, HSIA J C. In vitro binding of propranolol and progesterone to native and desialylated human orosomucoid[J]. Revue Can De Biochimie et Biol Cell,1983,61(10):1114-1116. doi: 10.1139/o83-142 [25] ASHWELL G, HARFORD J. Carbohydrate-specific receptors of the liver[J]. Annu Rev Biochem,1982,51:531-554. doi: 10.1146/annurev.bi.51.070182.002531 [26] APWEILER R, HERMJAKOB H, SHARON N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database[J]. Biochim Biophys Acta,1999,1473(1):4-8. doi: 10.1016/S0304-4165(99)00165-8 [27] LUO Z M, LEI H, SUN Y, et al. Orosomucoid, an acute response protein with multiple modulating activities[J]. J Physiol Biochem,2015,71(2):329-340. doi: 10.1007/s13105-015-0389-9 [28] VAN DIJK W, HAVENAAR E C, BRINKMAN-VAN DER LINDEN E C. Alpha 1-acid glycoprotein (orosomucoid): pathophysiological changes in glycosylation in relation to its function[J]. Glycoconj J,1995,12(3):227-233. doi: 10.1007/BF00731324 [29] KIM T, XIE Y, LI Q, et al. Diet affects glycosylation of serum proteins in women at risk for cardiometabolic disease[J]. Eur J Nutr,2021,60(7):3727-3741. doi: 10.1007/s00394-021-02539-7 [30] BERGER E G, ALPERT E, SCHMID K, et al. Immunohistochemical localization of alpha1-acid-glycoprotein in human liver parenchymal cells[J]. Histochemistry,1977,51(4):293-296. doi: 10.1007/BF00494364 [31] CECILIANI F, LECCHI C. The immune functions of α1 acid glycoprotein[J]. Curr Protein Pept Sci,2019,20(6):505-524. doi: 10.2174/1389203720666190405101138 [32] ALAM T, PAPACONSTANTINOU J. Interaction of acute-phase-inducible and liver-enriched nuclear factors with the promoter region of the mouse. alpha. 1-acid glycoprotein gene-1[J]. Biochemistry,1992,31(7):1928-1936. doi: 10.1021/bi00122a005 [33] BAUMANN H, GAULDIE J. Regulation of hepatic acute phase plasma protein genes by hepatocyte stimulating factors and other mediators of inflammation[J]. Mol Biol Med,1990,7(2):147-159. [34] WIGMORE S J, FEARON K C, MAINGAY J P, et al. Interleukin-8 can mediate acute-phase protein production by isolated human hepatocytes[J]. Am J Physiol,1997,273(4):E720-E726. [35] SMITH S A, WATERS N J. Pharmacokinetic and pharmacodynamic considerations for drugs binding to alpha-1-acid glycoprotein[J]. Pharm Res,2018,36(2):30. [36] LEFEBVRE P, CARIOU B, LIEN F, et al. Role of bile acids and bile acid receptors in metabolic regulation[J]. Physiol Rev,2009,89(1):147-191. doi: 10.1152/physrev.00010.2008 [37] POREZ G, GROSS B, PRAWITT J, et al. The hepatic orosomucoid/α1-acid glycoprotein gene cluster is regulated by the nuclear bile acid receptor FXR[J]. Endocrinology,2013,154(10):3690-3701. doi: 10.1210/en.2013-1263 [38] CHANG C J, CHEN T T, LEI H Y, et al. Molecular cloning of a transcription factor, AGP/EBP, that belongs to members of the C/EBP family[J]. Mol Cell Biol,1990,10(12):6642-6653. [39] YANG T H, TSAI W H, LEE Y M, et al. Purification and characterization of nucleolin and its identification as a transcription repressor[J]. Mol Cell Biol,1994,14(9):6068-6074. [40] LEE Y M, TSAI W H, LAI M Y, et al. Induction of liver alpha-1 acid glycoprotein gene expression involves both positive and negative transcription factors[J]. Mol Cell Biol,1993,13(1):432-442. [41] SUN Y, QIN Z, WAN J J, et al. Estrogen weakens muscle endurance via estrogen receptor-p38 MAPK-mediated orosomucoid (ORM) suppression[J]. Exp Mol Med,2018,50(3):e463. doi: 10.1038/emm.2017.307 [42] LEE S H, CHOI J M, JUNG S Y, et al. The bile acid induced hepatokine orosomucoid suppresses adipocyte differentiati-on[J]. Biochem Biophys Res Commun,2021,534:864-870. doi: 10.1016/j.bbrc.2020.10.086 [43] SHI M J, MA X R, YANG Q, et al. miR-362-3p targets orosomucoid 1 to promote cell proliferation, restrain cell apoptosis and thereby mitigate hypoxia/reoxygenation-induced cardiomyocytes injury[J]. Cardiovasc Toxicol,2021,21(5):387-398. doi: 10.1007/s12012-020-09631-0 [44] LIN T H, SUGIYAMA Y, SAWADA Y, et al. Effect of surgery on serum alpha 1-acid glycoprotein concentration and serum protein binding of DL-propranolol in phenobarbital-treated and untreated rats[J]. Drug Metab Dispos,1987,15(1):138-140. [45] MOUTHIERS A, MEJDOUBI N, BAILLET A, et al. Retinoids increase alpha-1 acid glycoprotein expression at the transcriptional level through two distinct DR1 retinoic acid responsive elements[J]. Biochim Biophys Acta,2004,1678(2-3):135-144. doi: 10.1016/j.bbaexp.2004.03.005 [46] MEJDOUBI N, HENRIQUES C, BUI E, et al. NF-kappaB is involved in the induction of the rat hepatic alpha1-acid glycoprotein gene by phenobarbital[J]. Biochem Biophys Res Commun,1999,254(1):93-99. doi: 10.1006/bbrc.1998.9903 [47] GEMELLI C, MARTELLO A, MONTANARI M, et al. The Orosomucoid 1 protein is involved in the vitamin D - mediated macrophage de-activation process[J]. Exp Cell Res,2013,319(20):3201-3213. doi: 10.1016/j.yexcr.2013.08.017 [48] KOMORI T, KAI H, SHIMOISHI K, et al. Up-regulation by clarithromycin of alpha(1)-acid glycoprotein expression in liver and primary cultured hepatocytes[J]. Biochem Pharmacol,2001,62(10):1391-1397. doi: 10.1016/S0006-2952(01)00778-X [49] WAN J J, QIN Z, LEI H, et al. Erythromycin has therapeutic efficacy on muscle fatigue acting specifically on orosomucoid to increase muscle bioenergetics and physiological parameters of endurance[J]. Pharmacol Res,2020,161:105118. doi: 10.1016/j.phrs.2020.105118 [50] FANDIÑO-VAQUERO R, FERNÁNDEZ-TRASANCOS A, ÁLVAREZ E, et al. Orosomucoid secretion levels by epicardial adipose tissue as possible indicator of endothelial dysfunction in diabetes mellitus or inflammation in coronary artery disease[J]. Atherosclerosis,2014,235(2):281-288. doi: 10.1016/j.atherosclerosis.2014.05.921 [51] HUANG Z, XU A M. Adipose extracellular vesicles in intercellular and inter-organ crosstalk in metabolic health and diseases[J]. Front Immunol,2021,12:608680. doi: 10.3389/fimmu.2021.608680 [52] LEE Y S, CHOI J W, HWANG I, et al. Adipocytokine orosomucoid integrates inflammatory and metabolic signals to preserve energy homeostasis by resolving immoderate inflammation[J]. J Biol Chem,2010,285(29):22174-22185. doi: 10.1074/jbc.M109.085464 [53] SUN Y, YANG Y L, QIN Z, et al. The acute-phase protein orosomucoid regulates food intake and energy homeostasis via leptin receptor signaling pathway[J]. Diabetes,2016,65(6):1630-1641. doi: 10.2337/db15-1193 [54] RAMSAY T G, BLOMBERG L, CAPERNA T J. Α 1-acid glycoprotein inhibits lipogenesis in neonatal swine adipose tissue[J]. Animal,2016,10(5):812-820. doi: 10.1017/S1751731115002414 [55] WANG P Y, FENG J Y, ZHANG Z, et al. The adipokine orosomucoid alleviates adipose tissue fibrosis via the AMPK pathway[J]. Acta Pharmacol Sin,2021. doi: 10.1038/s41401-021-00666-9 [56] ATAKAN M M, KOŞAR Ş N, GÜZEL Y, et al. The role of exercise, diet, and cytokines in preventing obesity and improving adipose tissue[J]. Nutrients,2021,13(5):1459. doi: 10.3390/nu13051459 [57] CARLSON L A, TIGHE S W, KENEFICK R W, et al. Changes in transcriptional output of human peripheral blood mononuclear cells following resistance exercise[J]. Eur J Appl Physiol,2011,111(12):2919-2929. doi: 10.1007/s00421-011-1923-2 [58] TÉKUS É, VÁCZI M, HORVÁTH-SZALAI Z, et al. Plasma actin, gelsolin and orosomucoid levels after eccentric exercise[J]. J Hum Kinet,2017,56:99-108. doi: 10.1515/hukin-2017-0027 [59] RAMSAY T G, BLOMBERG L A, ELSASSER T H, et al. Α-1 acid glycoprotein inhibits insulin responses by glucose oxidation, protein synthesis and protein breakdown in mouse C2C12 myotubes[J]. Animal,2019,13(4):771-776. doi: 10.1017/S1751731118001787 [60] LEI H, SUN Y, LUO Z, et al. Fatigue-induced orosomucoid 1 Acts on C-C chemokine receptor type 5 to enhance muscle endurance[J]. Sci Rep,2016,6:18839. doi: 10.1038/srep18839 [61] HARDIE D G, ROSS F A, HAWLEY S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis[J]. Nat Rev Mol Cell Biol,2012,13(4):251-262. [62] DAVAL M, FOUFELLE F, FERRÉ P. Functions of AMP-activated protein kinase in adipose tissue[J]. J Physiol,2006,574(Pt1):55-62. [63] EL-BEBLAWY N M, ANDRAWES N G, ISMAIL E A, et al. Serum and urinary orosomucoid in young patients with type 1 diabetes: a link between inflammation, microvascular complications, and subclinical atherosclerosis[J]. Clin Appl Thromb Hemost,2016,22(8):718-726. doi: 10.1177/1076029616637185 [64] CAO Y N, LI L, XU M, et al. The ChinaMAP analytics of deep whole genome sequences in 10, 588 individuals[J]. Cell Res,2020,30(9):717-731. doi: 10.1038/s41422-020-0322-9 [65] PETTERSSON-PABLO P, NILSSON T K, BREIMER L H, et al. Body fat percentage is more strongly associated with biomarkers of low-grade inflammation than traditional cardiometabolic risk factors in healthy young adults - the Lifestyle, Biomarkers, and Atherosclerosis study[J]. Scand J Clin Lab Invest,2019,79(3):182-187. doi: 10.1080/00365513.2019.1576219 [66] WIKLUND P K, PEKKALA S, AUTIO R, et al. Serum metabolic profiles in overweight and obese women with and without metabolic syndrome[J]. Diabetol Metab Syndr,2014,6(1):40. doi: 10.1186/1758-5996-6-40 [67] SUN Y, ZHANG Z X, LIU X. Orosomucoid (ORM) as a potential biomarker for the diagnosis of chronic fatigue syndrome (CFS)[J]. CNS Neurosci Ther,2016,22(3):251-252. doi: 10.1111/cns.12522 [68] CAN U, BUYUKINAN M, GUZELANT A, et al. Investigation of the inflammatory biomarkers of metabolic syndrome in adolescents[J]. J Pediatr Endocrinol Metab,2016,29(11):1277-1283. [69] PALMNÄS M S A, KOPCIUK K A, SHAYKHUTDINOV R A, et al. Serum metabolomics of activity energy expenditure and its relation to metabolic syndrome and obesity[J]. Sci Rep,2018,8(1):3308. doi: 10.1038/s41598-018-21585-6 -

计量
- 文章访问数: 8010
- HTML全文浏览量: 3309
- PDF下载量: 99
- 被引次数: 0