-
尽管现代医疗卫生条件有了很大改善,但心血管疾病仍然是世界上主要的健康问题。据2018年世界卫生组织数据统计,每年因心血管疾病导致死亡人数占总死亡人数超过30%。动脉粥样硬化(AS)是动脉壁的一种慢性疾病,是引起心血管疾病的重要因素,病理特征为动脉内膜炎症、坏死、纤维化和钙化,动脉特定部位斑块形成[1-2]。AS致病因素较为复杂,目前认为主要与血管内皮细胞损伤、炎症反应、脂质代谢紊乱、自噬与凋亡失衡等有关。近些年研究发现,肠道菌群紊乱,特别是肠道菌群代谢产物和AS发生发展有着密切联系[3]。现代医学在AS防治中常用的保守治疗药物主要为他汀类药物,临床上取得一定的疗效,但是疗效不足以及药物的副作用等局限性也慢慢呈现出来[4]。传统中草药作为中华文化的瑰宝,在中国的应用超过5 000年,疗效显著,传承至今仍展现出强大生命力。中药尤其是中药复方由于具有多成分、多靶点、多途径的整体协同作用特点,在心血管疾病等复杂疾病的治疗方面显示出独特的优势。越来越多的学者研究中药复方治疗AS的药效物质基础及其作用机制,为中医药走向现代化、国际化奠定基础。本文综述近5年中药复方抗AS的作用机制,为抗AS中药复方的深入系统研究提供参考。
-
高脂血症是动脉粥样硬化的独立危险因素,尤其是血液中低密度脂蛋白含量,如果长时间超过人体生理需要浓度,就会引起动脉粥样硬化的发生和发展[5]。刘传亮等[6]探讨复方丹参川芎中药配方颗粒在常规治疗基础上对老年颈动脉粥样硬化的影响及机制,发现和常规治疗组比较,加用复方丹参川芎中药配方颗粒能够显著降低患者血清总胆固醇(TC)、三酰甘油(TG)、低密度脂蛋白(LDL),有效改善血脂水平,缩小动脉粥样硬化斑块。梅琼等[7]研究发现,当归川芎组合能显著降低大鼠血清LDL、TC、TG水平,升高血清高密度脂蛋白(HDL)水平,显著降低冠状动脉粥样斑块面积指数(PAI),具有减轻冠状动脉粥样斑块的作用。张燕等[8]探讨不同剂量益气滋阴、活血通络复方对动脉粥样硬化患者LDL和HDL水平的影响,结果表明该方防治动脉粥样硬化的作用,与其能够降低LDL、升高HDL有关。王磊等[9]观察复方三七护脉汤,联合西医常规治疗心血瘀阻型冠心病稳定型心绞痛患者的临床疗效,发现复方三七护脉汤联合西医常规治疗6周后,血清TC、TG、LDL水平均明显下降,血清HDL水平明显升高,可明显改善患者的血脂水平,疗效优于西医常规治疗。
-
泡沫细胞是AS病变的关键成分,它由血管内皮下的巨噬细胞摄取大量脂质胆固醇转变而成[10]。泡沫细胞形成在AS发生发展中起着至关重要的作用,它主要与脂质内流与外排失衡有关。胆固醇逆向转运(RCT)是HDL将多余胆固醇转运至肝脏再循环或以胆酸形式排出体外的过程[11]。王晓宁[12]研究发现,化浊通脉方能够通过提高兔胆固醇跨膜逆转运关键蛋白小凹蛋白-1(cav-1)及基因水平、亲环素A的基因水平,上调三磷酸腺苷结合盒转运体A1(ATP-binding cassette transporters A1,ABCA1)蛋白表达,促进细胞内胆固醇流出,从而达到抗AS效果。祝骥等[13]探讨复方丹参片对颈AS兔PPAR-γ/LXR-α/ABCA1信号通路的影响,发现复方丹参片能够降低血脂,增加兔颈动脉中PPAR-γ、LXR-α及ABCA1 mRNA及蛋白质的表达,表明其可能通过激活PPAR-γ/LXR-α/ABCA1信号通路促进RCT而发挥抗AS作用。秦合伟等[14]探讨血管软化丸抗AS的作用机制,发现用药后小鼠主动脉的miR-33 a表达量降低,ABCA1基因和蛋白相对表达量均升高,体外实验发现血管软化丸含药血清呈浓度和时间依赖性下调miRNA33a表达,明显上调ABCA1 mRNA和蛋白的表达,但能被转染miRNA33 mimic抑制。表明血管软化丸通过调控miR-33a,进而影响下游信号ABCA1的表达,促进巨噬细胞内胆固醇流出,这可能是其抗AS作用机制之一。许丽婷等[15]研究发现黄连解毒汤含药血清各剂量组能够明显降低泡沫细胞内TC含量,明显升高ABCA1 mRNA表达,表明黄连解毒汤可能是通过上调泡沫细胞ABCA1的转录与表达,促进胆固醇外排来实现防治AS效果的。Deng等[16]研究发现中药复方丹蒌片提取物能够通过激活PPARα/ABCA1信号通路,促进RCT,改善巨噬细胞内脂质沉积,从而防治AS。
-
血管内皮细胞损伤被认为是动脉粥样硬化的起始环节,贯穿动脉粥样硬化发生发展的全过程。其发生机制可能与一氧化氮(NO)与活性氧化物(ROS)失衡,即氧化应激有关[17]。过量ROS产生是导致氧化应激重要因素,血管内皮细胞中ROS的产生可诱导LDL的氧化和ROS敏感炎症基因的表达[18]。近年来大量资料提示氧化应激及其产物,尤其是氧化低密度脂蛋白(Ox-LDL)是血管内皮损伤的主要因素,在动脉粥样硬化的发生、发展中发挥重要作用[19]。李红蓉等[20]研究通心络对Ox-LDL诱导损伤的血管内皮细胞的保护作用,对人脐静脉内皮细胞加Ox-LDL(终浓度为30 mg/L)造成血管内皮细胞氧化应激损伤模型,发现通心络组细胞线粒体膜电位、细胞培养液中NO含量、超过氧化物岐化酶(SOD)活力明显升高,表明通心络有较强的抗氧化能力,可减轻Ox-LDL对血管内皮细胞的损伤。汪玉成等[21]探讨泽泻汤在Ox-LDL诱导的血管平滑肌细胞(VSMC)增殖中的作用和机制,发现泽泻汤含药血清可显著抑制Ox-LDL诱导的VSMC增殖,机制可能与上调p27蛋白和抑制周期蛋白D1、周期蛋白E、PCNA表达有关。王红梅等[22]研究龙血通络胶囊对Ox-LDL致人脐静脉内皮细胞损伤的保护作用,发现龙血通络胶囊可促进Ox-LDL损伤的血管内皮细胞增殖,降低胞内丙二醛(MDA)含量,减少细胞乳酸脱氢酶(LDH)释放量,提高SOD活力及NO含量,提示龙血通络胶囊可通过抑制Ox-LDL对人脐静脉内皮细胞损伤来防治动脉粥样硬化。
-
炎症反应在动脉粥样硬化发展过程中扮演着重要角色。在动脉粥样硬化早期阶段,主要特征是血管内皮损伤,脂质代谢紊乱以及血流动力学改变,在动脉粥样硬化进展期,主要特征是内皮下炎症反应[23]。因此,改善炎症反应对防治动脉粥样硬化至关重要。
-
与动脉粥样硬化有关的炎症反应相关通路主要有核因子κB(NF-κB)信号通路、丝裂原活化蛋白激酶(MAPK)信号通路与AP-1,以及Janus激酶/信号传导及转录激活因子(JAK/STAT)信号通路等[24]。Cheng等[25]研究发现,银丹心脑通可抑制NF-κB转录活性,降低下游通路中肿瘤坏死因子α(TNF-α)、白介素1β(IL-1β)等相关炎症因子表达,延缓动脉粥样硬化进展,表明其抗动脉粥样硬化机制可能是通过NF-κB信号通路调控血管的炎症反应来实现的。刘叙阳等[26]以脂多糖诱导的血管内皮细胞为研究对象,探讨补阳还五汤(益气活血)、血府逐瘀汤(活血)、四君子汤(益气)含药血清对细胞Toll样受体4(TLR4)及下游信号转导通路主要元件的影响,发现补阳还五汤和血府逐瘀汤可抑制TLR4,下游髓样分化因子88(My D88),肿瘤坏死因子受体相关因子6(TRAF-6)及NF-κB的基因表达,改善炎症反应,从而防治动脉粥样硬化。罗永苗[27]以动脉粥样硬化患者为研究对象,探讨参七脉心通胶囊基于NF-κB信号通路抗动脉粥样硬化的作用机制,发现参七脉心通胶囊能够下调NF-κB表达,降低IL-6、TNF-α炎症因子水平,抑制NF-κB信号转导通路,改善炎症反应,从而达到防治动脉粥样硬化的作用。张冰冰等[28]研究益糖康对动脉粥样硬化兔血清中炎症因子以及NF-κB、MAPK信号通路的影响,发现其能有效抑制NF-κB、P38MAPK、JNK蛋白磷酸化水平,降低下游炎症因子IL-1β、IL-6、TNF-α的表达,表明其可能是通过NF-κB和MAPK通路防治动脉粥样硬化。
-
巨噬细胞极化在炎症反应中扮演重要作用。巨噬细胞表型主要分为M1型和M2型,M1型巨噬细胞通过分泌促炎因子(IL-6、IL-12、IL-1β、TNF-α等)来促进炎症反应,M2型巨噬细胞主要通过分泌抑炎因子(IL-10、TGF-β等)来抑制炎症反应[29-30]。秦合伟等[31]探讨血管软化丸抗动脉粥样硬化的分子机制时发现,血管软化丸含药血清可以诱导巨噬细胞高表达M2型巨噬细胞的标志CD206,使巨噬细胞由M1型向M2型极化,抑制炎症反应。Li等[32]研究发现,通心络能够抑制源于THP-1的Notch-1信号通路,阻止巨噬细胞向M1型转化,从而改善炎症反应来发挥抗AS疗效。
-
人体内肠道微生物组成复杂,肠道内菌群数量超过上千种,但是在全部细菌中,有30~40种的优势细菌却占比99%[33]。肠道微生物对人体消化功能和健康关系密切,肠道微生物组成改变可能会促进动脉粥样硬化进程,Menni等[34]指出肠道菌群的多样性和动脉粥样硬化进展呈负相关,也有研究[35]表明艾克曼菌能够通过恢复肠道屏障,改善代谢内毒素血症引起的炎症,减轻AS病变。除此之外,肠道微生物的代谢产物被认为是加速动脉粥样硬化发展的关键因素,尤其是三甲胺氧化物(TMAO)[36]。除TMAO外,肠道菌群代谢物短链脂肪酸丁酸能够抑制肠道胆固醇吸收,延缓动脉粥样硬化进展[37]。丙酸能够降低炎症水平,抑制动脉粥样斑块形成,从而减少心血管疾病发生[38]。
在中药复方通过肠道菌群防治动脉粥样硬化方面,Zhang等[39]研究发现,定心方4号能显著降低小鼠血脂,减少动脉斑块面积,小鼠肠道muribaculaceae和ruminococcaceae菌丰度增加,erysipelotrichaceae菌丰度降低,这些菌群的改变对脂代谢是有益的,表明定心方4号抗动脉粥样硬化机制可能与其改变肠道菌群组成有关。Zhu等[40]研究发现,中药复方泽泻汤明显改变小鼠肠道菌群组成,降低血清TMAO和肝脏黄素单加氧酶3(FMO3)水平,减少动脉粥样硬化斑块面积,表明其抗动脉粥样硬化作用可能是通过调节肠道菌群,进而调节TMA-FMO3-TMAO轴来实现的。Ji等[41]探讨中药复方通脉逐瘀汤通过调节肠道菌群抗动脉粥样硬化的作用机制,发现通脉逐瘀汤能显著改变雌性C57BL/6J小鼠肠道菌群组成,某些细菌的丰度比如肠杆菌、链球菌、梭菌等在给予通脉逐瘀汤处理后恢复正常水平。此外,通脉逐瘀汤能够降低小鼠血清TMAO水平,在抗生素处理来抑制肠道菌群的基础上再使用通脉逐瘀汤,TMAO水平未见明显改变,结果表明通脉逐瘀汤能够通过改变肠道菌群组成,调节相关肠道代谢通路效应,来发挥抗动脉粥样硬化作用。
靶向干预某些特定肠道菌群可能是防治AS或者其他心血管疾病的新途径[42],已有研究确定在LDLr-/-小鼠中定向重塑肠道微生物组以预防AS的发生和进展的可行性[43]。中医理论指出“心与小肠相表里”,这表里关系可能部分是通过调节肠道菌群途径来实现的。通过调节肠道菌群组成,进而改变肠道功能,影响与AS关系密切的肠道菌群代谢物,可能是中药复方通过肠-心轴防治AS的主要机制。目前,单味中药及其提取物通过调节肠道菌群抗AS的研究较多,中药复方通过调节肠道菌群抗AS的研究较少,AS和某类特定菌群之间的关系尚不十分确切,有待深入研究,中药复方调节肠道菌群的具体有效成分也有待进一步挖掘。
-
越来越多的学者研究传统中药治疗疾病药效物质基础及其作用机制,但是大部分研究基于单味中药,或者中药单体,涉及中药复方抗动脉粥样硬化作用机制的研究不多,通过调节肠道菌群作用机制研究中药复方抗动脉粥样硬化更少。中药复方具有多成分、多通路、多靶点的优势,但是目前研究基于药效方面多,具体作用机制网络通路研究较少,给中药复方现代研究带来机遇和挑战。中医理论指出,心与小肠相表里,这表里关系可能部分是通过调节肠道菌群这途径来实现的,这就为中药复方通过调节肠道菌群抗动脉粥样硬化提供了中医理论基础,目前16s RNA测序和宏基因组等技术的推广应用,更为肠道菌群的深入研究提供技术支撑,中药网络药理学的发展也为中药复方多种作用机制研究提供了可能。
Review of anti-atherosclerosis mechanism of a TCM formula
-
摘要: 心血管疾病在全球的发病率和致死率仍居高不下,动脉粥样硬化(AS)是心血管疾病的重要病理基础,其致病机制至今尚未完全明确。目前主要认为,AS与血管内皮细胞损伤、脂质代谢紊乱、炎症反应、自噬和凋亡失衡等因素有关。传统中草药特别是中药复方在防治AS中取得良好疗效,对中药复方抗AS的药效及作用机制研究也越来越多。通过检索近5年的中药复方研究文献,综述中药复方抗AS作用机制,为抗AS中药复方的深入研究提供参考。Abstract: The global morbidity and mortality of cardiovascular diseases remain high. Atherosclerosis is an important pathological basis of cardiovascular diseases, and its pathogenic mechanism has not been fully clarified. It was reported that pathogenic mechanism of atherosclerosis is related to vascular endothelial cell injury, lipid metabolism disorder, inflammatory reaction, imbalance between autophagy and apoptosis, et al. Traditional Chinese medicine(TCM) formula has shown good effects in the prevention and treatment of atherosclerosis. There are a lot of studies that showed the anti-atherosclerosis effect and the mechanism of TCM formula. In this paper, we reviewed the mechanism of anti-atherosclerosis action of TCM formula by summarizing the research literatures in the past five years, and provide reference for the further systematic study of anti-atherosclerosis effect of TCM formula.
-
Key words:
- TCM formula /
- atherosclerosis /
- mechanism /
- review
-
乳腺癌是多发于女性中的恶性肿瘤性疾病,威胁着广大女性的健康[1-2]。据统计,全球女性癌症中,乳腺癌发病率和致死率均高于肺癌,目前居于首位,2020年约230万人诊断出患有乳腺癌,致死病例约68.5万[3]。先天性因素、膳食、环境、工作、发育成长阶段及雌激素类药物等多种因素都能成为乳腺癌的诱发因素[4-5]。目前,乳腺癌早期诊断普遍使用的是影像学检查(临床乳腺体格检查、超声、乳腺X线摄影、磁共振成像等)[6]以及肿瘤标志物(CEA、CA153、VEGF、TSGF等)临床筛查[7],前者操作复杂且具有一定的组织伤害性[8],后者局限于需多项联合检测且特异性不高[7,9],均难以满足临床需求。尽管手术、化疗技术在不断提高,但是抗肿瘤药物疗效有限,乳腺癌患者预后效果不佳,尤其是晚期复发和转移普遍。因此,寻找乳腺癌细胞早期代谢生物标志物,进行安全灵敏的早期诊断,对于乳腺癌诊疗具有重要意义[10]。
作为继基因组学、转录组学、蛋白质组学的后起之秀,代谢组学以研究不同病理生理或基因突变条件下对机体内源性小分子化合物代谢变化为核心[11]。内源性小分子化合物是基因和蛋白质的下游产物,从分子生物层面实时动态地反映上游基因及外部因素对机体功能的影响[12]。代谢组学采用以高灵敏度、高通量为特征的现代仪器分析技术方法,对机体的内源性小分子化合物进行动态分析[13]。伴随乳腺癌发展,患者机体内与氨基酸、糖类、脂质等代谢有关的小分子代谢物会发生异常变化。利用代谢组学方法,将改变的内源性代谢物作为生物标志物,在此基础上寻找相关代谢途径,合理推测乳腺癌的发病机制,揭示生物标志物与乳腺癌发生发展间的关联,最终帮助乳腺癌的临床诊疗。本文主要综述代谢组学在乳腺癌早期诊断、药理研究与药效评估、疾病进程监测以及预后评估的研究进展。
1. 代谢组学概述
代谢组学以相对分子质量<1000的内源性代谢物为研究对象,研究样本包括血浆、尿液、唾液、脑脊液、细胞以及组织提取液等[14-16],其中,血液和尿液最为常见[17],研究思路为收集生物样品、样品分离、检测鉴定、分析数据、建立模型、获取细胞活动终产物信息,整个过程综合分析优势明显。按照研究目的分类,非靶向代谢组学和靶向代谢组学是两种常见策略[18],前者进行轮廓分析,旨在获得较多的生物体内源性代谢物[12],后者通过靶向分析,希望获得特定的内源性代谢物[19]。
代谢组学目前主流的仪器分析方法为核磁共振法(NMR)和质谱(MS)联用技术,后者主要包括液相色谱-质谱联用法(LC-MS)、气相色谱-质谱联用法(GC-MS)[20],以上分析技术各有其特点。NMR可获取大量的物质结构信息,所得样品分析无偏向、无损伤但灵敏度较低[21]。MS通过有损的离子化分析,提供物质分子量及结构信息,灵敏度更高、扫描速度快[22],常与色谱在线联用以实现分离分析功能。GC-MS灵敏度高但不适用于热稳定性差的样品的分析,LC-MS则克服了GC-MS的劣势,可分析难挥发、热不稳定物质,分离选择性好、效率高,分析时间也随超高液相色谱-质谱联用法(UPLC-MS)的推广得到进一步缩短,因此LC-MS实际应用范围更广[19,23]。近年来质谱成像(MSI)技术发展迅速,随之空间代谢组学作为代谢组学新的补充诞生,解决了传统代谢组学研究代谢物在组织中的空间信息缺失问题[24-26]。
代谢组学的数据分析步骤为数据预处理、数据归一化和数据统计,即通过数据的过滤、补齐、归一化等去除仪器或生物偏差后,利用统计方法处理代谢组数据,其中,统计方法是从高维复杂的数据中提取出有效信息的关键。统计方法按照变量的多少分为单变量统计方法和多变量统计方法。常用的单变量统计方法有t检验、非参数检验、方差分析,主要用于实验-对照类研究中寻找两组间的差异代谢物[27]。多变量分析方法有传统算法和机器算法两类,常用的传统算法有偏最小二乘法判别分析(PLS-DA)[28]及正交偏最小二乘法-判别分析(OPLS-DA)、主成分分析(PAC),以上又称为模式识别方法,适用于构建预测模型[29]。机器算法应用日益广泛[30],目前常用的有随机森林(RF)[31]、支持向量机(SVM)[32]、神经网络(ANNs)[33]等。经以上手段获取具有统计学意义的数据,再与多种生化及代谢的数据库对比,继而对所得物质筛选鉴定,最终寻找到潜在的代谢标志物。
2. 代谢组学在乳腺癌中的应用
2.1 代谢组学在乳腺癌早期诊断中的应用
Catarina等[34]采用核磁共振氢谱(1H-NMR)分析了40位BC患者和38位对照(CTL)健康志愿者尿液代谢谱,采用K-S非参数检验和t检验及OPLS-DA等模式识别方法,发现BC患者肌酸、甘氨酸、丝氨酸、二甲胺、三甲胺N-氧化物、α-羟基异丁酸酯、甘露醇、谷氨酰胺等代谢物表现出高敏感性和特异性,代谢途径分析表明,差异代谢物出现可能与BC患者甘氨酸、谷氨酸、丁酸、糖酵解、TCA循环、牛磺酸和丙酮酸代谢途径遭到破坏有关。获得的差异代谢物具有作为生物标志物的潜力,可将BC患者与CTL区分,应用于早期诊断。
约1/4乳腺癌细胞都是三阴性乳腺癌细胞(TNBC),其特点是易转移浸润且复发率高[16]。Fang等[35]基于早期发现的40种氨基酸目标化合物,使用亲水作用色谱法-串联质谱(HILIC-MS/MS),对TNBC、非TNBC及正常的乳腺上皮细胞36种细胞内和34种细胞外小分子物质进行代谢组学分析。运用Mann–Whitney U检验或Kruskal–Wallis检验及OPLS-DA模式识别方法研究,发现与正常细胞相比,两种乳腺癌细胞氨基酸代谢库均明显扩大;与非TNBC相比,TNBC细胞内谷氨酸、β-丙氨酸、天冬氨酸、谷胱甘肽、N-乙酰丝氨酸和N-乙酰甲硫氨酸代谢明显增加(变化倍数>2,P<0.01, VIP>1),TNBC对细胞外谷氨酰胺、丝氨酸、β-丙氨酸和赖氨酸摄取显著增加,对谷氨酸和L-半胱氨酸-谷胱甘肽排泄升高(P<0.01,VIP>1)。研究结果表明,TNBC细胞具有独特的氨基酸代谢特征,对其量化分析可为TNBC患者提供更多新的早期治疗目标靶点。
Daniele等[36]使用液相色谱-四级杆飞行时间质谱(LC-Q-TOF/MS),对23名BC患者和35名口腔健康妇女唾液进行非靶向代谢组学分析,使用t检验、卡方检验等单因素统计方法,对比METLIN数据库,鉴定出乳腺癌组中有31种化合物上调(P<0.05),其中,患者与健康人群相比,发现7种寡肽(H-Arg-Arg-Ser-OH,H-His-Lys-(Ala-Ser)-OH or (Gly-Thr)-OH,H-Ala-Lys-Phe-Trp-OH or H-Gly-Lys-Thr-Ser-OH or H-Arg-Arg-Ser-Ser-OH,H-Phe-Ile-Gln-Arg-OH,H-Glu-Phe-Gln-Arg-OH or H-Ile-Lys-Gln-Trp-OH,H-Phe-Lys-Lys-Trp-OH or H-Phe-Gln-Arg-Tyr-OH,H-Phe-Phe-Gln-Trp-OH)和6种甘油磷脂(PG14∶2、PA32∶1、PS28∶0、PS40∶6、PI31∶1、PI38∶7)表达上调,表现出明显的代谢差异,说明唾液代谢物有望区分乳腺癌患者和健康人群,适用于早期诊断。
依据不同亚型乳腺癌患者的代谢物差异性可以用于乳腺癌诊断甚至个性化治疗。Leticia等[37]采集了4种常见LA型、LB型、HER2+型和TN型乳腺癌患者和健康对照组的血浆样本,利用非靶向超高液相色谱-高分辨质谱(HPLC-HRMS)代谢组学方法进行分析,通过单变量非参数Wilcoxon秩和检验区分乳腺癌患者和健康受试者的数据差异,多变量PAC和PLS-DA评价统计模型质量,初步确定了4种乳腺癌分子亚型中变化显著的代谢物:LA,TN和HER2分子亚型患者血浆中L-色氨酸浓度显著降低,可能与L-色氨酸代谢激活芳烃受体帮助癌细胞免疫逃逸有关[38];4种亚型乳腺癌患者磷酸乙醇胺、磷脂血浆浓度降低,提示乳腺癌中脂质代谢差异具有重要意义。上述代谢组学数据表明,色氨酸和部分脂质具有作为乳腺癌诊断的生物标志物潜力,有望推动乳腺癌患者血浆诊断和个性化治疗的发展。
基于以上研究,笔者对代谢组学在乳腺癌早期诊断中发现部分特征代谢物的应用进行归纳总结,见表1。
表 1 代谢组学在乳腺癌早期诊断中发现的特征代谢物作者 样本来源 技术方法 统计学方法 特征代谢物 Catarina等 尿液 1H-NMR K-S非参数检验和t检验与PAC,PLS-DA和OPLS-DA 肌酸、甘氨酸、丝氨酸、二甲胺、三甲胺N-氧化物、
α-羟基异丁酸酯、甘露醇、谷氨酰胺等Fang等 TNBC、非TNBC及正常的乳腺上皮细胞 HILIC-MS/MS Mann-Whitney U检验或Kruskal-Wallis检验与OPLS-DA 胞内:谷氨酸、β-丙氨酸、天冬氨酸、谷胱甘肽、
N-乙酰丝氨酸、N-乙酰甲硫氨酸
胞外:谷氨酰胺、丝氨酸、β-丙氨酸、赖氨酸谷氨酸、
L-半胱氨酸-谷胱甘肽Daniele等 唾液 UPLC-Q-TOF-MS t检验、卡方检验等 7种寡肽和6种甘油磷脂 Leticia等 血浆 HPLC-HRMS 非参数Wilcoxon秩和检验、PAC、PLS-DA 色氨酸、磷酸乙醇胺、磷脂 综上所述,基于代谢组学,针对不同乳腺癌患者所能提供的研究样品,采用合适的仪器、数据分析方法获取差异显著的内源性小分子代谢物信息,有效减小检查手段对乳腺癌患者造成的机体损伤,并丰富乳腺癌早期诊断方法,使代谢组学成为乳腺癌早期诊断的有力辅助工具。
2.2 代谢组学在乳腺癌药理研究和药效评价中的应用
癌细胞无限增殖需要大量的能量和物质基础。癌细胞具有特殊的代谢方式,即在有氧条件下倾向于糖酵解而不是三羧酸循环来产生能量[39],这种新陈代谢重编程称为Warburg效应[40]。一方面,糖酵解中间产物可以合成肿瘤细胞生长所需蛋白质和脂质等生物大分子[41],同时线粒体损伤可限制丙酮酸进入,使更多丙酮酸在胞质内通过无氧氧化释放能量[42]。另一方面,癌细胞可持续摄取营养物质[43]以及通过加强糖异生途径弥补Warburg效应缺陷。基于癌细胞特殊的代谢重编程,通过药物代谢组学分析,监测机体用药后内源小分子代谢物变化有利于乳腺癌药理研究和药效评估。
Ghanem等[44]对经抗坏血酸处理的管腔和基底样乳腺癌细胞,进行了代谢组学分析,结合细胞存活率数据,发现高剂量抗坏血酸使得乳腺癌细胞糖酵解过程中磷酸丙糖途径(PPP)被严重破坏,ATP水平下降,代谢物重新定向积累为脂质小滴,以及磷酸戊糖途径中代谢物和酶活性增加;细胞死亡依赖于抗坏血酸诱导的氧化应激和ROS积累、DNA损伤以及细胞内辅助因子(包括NAD+/NADH)耗竭效应。综上表明,高剂量抗坏血酸通过诱发乳腺癌细胞“氧化还原危机和能量灾难”发挥细胞毒作用。
Arminan等[45]通过NMR技术检测及主成分分析方法分析处理数据,以评估在N-(2-羟丙基)甲基丙烯酰胺-阿霉素共聚物(HPMA-Dox)影响下体外细胞培养模型和体内原位乳腺癌模型的精准抗癌效果,并结合蛋白质表达和流式细胞技术,研究了给药前后原位乳腺癌患者内源性小分子化合物相关生化改变,发现与游离Dox给药相比,用HPMA-Dox进行治疗后,乳腺癌细胞凋亡增加,糖酵解减弱,磷脂水平降低,且HPMA-Dox在体内模型的血液循环时间增加,同时肿瘤储积高、心脏储积低,说明HPMA-Dox药代动力学加强、组织分布得以优化。提示HPMA-Dox可作为一种更精确的抗癌药物模式用于乳腺癌临床治疗。
Panis等[14]将120名单侧乳腺浸润性癌患者随机分为未经化疗组(CA组,n=50)、单剂量短期紫杉醇静脉滴注组(PTX组,n=30)、心脏剖面健康组(CTR组,n=40),采用LC-MS对其血浆样品进行分析后发现,与CA组乳腺癌患者相比,单剂量短期紫杉醇静脉滴注可使患者血浆高密度脂蛋白水平显著降低,过氧化氢水平升高;与CTR组相比,PTX组患者C反应蛋白和肌酸激酶分数明显升高。以上表明单剂量短期紫杉醇静脉滴注就足以引起脂质代谢显著改变,可能导致毒性累积效应,进一步增加乳腺癌患者心脏病发生风险。可见,代谢组学可参与化疗药物给药优化方案研究,提高药物抗癌效果。
左旋肉碱、酰基肉碱和相关酶是癌症代谢网络中的重要介质。以往研究中LC-MS对乳腺癌中左旋肉碱、酰基肉碱的研究都是均质组织分析,缺乏异质性癌症组织中肉碱的空间分布差异[46]。Sun等[47]利用MSI对异种移植小鼠模型和人类癌组织样本及正常组织中的17种肉碱进行成像并开发了高空间分辨率基质辅助激光解吸电离-质谱成像(MALDI-MSI)方法,发现由170个癌症样本和128个正常样本组成的肉碱谱模型能准确区分乳腺癌,L-肉碱和短链酰基肉碱在人类乳腺癌和异种移植小鼠模型中都有显著改变,乳腺癌中由肉碱系统介导的β氧化代谢途径改变,并且首次发现代谢酶CPT2和CRAT在乳腺癌组织中差异表达。证明肉碱代谢在乳腺癌的代谢物和酶水平上都被重新编程。
2.3 代谢组学在乳腺癌疾病进程监测及预后评估中的应用
心理神经病症(PN)是指许多乳腺癌患者在化疗期间及化疗之后出现疼痛、疲劳和抑郁症状。Debra等[48]使用液相色谱高分辨率质谱法对19位早期乳腺癌女性化疗前后血清样本分别进行非靶向和靶向代谢组学分析,非靶向分析发现化疗后乳腺癌患者乙酰-L-丙氨酸和硫酸吲哚酚浓度升高,5-氧代-L-脯氨酸浓度降低;色氨酸途径靶向分析表明尿氨酸水平、犬尿氨酸/色氨酸水平升高。t检验和Pearson相关系数进一步揭示上述差异代谢物与PN症状显著相关,促进了早期乳腺癌女性PN症状发展程度生物学机制研究。
研究表明,患者他莫昔芬体内代谢物因多昔芬浓度与雌激素受体α(ERα)阳性乳腺癌复发有关[49],同时他莫昔芬本身和其他代谢物也表现出抗雌激素抗肿瘤活性[50]。Vries等[50]用细胞增殖法测定他莫昔芬、(Z)-因多昔芬、(Z)-4-羟基他莫昔芬、N-去甲基他莫昔芬抗刺激素活性,建立抗雌激素活性评分模型(AAS),采用Cox回归方法研究AAS与复发的关系,证明因多昔芬浓度可作为他莫昔芬和代谢物抗雌激素作用的代替,与乳腺癌复发显著相关。
Kamil等[51]用LC-MS/MS对小鼠原位接种4T1转移性乳腺癌细胞进行血浆代谢组学分析和脂质组学分析,建立PLS-DA模型。结果显示,荷癌小鼠癌细胞早期转移表现为L-精氨酸代谢减弱,精氨酸酶和多胺合成增强;晚期转移表现为精氨酸代谢途径改变,不对称二甲基精氨酸血浆浓度升高,能量代谢重新编程为糖酵解,戊糖磷酸途径加速以及三羧酸循环速率降低,脂质分布模式改变,包括总磷脂酰胆碱减少,与二酯结合的磷脂分数减少以及溶血磷脂增加,以上代谢变化在一定程度上表征了癌症转移进展。
目前,OncotypeDX 21基因表达检测技术常用来评估乳腺癌的复发以指导乳腺癌治疗,但在临床的不确定性和基因组不一致的情况下,许多早期乳腺癌的患者仍然会受到过度治疗[52-54]。McCartney等[55]利用1H-NMR分析了87例内分泌受体阳性、HER2阴性早期乳腺癌(eBC)患者血清,使用RF建立eBC患者复发风险的统计模型。最终根据代谢组学特征进一步细分复发风险,并有效区分了每个Oncotype风险分类:在7例复发中代谢组学分析准确预测了其中的6例,1例复发发生在低风险组,3例发生在中风险组,3例发生在高风险组,成功建立了一种通过血清代谢组学分析进一步完善OncotypeDX基因检测风险评分的方法。
3. 总结与展望
乳腺癌在全球发病率日益上升,长期困扰广大女性健康,成为全球医疗卫生领域研究焦点[56]。目前,乳腺癌的早期诊断、药物开发应用以及预后测评等方面还需攻克众多难关,迫切需要新的研究技术的支持。代谢组学以高通量、高灵敏度为特征的技术在乳腺癌领域应用日趋广泛,为乳腺癌潜在代谢标志物的筛选,药物靶点发现、药物潜在作用机制等提供新思路[11]。与其他研究方法相比,代谢组学具有无创取样、研究对象相对简单、检测工作量较小、可实现实时监测、全面综合分析等明显优势。同时,代谢组学作为一门新兴组学,虽然已取得部分进展,但本身发展仍处于探索阶段,应用于临床实践还有所不足:代谢组学研究具有数据维度高的特点,采集与处理过程中可能存在信息丢失、低含量差异代谢物可能被掩盖的问题;数据库不够完善,目前大量未知代谢物的结构鉴定和细胞功能研究困难,对已鉴定出产物的变化机制研究大多仍不明确难以直接指导临床;联用技术操作和数据分析处理的综合性专业人才储备不足等。在精准医疗浪潮推动下,进一步完善代谢组学研究的标准化流程后,利用代谢组学与基因组学、转录组学、蛋白组学以及微生物菌群学[57]对乳腺癌进行多学科技术互补、大数据综合分析,将有利于乳腺癌的早期诊断、发病机制研究以及疾病预后相关诊疗方案的系统优化,为乳腺癌个性化靶向治疗提供更合理的科学指导。
-
[1] LIBBY P, RIDKER P M, HANSSON G K. Progress and challenges in translating the biology of atherosclerosis[J]. Nature,2011,473(7347):317-325. doi: 10.1038/nature10146 [2] BENTZON J F, OTSUKA F, VIRMANI R, et al. Mechanisms of plaque formation and rupture[J]. Circ Res,2014,114(12):1852-1866. doi: 10.1161/CIRCRESAHA.114.302721 [3] KOETH R A, WANG Z, LEVISON B S, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med,2013,19(5):576-585. doi: 10.1038/nm.3145 [4] 杜文婷, 王臻楠, 顾耘. 动脉粥样硬化的中西医认识概况[J]. 中西医结合心脑血管病杂志, 2016, 14(22):2634-2637. doi: 10.3969/j.issn.1672-1349.2016.22.014 [5] LIBBY P, BURING J E, BADIMON L, et al. Atherosclero-sis[J]. Nat Rev Dis Primers,2019,5(1):56. doi: 10.1038/s41572-019-0106-z [6] 刘传亮, 陈国华, 李蕾. 复方丹参川芎中药配方颗粒干预老年颈动脉粥样硬化的研究[J]. 世界最新医学信息文摘, 2019, 19(82):15-16, 19. [7] 梅琼, 李全胜, 张静, 等. 当归川芎组合对血脂及冠状动脉组织结构影响的实验研究[J]. 湖北中医药大学学报, 2015, 17(5):47-49. doi: 10.3969/j.issn.1008-987x.2015.05.16 [8] 张燕, 李芳, 徐丽. 益气滋阴、活血通络复方对动脉粥样硬化患者LDL-C和HDL-C水平的影响[J]. 饮食保健, 2016, 3(10):72-73. [9] 王磊, 姚淮芳. 复方三七护脉汤联合西医常规治疗心血瘀阻型冠心病稳定型心绞痛20例临床观察[J]. 甘肃中医药大学学报, 2019, 36(3):48-51. [10] MAGUIRE E M, PEARCE S W A, XIAO Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease[J]. Vascul Pharmacol,2019,112:54-71. doi: 10.1016/j.vph.2018.08.002 [11] 李杉杉, 申定珠, 陈川, 等. 以ABCA1为靶点的补肾中药复方防治动脉粥样硬化的思路探讨[J]. 中国中医急症, 2017, 26(5):834-837. doi: 10.3969/j.issn.1004-745X.2017.05.025 [12] 王晓宁. 化浊通脉方对动脉粥样硬化兔胆固醇逆向转运的影响[D]. 北京: 北京中医药大学, 2015. [13] 祝骥, 许颖龄, 卢德赵, 等. 复方丹参片对颈动脉粥样硬化兔PPAR-γ/LXR-α/ABCA1信号通路的影响[J]. 中国现代应用药学, 2016, 33(12):1503-1507. [14] 秦合伟, 李彦杰, 任锟, 等. 基于miR-33a调控ABCA1表达探讨血管软化丸抗动脉粥样硬化的作用机制[J]. 中医药信息, 2018, 35(6):1-7. [15] 许丽婷, 徐彬人, 盛蒙, 等. 黄连解毒汤含药血清对泡沫细胞ABCA1表达与胆固醇含量的影响[J]. 中国民族民间医药, 2020, 29(6):10-13. [16] HAO D, DANBIN W, MAOJUAN G, et al. Ethanol extracts of Danlou tablet attenuate atherosclerosis via inhibiting inflammation and promoting lipid effluent[J]. Pharmacol Res,2019,146:104306. doi: 10.1016/j.phrs.2019.104306 [17] HIGASHI Y, NOMA K, YOSHIZUMI M, et al. Endothelial function and oxidative stress in cardiovascular diseases[J]. Circ J,2009,73(3):411-418. doi: 10.1253/circj.CJ-08-1102 [18] KONDO T, HIROSE M, KAGEYAMA K. Roles of oxidative stress and redox regulation in atherosclerosis[J]. J Atheroscler Thromb,2009,16(5):532-538. doi: 10.5551/jat.1255 [19] GLIOZZI M, SCICCHITANO M, BOSCO F, et al. Modulation of nitric oxide synthases by oxidized ldls: role in vascular inflammation and atherosclerosis development[J]. International Journal of Molecular Sciences,2019,20(13):3294. doi: 10.3390/ijms20133294 [20] 李红蓉, 常成成, 郭勇英, 等. 通心络对氧化低密度脂蛋白损伤血管内皮细胞的保护作用[J]. 医学研究生学报, 2015, 28(11):1128-1132. [21] 汪玉成, 魏伟, 苏清平, 等. 泽泻汤对氧化型低密度脂蛋白诱导血管平滑肌细胞增殖的影响[J]. 中国动脉硬化杂志, 2016, 24(8):763-768. [22] 王红梅, 周建明, 吕耀中, 等. 龙血通络胶囊对氧化低密度脂蛋白损伤人脐静脉内皮细胞的保护作用[J]. 中国中药杂志, 2018, 43(6):1241-1246. [23] ZHU Y H, XIAN X M, WANG Z Z, et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules,2018,8(3):80. doi: 10.3390/biom8030080 [24] 肖安华, 李虹维, 颜春鲁, 等. 中药复方与有效成分调控NF-kB/MAPKs/JNK信号通路介导炎症反应抗AS的研究进展[J]. 中医药学报, 2019, 47(6):109-114. [25] CHENG L, PAN G F, ZHANG X D, et al. Yindanxinnaotong, a Chinese compound medicine, synergistically attenuates atherosclerosis progress[J]. Sci Rep,2015,5:12333. doi: 10.1038/srep12333 [26] 刘叙阳, 姜华. 3种不同治法的中药复方对Toll样受体4及下游信号转导通路主要元件的影响[J]. 中国实验方剂学杂志, 2016, 22(1):121-124. [27] 罗永苗. 基于NF-κB信号通路探讨参七脉心通胶囊抗动脉粥样硬化的作用机制[D]. 广州: 广州中医药大学, 2018. [28] 张冰冰, 石岩, 朱爱松. 中药复方益糖康对动脉粥样硬化兔核因子KB和丝裂原活化蛋白激酶信号通路的影响[J]. 时珍国医国药, 2018, 29(1):56-58. [29] COLIN S, CHINETTI-GBAGUIDI G, STAELS B. Macrophage phenotypes in atherosclerosis[J]. Immunol Rev,2014,262(1):153-166. doi: 10.1111/imr.12218 [30] DALL'ASTA M, DERLINDATI E, ARDIGÒ D, et al. Macrophage polarization: the answer to the diet/inflammation conundrum? Nutr Metab Cardiovasc Dis,2012,22(5):387-392. doi: 10.1016/j.numecd.2011.12.010 [31] 秦合伟, 李彦杰, 任锟, 等. 基于TLR3/TLR9介导巨噬细胞自噬/极化效应探讨血管软化丸抗AS的作用机制[J]. 辽宁中医杂志, 2019, 46(1):156-160, 225. [32] LI H R, CHANG L P, LIU Y J, et al. Effect of Tongxinluo on polarization of macrophages[J]. Chinese Pharmacological Bulletin,2017,33(4):577-580. [33] GUARNER F, MALAGELADA J R. Gut flora in health and disease[J]. Lancet,2003,361(9356):512-519. doi: 10.1016/S0140-6736(03)12489-0 [34] MENNI C, LIN C, CECELJA M, et al. Gut microbial diversity is associated with lower arterial stiffness in women[J]. Eur Heart J,2018,39(25):2390-2397. doi: 10.1093/eurheartj/ehy226 [35] LI J, LIN S Q, VANHOUTTE P M, et al. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in apoe-/- mice[J]. Circulation,2016,133(24):2434-2446. doi: 10.1161/CIRCULATIONAHA.115.019645 [36] PIECZYNSKA M D, YANG Y, PETRYKOWSKI S, et al. Gut microbiota and its metabolites in atherosclerosis develop-ment[J]. Molecules,2020,25(3):594. doi: 10.3390/molecules25030594 [37] CHEN Y, XU C, HUANG R, et al. Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice[J]. J Nutr Biochem,2018,56:175-182. doi: 10.1016/j.jnutbio.2018.02.011 [38] BARTOLOMAEUS H, BALOGH A, YAKOUB M, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage[J]. Circulation,2019,139(11):1407-1421. doi: 10.1161/CIRCULATIONAHA.118.036652 [39] ZHANG Y X, GU Y Y, CHEN Y H, et al. Dingxin Recipe IV attenuates atherosclerosis by regulating lipid metabolism through LXR-α/SREBP1 pathway and modulating the gut microbiota in ApoE-/- mice fed with HFD[J]. J Ethnopharmacol,2021,266:113436. doi: 10.1016/j.jep.2020.113436 [40] ZHU B, ZHAI Y, JI M, et al. Alisma orientalis beverage treats atherosclerosis by regulating gut microbiota in ApoE-/- mice[J]. Front Pharmacol,2020,11:570555. doi: 10.3389/fphar.2020.570555 [41] JI W Y, JIANG T, SUN Z, et al. The enhanced pharmacological effects of modified traditional Chinese medicine in attenuation of atherosclerosis is driven by modulation of gut microbiota[J]. Front Pharmacol,2020,11:546589. doi: 10.3389/fphar.2020.546589 [42] SUBRAMANIAN S, BLANTON L V, FRESE S A, et al. Cultivating healthy growth and nutrition through the gut microbiota[J]. Cell,2015,161(1):36-48. doi: 10.1016/j.cell.2015.03.013 [43] CHEN P B, BLACK A S, SOBEL A L, et al. Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis[J]. Nat Biotechnol,2020,38(11):1288-1297. doi: 10.1038/s41587-020-0549-5 -

计量
- 文章访问数: 8539
- HTML全文浏览量: 2906
- PDF下载量: 70
- 被引次数: 0