-
胶原蛋白主要存在于动物皮肤、骨骼和结缔组织中,是主要的结构蛋白质。胶原蛋白具有较低的免疫原性、较好的生物相容性、良好的生物降解性等生物学优点,广泛应用于生物制药、医疗保健、组织工程、食品加工、美容化妆品等领域。目前胶原蛋白主要来源于陆生牲畜(牛、羊和猪等),但某些疾病(口蹄疫、疯牛病)以及宗教相关问题,使得这些牲畜来源的胶原蛋白应用受到一定约束[1]。海洋来源的胶原蛋白资源丰富,且不存在传染性病菌和伦理等问题,因而,对海洋生物来源的胶原蛋白进行开发利用具有良好的应用前景[2]。
目前,从海洋生物提取胶原蛋白的研究主要集中在鳕鱼、罗非鱼、海参以及水母等,这些海洋生物的皮肤、肌肉、软骨组织及中胶层等部位中含有丰富的胶原蛋白[3]。水母是一类胶质状的浮游生物,属刺胞动物门,种类多,分布广,我国近海海域水母资源丰富。大型水母伞部直径可达2 m,中胶层非常厚实,其中胶原蛋白(122.64~693.92 mg/g,干重)约占总蛋白含量的50%[4]。本研究选用青岛海域采集的越前水母(Nemopilema nomurai),对其伞部胶原蛋白进行分离纯化和表征,为水母胶原蛋白的开发应用提供理论基础。
-
SCIENTZ-12N冷冻干燥机(宁波新芝生物科技股份有限公司);LA8080氨基酸自动分析仪(日本株式会社日立高新技术科学);Nicolet iS50傅里叶变换红外光谱仪(美国Thermo Scientific公司);X′Pert3 Powder X射线衍射仪(荷兰帕纳科公司);VARIOSKAN LUX多功能酶标仪(美国Thermo Scientific公司);Mini-PROTEAN Tetra System垂直电泳系统(美国BIO-RAD公司)。
-
越前水母样品采集于青岛海域,腌制后于−20 ℃保存;牛I型胶原蛋白标准品(河北考力森公司);胃蛋白酶(上海生工生物工程公司);标准蛋白Marker(日本TaKaRa公司);其余试剂均为国产分析纯。
-
提取:经腌制的水母样品用自来水清洗,去除表面盐分,4 ℃下用去离子水浸泡、洗净后,再用异丙醇去除脂肪、NaOH去除杂蛋白、过氧化氢去除色素。称取去杂水母伞盖样品,组织匀浆后加入相应体积不同浓度(0.3~0.6 mol/L)的乙酸溶液,胃蛋白酶的添加量为水母伞盖质量的0.1%~0.5%,酶消化时间为24~96 h,反应后的液体使用200目网过滤,离心(4 ℃,10000 r/min)30 min取上清即得粗提液。
纯化:①超滤:分别取粗提液5 ml至分子量10万和5万的超滤管中,4 ℃离心(4000 r/min,30 min),收集滤液进行SDS-PAGE分析。②透析:分别取粗提液5 ml到分子量5万和10万的透析袋中,4 ℃透析3 d,每8 h换一次透析液,取样进行电泳分析。③盐析:取粗提液5 ml,添加NaCl至浓度为0.9 mol/L,4 ℃下10000 r/min离心10 min,收集沉淀,复溶于0.5 mol/L乙酸溶液,重复上述过程2次,取溶液进行电泳分析。仅改变NaCl浓度(0.9 mol/L→0.9 mol/L→2.0 mol/L或2.0 mol/L→0.9 mol/L→0.9 mol/L),重复实验。
粗提液纯化后,在−80 ℃冷冻干燥得水母酶溶性胶原蛋白(PSC)。
-
以水母胶原蛋白得率(冻干胶原蛋白质量/水母干重)为指标,确定基本反应条件(乙酸浓度、料液比、胃蛋白酶用量、提取时间),每次改变其中一个条件进行水母胶原蛋白提取的单因素实验。
获得单因素数据后,设计正交实验(表1)来获取最佳的实验方案。
表 1 水母胶原蛋白提取正交实验因素水平表
水平 因素 A加酶量(%) B乙酸浓度(mol/L) C料液比 D反应时间(h) 1 0.1 0.3 1∶1 24 2 0.2 0.4 1∶2 48 3 0.3 0.5 1∶3 72 -
参照Coentro等[5]的方法检测胶原蛋白浓度,将100 μl胶原蛋白溶液添加至1 ml天狼星红色染料中静置30 min,然后以12000 r/min离心30 min。去除上清,沉淀用碱性试剂溶解30 min,取200 μl胶原蛋白液于540 nm处读数。
-
用X射线衍射仪分析胶原蛋白样品的晶体结构,X射线源为Cu靶Ka辐射(λ=0.154 nm),电流为40 mA,电压为40 kV。扫描角度2θ为5°~40°,扫描速率为3.6°/min,并根据公式λ=2d sinθ,计算d值。
-
胶原蛋白溶解于0.5 mol/L乙酸中,用多功能酶标仪检测其紫外光谱。扫描波段为200~400 nm,波长间隔为1 nm。以0.5 mol/L乙酸溶液作为空白对照。
-
取胶原蛋白5 mg和适量KBr置于研钵中,研磨均匀。取适量的混合样品于压片磨具中,用压片机制成试样薄片。将压片放入傅里叶变换红外光谱仪内进行扫描(500~4000 cm−1,分辨率2 cm−1)。
-
胶原蛋白溶液和上样缓冲液混匀后水浴(100 ℃)加热5 min,取15 μl上样,使用8%的分离胶和5%的浓缩胶,80 V电泳100 min。
-
胶原蛋白样品在110 ℃下盐酸水解24 h,水解产物12000 r/min离心20 min,上清液用氨基酸自动分析仪进行氨基酸含量测定。
-
将胶原蛋白样品溶于0.5 mol/L乙酸溶液中,配成1 mg/ml的胶原蛋白溶液,分别取10 ml溶液调配成不同pH值(3~9共7个梯度)和NaCl浓度(0.5、0.6、0.7、0.8、0.9、1.0、1.1 mol/L),10000 r/min离心,取上清液进行胶原蛋白浓度测定,并绘制变化曲线。
-
数据采用(
$\bar x $ ±s)表示,用 GraphPad Prism 8.0.2作图并对各组进行方差分析,两组间比较采用t检验。检验水准α=0.05,P<0.05有统计学意义。 -
从图1A可见,当酶的用量从0.1%升到0.3%时,胶原蛋白得率逐渐增高并达到最大值。继续增加酶使用量,胶原蛋白得率反而减少,可能是过量酶对胶原蛋白具有一定破坏作用。从图1B可见,当乙酸浓度为0.4 mol/L时,胶原蛋白的得率最高。而乙酸过量,会破坏已生成胶原蛋白。从图1C可见,料液比在1∶2 g/ml时,水母胶原蛋白的得率最大。可能是料液比低于1∶2 g/ml时,胶原溶胀不充分,而料液比继续增加并没有多余胶原以供溶胀。从图1D可见,随着时间推移,胶原蛋白的得率先升高再下降:48 h和24 h相比,增加了8.8%;72 h和48 h相比,增加了15.9%;96 h和72 h相比,得率反而下降,说明72 h是胶原蛋白提取的最佳时间点。
-
表2正交实验极差R分析中,RA>RD>RC>RB,即在胶原蛋白提取中,酶的使用量起着最关键的作用,提取时间排第二,料液比和乙酸浓度的影响比较小。综合这9组数据,确定最优理论水平为A3B2C2D3,即乙酸(0.4 mol/L)、料液比(1∶2 g/ml)、胃蛋白酶(0.3%),提取72 h,此时的得率为(33±0.63)%。
表 2 水母胶原蛋白提取正交实验结果
水平 因素 A 加酶量(%) B 乙酸浓度(mol/L) C料液比(g/ml) D时间(h) 胶原蛋白得率(%) 实验1 0.1 0.3 1∶1 24 17.8±0.66 实验2 0.1 0.4 1∶2 48 23.2±0.94 实验3 0.1 0.5 1∶3 72 21.7±0.85 实验4 0.2 0.3 1∶2 72 26.7±0.58 实验5 0.2 0.4 1∶3 24 19.0±0.86 实验6 0.2 0.5 1∶1 48 24.2±0.76 实验7 0.3 0.3 1∶3 48 26.9±0.61 实验8 0.3 0.4 1∶1 72 31.1±0.50 实验9 0.3 0.5 1∶2 24 24.3±0.75 K1 20.9 23.8 24.3 20.4 K2 23.3 24.4 24.7 24.8 K3 27.4 23.4 22.5 26.5 R 6.53 1.03 2.20 6.13 因素主次 A>D>C>B 最佳组合 A3B2C2D3 -
图2中水母胶原蛋白粗提物(泳道8)在分子量13万处含有大量的目标胶原蛋白,分子量10万以下有杂条带。不同规格透析袋处理(泳道1、2)后,分子量10万以下的杂蛋白部分去除;盐析结果显示,0.9 mol/L→0.9 mol/L→2.0 mol/L NaCl的盐析(泳道4)可以去除大量杂蛋白,但目标蛋白损失较多,而0.9 mol/L→0.9 mol/L→0.9 mol/L NaCl(泳道3)处理既可以保留目标蛋白又能够去除部分杂蛋白。最后超滤结果显示,分子量10万(泳道6)的超滤管可以明显减少杂蛋白含量。
-
纯化实验结果提示,单一纯化方法不能完全去除杂蛋白,传统透析处理耗时长,而反复盐析会增加胶原蛋白溶液NaCl含量。综合权衡后确定纯化条件为0.9 mol/L→0.9 mol/L→0.9 mol/L NaCl盐析和100 kDa超滤组合。图3是组合纯化后胶原蛋白电泳图:泳道b为牛I型胶原蛋白标准品,在分子量13万左右有α1、α2链,而β链γ链的分子量都在20万以上。本实验提取的水母胶原蛋白(泳道a),分子量10万下基本没有杂蛋白,但α链只发现了一条,其分子可能是(α1)3[6-7],分子量在13万左右,符合I型胶原蛋白的特征。
-
胶原蛋白X射线衍射分析结果如图4、表3所示。水母胶原蛋白和牛胶原蛋白都有3个衍射峰。峰1形状尖锐与胶原蛋白三螺旋结构有关,d值反映胶原蛋白分子链间距离[8],水母和牛胶原蛋白的d1值分别为1.244 nm和1.226 nm。在20°附近出现一个宽大峰(峰2),代表胶原蛋白纤维内部众多结构层次所引起的漫散射[9]。在30°附近出现了第3个峰(峰3),该峰较小,其d值显示三股螺旋结构中沿螺旋中心轴相邻氨基酸残基之间的距离[10],水母和牛胶原蛋白峰3的d3值分别为0.295 nm和0.296 nm,极为接近。说明水母胶原蛋白和牛胶原蛋白标准品一样,保持了完整的三股螺旋结构。
表 3 胶原蛋白X射线衍射峰对应的d值
组别 衍射峰 2θ/(°) d值(nm) 水母胶原蛋白 峰1 7.1 1.244 峰2 21.3 0.418 峰3 30.2 0.295 牛胶原蛋白 峰1 7.2 1.226 峰2 20.3 0.437 峰3 30.1 0.296 -
蛋白通常含有芳香族氨基酸酪氨酸、色氨酸和苯丙氨酸,这些氨基酸含有苯环共轭双键系统,在特定波长(280 nm和251 nm)处有最大吸收峰。但在胶原蛋白中这些氨基酸含量少,其紫外吸收峰主要集中在220~230 nm,主要是由羰基C=O的n→π跃迁所致。水母胶原蛋白的紫外光谱如图5所示,其最强吸收峰在220 nm处,与牛胶原蛋白吸收峰出现的位置类似,接近Ab Aziz等[11]报道的水母Rhopilema hispidum胶原蛋白紫外吸收峰(218 nm),提示本实验中提取的水母胶原蛋白纯度较高。
-
从图6可见,水母胶原蛋白酰胺A吸收峰为3288 cm−1,和Rastian等[12]检测的酰胺A(3292 cm−1)吸收峰接近,表明氢键存在于胶原蛋白结构中。胶原蛋白分子中CH2基团的不对称伸缩振动产生了酰胺B特征吸收峰[13-14],水母胶原蛋白的酰胺B在2933 cm−1处,和牛胶原蛋白的酰胺B(2936 cm−1)吸收峰类似。作为蛋白质二级结构变化的特征区域——酰胺Ⅰ带(1625~1690 cm−1),是由蛋白质肽链骨架的C=O伸缩振动产生[15],水母胶原蛋白的酰胺I带出现在1641 cm−1。水母胶原蛋白酰胺II带吸收峰出现在1543 cm−1,在胶原蛋白酰胺II带(1500~1600 cm−1)的范围内,可能是C—N键的伸缩振动和N—H弯曲振动产生。水母胶原蛋白酰胺Ш位于1236 cm−1处,主要是脯氨酸侧链和甘氨酸骨架的—CH2摇摆振动产生,提示所提取的水母胶原蛋白三螺旋结构完整性较好。
-
电泳图谱表明提取的水母胶原蛋白达到电泳纯(95%)。文献报道[16-18]天狼星红染料与胶原蛋白中的特征性结构Gly-X-Y结合,可以使用天狼星红染料对胶原蛋白进行快速检测。本实验测得每100 mg冻干的水母胶原蛋白样品中含有胶原蛋白96.85 mg,其纯度为96.85%。
-
如表4所示,水母胶原蛋白的氨基酸组成中,甘氨酸占34.8%,与云南深水鲷鱼皮胶原蛋白甘氨酸含量(35%)接近,比热带淡水鲤鱼鳞中胶原蛋白甘氨酸含量(30.6%)高[19]。水母的胶原蛋白中羟脯氨酸占6.3%,脯氨酸占8.2%,亚氨酸比例为14.5%。其脯氨酸羟基化度(羟脯氨酸含量/亚氨酸含量)为43.68%,比牛胶原蛋白标准品的羟基化度(39.92%)和Zhang等[7]提取的水母胶原蛋白的羟基化度(32.2%)都高。据文献报道[20],羟基化度越高,胶原蛋白的三螺旋结构越稳定。检测结果中还发现蛋氨酸、酪氨酸和组氨酸的含量比较低,缺乏色氨酸,这些都符合I型胶原蛋白的特点[21]。
表 4 二种胶原蛋白中不同氨基酸组分的百分比
氨基酸名称 氨基酸占比(%) 水母胶原蛋白 牛胶原蛋白 天冬氨酸Asp 7.83 4.57 苏氨酸Thr 3.55 1.73 丝氨酸Ser 4.89 3.19 谷氨酸Glu 9.98 7.27 甘氨酸Gly 34.82 34.37 丙氨酸Ala 8.36 12.46 缬氨酸Val 2.74 2.27 蛋氨酸Met 0.21 0.01 异亮氨酸Ile 1.88 1.22 亮氨酸Leu 3.09 2.64 酪氨酸Tyr 0.11 0.27 苯丙氨酸Phe 0.9 1.38 赖氨酸Lys 2.96 2.15 组氨酸His 0.29 0.48 精氨酸Arg 3.87 5.3 脯氨酸Pro 8.16 12.43 羟脯氨酸Hyp 6.33 8.26 合计 100 100 注:氨基酸分析采用氨基酸残基数占100个氨基酸残基的比例 -
从图7A可见,当NaCl浓度在0.5~0.8 mol/L时,水母胶原蛋白相对溶解度比较稳定,保持着最大值。其原因可能是低浓度的盐离子可以与胶原蛋白分子结合,使得胶原蛋白分子带有更多的电荷,相互排斥,溶解度较大。当NaCl浓度达到0.9 mol/L时,水母胶原蛋白的溶解度急剧下降,相对溶解度不到23%,当NaCl浓度超过1.0 mol/L后,其相对溶解度在15%左右。可能因为NaCl的浓度较高时,极性较强的盐离子夺走了胶原蛋白结合的水分子,破坏了其周围的水化膜,盐析作用显现出来,溶解度下降。
从图7B可见,当溶液的pH在3~5时,水母胶原蛋白的相对溶解度比较大,维持在80%左右。其中pH为4时,溶解度最大,与海参胶原蛋白的溶解性类似[3]。当pH在6~8时,胶原蛋白的相对溶解度维持在较低值,尤以pH 7时溶解度最小,此时就是胶原蛋白的等电点。当pH超过8后,胶原蛋白溶液的溶解度又有所上升。
-
本实验通过单因素分析和正交实验优化了水母胶原蛋白的提取条件,确定最适条件为:乙酸0.4 mol/L、料液比1∶2 g/mL、胃蛋白酶0.3%、反应72 h。水母胶原蛋白的纯化方法优化为0.9 mol/L-0.9 mol/L-0.9 mol/L NaCl盐析和分子量10万超滤的组合方法。相比阳离子交换层析法和Sephacryl S-100凝胶过滤纯化方法,超滤不仅可以去除盐分和杂蛋白,还能快速富集胶原蛋白,缩短提取时间。
纯化的水母胶原蛋白通过天狼星红法检测其纯度为97%,高于从其他多种海洋生物提取的I型胶原蛋白纯度[22-23]。本实验中越前水母胶原蛋白干重得率为33%左右,相比于水母Chrysaora quinquecirrha胶原蛋白提取得率(1.2%干重)显著提高[24]。凝胶电泳显示提取的水母胶原蛋白构型可能是(α1)3,α1链分子量约为13万和10万以下基本没有杂条带,比Jankangram等[25]提取的水母胶原蛋白纯度更高。在氨基酸组成分析中,越前水母胶原蛋白甘氨酸占34.82%,羟脯氨酸占6.33%,脯氨酸占8.16%,没有检测到色氨酸。以上结果均表明水母胶原蛋白符合I型胶原蛋白的特点。光谱分析发现,分离纯化过程中水母胶原蛋白三螺旋结构保存较好。溶解度试验表明其在pH=4时溶解性最佳,当NaCl浓度升高至0.9 mol/L时溶解度快速下降。
总之,本研究通过优化提取纯化过程,缩短了水母胶原蛋白制备时间,提高了所得胶原蛋白的纯度,且水母胶原蛋白三螺旋结构保持完整,与牛I型胶原蛋白特征相似度很高,提示水母胶原蛋白可望成为哺乳动物胶原蛋白的替代品。鉴于水母胶原蛋白具有资源丰富、提取方便、生物相容性好等优点,可望成为生物医药、食品、化妆品等多领域的理想生物材料,具有良好的应用前景。
Isolation and characterization of collagen from the jellyfish Nemopilema nomurai
-
摘要:
目的 优化越前水母(Nemopilema nomurai)胶原蛋白提取工艺,并探究其性能。 方法 利用乙酸和胃蛋白酶提取胶原蛋白,通过盐析和超滤纯化水母胶原蛋白粗提物,并对水母胶原蛋白进行表征和性能分析。 结果 水母胶原蛋白纯度97%,得率33%(干重);X射线衍射、紫外光谱和傅里叶变换红外光谱检测结果表明,水母胶原蛋白在提取和纯化过程中保持了胶原蛋白三螺旋结构;氨基酸组成和凝胶电泳分析提示,水母胶原蛋白符合Ⅰ型胶原蛋白特征。溶解度实验表明,水母胶原蛋白在pH 3~5,NaCl浓度小于0.9 mol/L的条件下都具有良好的溶解性。 结论 所得水母胶原蛋白与牛Ⅰ型胶原蛋白特征相似,有望成为新的胶原蛋白资源。 Abstract:Objective To optimize the extraction process of collagen from the jellyfish (Nemopilema nomurai) and explore its characters. Methods The collagen was extracted with acetic acid and pepsin from jellyfish. The crude jellyfish collagen was purified by salting out and ultrafiltration. The purified collagen was characterized and analyzed by XRD (X-ray diffraction), UV (ultraviolet spectroscopy) and FTIR (fourier transform infrared spectroscopy). Results The purity of jellyfish collagen was 97%, the yield was 33% (dry weight). The jellyfish collagen maintained its triple helix structure during the extraction and purification process. Jellyfish collagen conformed to the characteristics of type I collagen according to amino acid composition and gel electrophoresis analysis. The jellyfish collagen exhibited a good solubility under the conditions of pH 3–5 and less than 0.9 mol/L of NaCl. Conclusion The extracted jellyfish collagen exhibited similar characteristics with bovine type I collagen and was a potential new source of collagen. -
Key words:
- Nemopilema nomurai /
- jellyfish /
- collagen /
- extraction /
- purification
-
超多孔水凝胶(SPF)是一种三维结构的亲水性高分子聚合网格,在水中能够溶胀但不溶解,且因其具有良好的生物相容及生物可降解性,被广泛应用于医学、药学等领域。与传统水凝胶相比,超多孔水凝胶通过致孔剂、模板等方法调整孔隙率,从而改变溶胀速率以及释药速率[1-3]。胰岛素等生物大分子类药物不仅体内稳定性差、易被酶解、生物半衰期短、不易透过生理屏障,故现有给药方式多以注射为主,患者依从性差[4]。有研究显示[5],超多孔水凝胶承载胰岛素灌胃后可以显著降低大鼠血糖:给药2 h后血糖显著下降,4~6 h降至最低,但12 h即回至最初血糖的80%,说明该制剂起效快但持续时间短,血糖波动大,需频繁给药,患者依从性差。上述情况,结合胃肠道对胰岛素的灭活等原因,本实验拟合成具有缓释作用的聚(丙烯酸-丙烯酰胺)/O-羧甲基壳聚糖[P(AA-co-AM)/O-CMC]互穿网络聚合物超多孔水凝胶(SPH-IPN),以期通过皮下给药包载胰岛素的SPH-IPN后,实现长效、减小血糖波动的目的。
1. 材料与仪器
1.1 材料与试剂
丙烯酰胺(AM)、丙烯酸(AA)、N,N′-亚甲基-双丙烯酸胺(Bis)、过硫酸铵(APS)、N,N,N′,N′-四甲基乙二胺(TEMED)均购自上海阿拉丁生化科技股份有限公司;泊洛沙姆127(PF127,北京化工厂);O-羧甲基壳聚糖(O-CMC,大连美仑生物技术有限公司);戊二醛(GA,上海阿拉丁生化科技股份有限公司);姜黄素(宝鸡国康生物科技有限公司);牛胰岛素(上海源叶生物有限公司);十二烷基硫酸钠(SDS)、乙二胺四乙酸二钠(EDTA)、碳酸氢钠、盐酸、乙醇、甲醇、乙酸乙酯、氢氧化钠均为分析纯,实验用水为去离子水。
1.2 仪器
85-2型恒温磁力搅拌器(上海司乐仪器有限公司);恒温水浴锅(余姚市东方电工仪器厂);透析袋(Viskase,美国);Nicolet iS50傅里叶变换红外光谱仪(Thermo,美国);AVANCE III 400核磁共振谱仪(Bruker,德国);FE28型pH计(Mettler Toledo,美国);Waters UPLC:二元溶剂管理系统、在线脱气机、自动进样器、PDA检测器(Waters公司,美国);TTL-DC型多功能氮吹仪(北京同泰联科技发展有限公司);SHA-B双功能恒温水浴振荡器(常州金坛良友仪器有限公司)。
1.3 实验动物
雄性SD大鼠,体重范围(220±20)g,合格证号:SCXK(京)2017-0002,购自北京斯贝福实验动物科技有限公司,饲养于北京中医药大学动物房。
2. 方法与结果
2.1 超多孔水凝胶(SPH-IPN)的制备[5]
依次向西林瓶中加入50% AM和AA溶液,以10 mol/L NaOH调节pH至5.0。随后再加入2.5% Bis溶液、10% PF 127溶液、20%APS溶液和50 μl 16.7% TEMED溶液,磁力搅拌混匀。室温放置15 min后,逐滴加入 6% O-CMC溶液,使溶液中O-CMC/单体比(w/w)为0.144,迅速加入NaHCO3粉末,搅拌约20 s使其产生气泡,将其置于40 ℃水浴加热5 min,室温固化30 min,即得半互穿网络水凝胶(semi-IPN)。将所得semi-IPN置于GA/O-CMC比(w/w)为2∶10的GA溶液(用0.2 mol/L的盐酸溶液调节pH至1.0)中至将其吸干,室温放置1 h,得粗P(AA-co-AM)/O-CMC超多孔水凝胶(SPH-IPN)。将SPH-IPN置于0.1 mol/L盐酸溶液中,透析5 d,无水乙醇中脱水透析2 d,30 ℃烘干至恒重,干燥密闭保存,即得纯化后的SPH-IPN。
2.2 SPH-IPN的结构表征
将样品充分干燥,KBr压片法制样,使用傅里叶变换红外光谱仪测定500~4 000 cm−1波数的SPH-IPN的IR谱。将样品置于氧化锆样品管(A=4 mm),转速5 000 Hz,固体碳谱测定。
2.3 SPH-IPN的溶胀性能测定
取干燥的SPH-IPN,室温下浸于过量水中(pH 7.0),于不同时间点用筛网取出SPH-IPN,吸去表面残余水后称重,根据以下公式计算SPH-IPN在不同时间点的溶胀比(QS):
$$ {Q_{\rm{S}}} = \frac{{{W_{\rm{S}}} - {W_{\rm{d}}}}}{{{W_{\rm{d}}}}} $$ 其中,WS为溶胀后SPH-IPN质量(g);Wd为干SPH-IPN质量(g)。
2.4 SPH-IPN孔隙率测定
采用乙醇替代法测定SPH-IPN的孔隙率[6]。取干燥的SPH-IPN,置无水乙醇中浸泡12 h,取出后吸去表面残余乙醇,称重,根据以下公式计算孔隙率:
$$ {\text{孔隙率}}=\frac{{M}_{2}-{M}_{1}}{\rho V}\times 100\;\text{%}$$ 其中,M1为干SPH-IPN质量(g);M2为乙醇浸泡后的SPH-IPN质量(g);ρ为乙醇密度(g/cm),V为SPH-IPN体积(cm3,以游标卡尺测量长方体SPH-IPN的长、宽、高后计算而得)。
2.5 载胰岛素SPH-IPN的制备及含量测定
2.5.1 载胰岛素SPH-IPN的制备
取胰岛素15 mg,精密称定,置10 ml量瓶中,加0.1 mol/L pH 7.4 PBS溶解并定容至刻度,得1.5 mg/ml的胰岛素溶液。称取50 mg SPH-IPN置装有10 ml胰岛素溶液的西林瓶中,37 ℃温浴放置2 h,取出,置烘箱内,30 ℃恒温干燥。
2.5.2 载药量的测定
取胰岛素SPH-IPN适量,研磨粉碎,取20 mg,精密称定,置10 ml量瓶中,加入0.1 mol/L pH 7.4 PBS,定容至刻度。37 ℃温浴2 h,超声10 min,精密量取上清液20 μl注入HPLC仪,记录色谱图,计算胰岛素含量,并根据以下公式计算载药量:
$$ {\text{载药量}}(\%)=\frac{cV}{M}\times 100$$ 其中,c为测得胰岛素的浓度(mg/ml),V为量瓶体积(ml),M为SPH-IPN的质量(mg)。
2.6 载胰岛素SPH-IPN降血糖实验
2.6.1 不同方法载药SPH-IPN的制备
按“2.5.1”项下方法制备载胰岛素SPH-IPN,采用冷冻干燥法将其冻干即得含胰岛素的冻干SPH-IPN。称取空白凝胶200 mg置于1.5 mg/ml的胰岛素溶液37 ℃中溶胀2 h,备用,即得含胰岛素的预溶胀SPH-IPN。
2.6.2 糖尿病大鼠模型的建立
给大鼠喂食高脂饲料(88.8%基础饲料、1%胆固醇、10%猪油和 0.2%胆盐[7])喂养4周,动物自由进食和饮水,每周记录体重。于喂养的第28天晚禁食,在第29天一次性腹腔注射链脲佐菌素(STZ)35 mg/kg,将一次性注射STZ 3 d后大鼠空腹血糖≥11.1 mmol/L或随机血糖≥16.7 mmol/L作为成模标准[8]。对照组大鼠则腹腔注射无菌生理盐水(0.3 ml/100 g)。注意测血糖前应禁食12 h,空腹测血糖。造模期间要防止感染,注意消毒。未造模成功的大鼠再次注射STZ35 mg/kg,3 d后测血糖验证是否造模成功。
2.6.3 分组、给药及血糖测定
取糖尿病大鼠12只,按随机数字表分为2组,即模型1组和模型2组;取正常大鼠12只,按随机数字表分为2组,即正常1组和正常2组。模型组1组和正常1组皮下埋植含胰岛素的预溶胀SPH-IPN,模型2组和正常2组皮下埋植含胰岛素的冻干SPH-IPN。给药后分别于1、2、4、6、8、10、12、24、28、32、36、48、60、72 h不同时间间隔大鼠尾部取血0.02 ml,用血糖仪测定血糖值,考察不同时间血糖值的变化情况。
3. 实验结果
3.1 IPN结构表征
3.1.1 傅立叶变换红外光谱(FTIR)
图1为SPH-IPN的FTIR图。在1 651 cm−1处有-COOH的伸缩振动峰,且1 615 cm−1附近无AA和AM的C=C双键吸收峰,说明已聚合成P(AA-co-AM),SPH-IPN中存在P(AA-co-AM),图中3 335和2 922 cm-1处分别为-O-H和-C-H的伸缩振动峰;1 604和1 416 cm−1处分别为羧酸盐-COO-的反对称伸缩振动峰和对称伸缩振动峰;1 086、1 044和1 171 cm−1处分别为O-CMC中糖环羟基-CH-OH、一级羟基-CH2-OH和醚基C-O-C中的C-O伸缩振动峰。以上结果表明SPH-IPN中存在P(AA-co-AM),还存在的一些杂峰可能是还有一些未反应单体未被除尽。
3.1.2 核磁共振(13C-NMR)
图2为SPH-IPN的13C-NMR图。图中41.926×10−6为P(AA-co-AM)上主链碳原子的化学位移峰;179.499处为羧基碳原子的化学位移峰,说明结构中含有羧基官能团,AA与AM已聚合形成P(AA-co-AM)。
由于制得的水凝胶未找到合适的溶液将其溶解,因此在测定核磁共振图谱时,采用的是固体核磁技术[9]。
综合红外和碳谱结果可知,通过该方法可聚合形成P(AA-co-AM)结构,而该结构又是超多孔水凝胶SPH-IPN的主要结构,由此可说明已成功聚合SPH-IPN。
3.2 SPH-IPN的溶胀性能
图3为不同温度介质中SPH-IPN的溶胀曲线,可见随着温度升高,SPH-IPN的溶胀速率加快,平衡溶胀比增大,原因是温度较高时相互缠绕的聚合物链松开,破坏分子间的氢键,增加链运动,水分子在凝胶骨架内外的扩散速率加快,从而促进了聚合物的溶胀[10]。
3.3 SPH-IPN孔隙率的测定
表1为SPH-IPN孔隙率测定结果,所制SPH-IPN超多孔水凝胶空隙分布均匀。除此之外,与传统水凝胶相比[11],孔隙率高,更利于药物的释放。
表 1 SPH-IPN的孔隙率测定结果干重M1
(m/g)湿重M2
(m/g)乙醇密度
(g/cm3)体积
(V/cm3)孔隙率
(%)平均值
(%)RSD
(%)0.5425 0.6327 0.816 0.13 85.03 81.63 3.88 0.5751 0.6779 0.816 0.16 78.74 0.5628 0.6621 0.816 0.15 81.13 3.4 SPH-IPN载胰岛素含量测定结果
37 ℃时SPH-IPN溶胀比较大,温度过高易引起胰岛素变性,故选择37 ℃温度载药,胰岛素的载药量试验结果见表2。
表 2 SPH-IPN对胰岛素的载药量试验组 载药量(w/w,%) 平均值(w/w,%) RSD(%) 1 3.13 3.19 1.88 2 3.25 3 3.20 3.5 载胰岛素凝胶降血糖实验
图4是含胰岛素的预溶胀SPH-IPN和冻干SPH-IPN对糖尿病大鼠和正常大鼠降糖作用的比较。图中预溶胀模型组在10 h时血糖值才有所降低,最低值为10 h的16.8 mmol/L,之后血糖又开始慢慢升高;预溶胀正常大鼠组在给药4 h后血糖开始降低,到24 h时血糖达到7.3 mmol/L,之后维持平稳状态;冻干模型组在包埋1 h后血糖便开始下降,血糖值降到6.7 mmol/L,在24 h后血糖开始慢慢升高,冻干正常大鼠组在1 h后血糖降至5.3 mmol/L,之后虽有起伏,但也一直在正常范围内。说明冻干凝胶的降糖作用较预溶胀组好,冻干凝胶在1~24 h时间段内的降糖作用较平稳。
4. 讨论
4.1 SPH-IPN的制备
本实验选用了能够迅速聚合的水溶性原料AA、AM为聚合反应单体;以APS/TEMED为引发体系;PF127为泡沫稳定剂,使产生的泡沫稳定时间更长;NaHCO3为起泡剂;O-CMC在合成过程中作为增稠剂,维持合适的起泡速率,使产生的气泡均匀、稳定,不致产生的气泡过快逸散[12]。采用溶液聚合法制备了含semi-IPN的水凝胶。因为该聚合反应在反应过程中会产生大量热量,这对泡沫的稳定极为有利,因此在常温条件下便能进行聚合反应,条件温和。以pH 1.0的GA溶液交联O-CMC时,可避免过度溶胀对孔隙结构的破坏,且pH 1.0时GA的交联能力较好。除此之外,相较于参考文献[5],本实验中O-CMC/单体比较高,当O-CMC/单体比为0.144时,虽然可形成具有大量相互贯通孔隙的聚合物,但会导致其溶胀速率减慢,溶胀比降低,从而影响载药量和释药速率。随着溶胀速率减慢,药物溶出速率也相应减慢;随着溶胀比的降低,吸收的药物溶液减少,载药量随之降低。本实验提高O-CMC/单体的目的是希望通过减慢SPH-IPN的溶胀速率,从而尝试制备缓释制剂。
4.2 水凝胶的载药方法
水凝胶的载药方法通常有2种:一是将药物与单体溶液混合,随着单体聚合、交联将药物包埋于水凝胶中[13];另一种方法为吸附载药,即凝胶在被载药液中溶胀,将载药水凝胶干燥,实现药物包埋[14]。姜黄素属于脂溶性药物,课题组前期研究结果表明,0.5%的SDS对姜黄素有一定的增溶效果;0.1 mol/L pH 7.4 PBS中SPH-IPN的溶胀比较大,对胰岛素具有一定的增溶作用,故分别选用这两种溶剂配制胰岛素溶液。
4.3 超多孔水凝胶的释药性能
文献[5]表明,超多孔水凝胶载药后的释药性能与O-CMC的含量、pH、离子强度、温度等多个因素有关,同时也有可能与载药SPH-IPN的制备过程有关。
笔者曾用SPH-IPN包载姜黄素,并开展探索性实验。结果发现20、40、60目不同粒径的凝胶累积释放率不同,前13 h三者的累积释放率均几乎一样(接近0),13 h后累积释放率逐渐增加,以40目凝胶的效果最佳,48 h后达到6.00%,明显高于其他组,但其释放速度慢,见图5。灌胃给予载姜黄素SPH-IPN后,部分大鼠排泄物中可见载姜黄素SPH-IPN,说明SPH-IPN在体内溶胀速率很慢;而载姜黄素SPH-IPN组和姜黄素原药组,灌胃后大鼠眼眶血中均未检出姜黄素,也进一步体现SPH-IPN未促进姜黄素的吸收。
将载胰岛素SPH-IPN予灌胃给药溶胀很慢,降糖效果极不明显,为延长SPH-IPN溶胀时间,最终考虑将其进行皮下包埋给药。
载胰岛素SPH-IPN皮下包埋给药发现,载胰岛素冻干SPH-IPN组的降糖效果优于载胰岛素溶胀SPH-IPN组,表明载药SPH-IPN的释放性能除与溶胀比有关外,其制备过程也会一定程度影响被载药物的疗效,与文献[5]报道一致。实验中将冻干组和溶胀组均进行包埋,均可延长溶胀时间,但冻干SPH-IPN组的降糖效果优,皮下包埋2 h后表现出明显的降糖作用,相比溶胀组而言,起效时间快(8 h左右)且持续时间长,24 h之内均具有良好的降糖作用。提示我们在制备载药SPH-IPN的过程中应该时刻关注被载药物的活性及稳定性,应在适当的条件下对药物进行包载以提高药物疗效,同时也说明载胰岛素冻干SPH-IPN可作为控释制剂,实现调节大鼠血糖的目的。结合实验结果分析可知,SPH-IPN能够增强药物的稳定性,提高生物利用度,比较适合作为蛋白质药物给药载体。
4.4 SPH-IPN载胰岛素的微针给药展望
文献研究发现,胰岛素经皮给药具有不错的疗效,与皮下给药效果几无差异,且依从性好,成为最新、有效、方便的给药方式。Norduist等[15]将微针贴剂用于胰岛素给药,结果发现,血浆胰岛素浓度变化与传统的皮下注射并无太大差异,但微针贴剂能极大地提高实验大鼠的依从性。无痛中空微针皮内胰岛素给药系统已获得 FDA批准,进入II期临床,相关产品有以色列纳米通道技术公司采用MEMS技术开发的中空微针器具,其中包括用于无痛释放胰岛素薄片与胰岛素微型泵相结合。Liu等[16]将可溶性材料透明质酸制备成负载胰岛素的微针阵列。在体实验发现,负载胰岛素的微针能够在1 h内完全溶解,携带的胰岛素快速释放入体内。
与上述研究及应用相比,本实验的载胰岛素SPH-IPN,释放药物无需微型泵,皮下包埋给药可以24 h内保持平稳、正常的血糖浓度,适合作为一日一次给药的控释制剂。为了提高患者的依从性,进一步研究将载胰岛素SPH-IPN制备为微针阵列的形式,以期得到一种方便、快捷、安全的胰岛素缓释递药系统。
-
表 1 水母胶原蛋白提取正交实验因素水平表
水平 因素 A加酶量(%) B乙酸浓度(mol/L) C料液比 D反应时间(h) 1 0.1 0.3 1∶1 24 2 0.2 0.4 1∶2 48 3 0.3 0.5 1∶3 72 表 2 水母胶原蛋白提取正交实验结果
水平 因素 A 加酶量(%) B 乙酸浓度(mol/L) C料液比(g/ml) D时间(h) 胶原蛋白得率(%) 实验1 0.1 0.3 1∶1 24 17.8±0.66 实验2 0.1 0.4 1∶2 48 23.2±0.94 实验3 0.1 0.5 1∶3 72 21.7±0.85 实验4 0.2 0.3 1∶2 72 26.7±0.58 实验5 0.2 0.4 1∶3 24 19.0±0.86 实验6 0.2 0.5 1∶1 48 24.2±0.76 实验7 0.3 0.3 1∶3 48 26.9±0.61 实验8 0.3 0.4 1∶1 72 31.1±0.50 实验9 0.3 0.5 1∶2 24 24.3±0.75 K1 20.9 23.8 24.3 20.4 K2 23.3 24.4 24.7 24.8 K3 27.4 23.4 22.5 26.5 R 6.53 1.03 2.20 6.13 因素主次 A>D>C>B 最佳组合 A3B2C2D3 表 3 胶原蛋白X射线衍射峰对应的d值
组别 衍射峰 2θ/(°) d值(nm) 水母胶原蛋白 峰1 7.1 1.244 峰2 21.3 0.418 峰3 30.2 0.295 牛胶原蛋白 峰1 7.2 1.226 峰2 20.3 0.437 峰3 30.1 0.296 表 4 二种胶原蛋白中不同氨基酸组分的百分比
氨基酸名称 氨基酸占比(%) 水母胶原蛋白 牛胶原蛋白 天冬氨酸Asp 7.83 4.57 苏氨酸Thr 3.55 1.73 丝氨酸Ser 4.89 3.19 谷氨酸Glu 9.98 7.27 甘氨酸Gly 34.82 34.37 丙氨酸Ala 8.36 12.46 缬氨酸Val 2.74 2.27 蛋氨酸Met 0.21 0.01 异亮氨酸Ile 1.88 1.22 亮氨酸Leu 3.09 2.64 酪氨酸Tyr 0.11 0.27 苯丙氨酸Phe 0.9 1.38 赖氨酸Lys 2.96 2.15 组氨酸His 0.29 0.48 精氨酸Arg 3.87 5.3 脯氨酸Pro 8.16 12.43 羟脯氨酸Hyp 6.33 8.26 合计 100 100 注:氨基酸分析采用氨基酸残基数占100个氨基酸残基的比例 -
[1] WIDDOWSON J P, PICTON A J, VINCE V, et al. In vivo comparison of jellyfish and bovine collagen sponges as prototype medical devices[J]. J Biomed Mater Res B Appl Biomater,2018,106(4):1524-1533. doi: 10.1002/jbm.b.33959 [2] SILVA T H, MOREIRA-SILVA J, MARQUES A L, et al. Ma- rine origin collagens and its potential applications[J]. Mar Drugs,2014,12(12):5881-5901. doi: 10.3390/md12125881 [3] LI P H, LU W C, CHAN Y J, et al. Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics[J]. Aquaculture,2020,515:734590. doi: 10.1016/j.aquaculture.2019.734590 [4] KHONG N M, YUSOFF F M, JAMILAH B, et al. Nutritional composition and total collagen content of three commercially important edible jellyfish[J]. Food Chem,2016,196:953-960. doi: 10.1016/j.foodchem.2015.09.094 [5] COENTRO J Q, CAPELLA-MONSONÍS H, GRACEFFA V, et al. Collagen quantification in tissue specimens[J]. Methods Mol Biol,2017,1627:341-350. [6] 李玉芬, 郑明星, 朱凡, 等. 海蜇胶原蛋白的制备及理化性质研究[J]. 福州大学学报(自然科学版), 2018, 46(2):286-294. [7] ZHANG J J, DUAN R, HUANG L, et al. Characterization of acid-soluble and pepsin-solubilised collagen from jellyfish (Cyanea nozakii Kishinouye)[J]. Food Chem,2014,150:22-26. doi: 10.1016/j.foodchem.2013.10.116 [8] SUN L L, LI B F, SONG W K, et al. Characterization of Pacific cod (Gadus macrocephalus) skin collagen and fabrication of collagen sponge as a good biocompatible biomedical material[J]. Process Biochem,2017,63:229-235. doi: 10.1016/j.procbio.2017.08.003 [9] 姚行行, 郭妍, 庄永亮. 云南鲷鱼骨胶原蛋白的制备及其理化性质[J]. 食品科学, 2018, 39(13):35-40. doi: 10.7506/spkx1002-6630-201813006 [10] DE CHEN J, LI L, YI R Z, et al. Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus)[J]. LWT - Food Sci Technol,2016,66:453-459. doi: 10.1016/j.lwt.2015.10.070 [11] AB AZIZ N A, SALIM N, ZAREI M, et al. Extraction, anti-tyrosinase, and antioxidant activities of the collagen hydrolysate derived from Rhopilema hispidum[J]. Prep Biochem Biotech- nol,,2020:1-10. [12] RASTIAN Z, PÜTZ S, WANG Y, et al. Type I collagen from jellyfish Catostylus mosaicus for biomaterial applications[J]. ACS Biomater Sci Eng,2018,4(6):2115-2125. doi: 10.1021/acsbiomaterials.7b00979 [13] NOORZAI S, VERBEEK C J R, LAY M C, et al. Collagen extraction from various waste bovine hide sources[J]. Waste Biomass Valor,2020,11(11):5687-5698. doi: 10.1007/s12649-019-00843-2 [14] LIN X H, CHEN Y Y, JIN H X, et al. Collagen extracted from bigeye tuna (Thunnus obesus) skin by isoelectric precipitation: physicochemical properties, proliferation, and migration activi- ties[J]. Mar Drugs,2019,17(5):E261. doi: 10.3390/md17050261 [15] SONG W K, LIU D, SUN L L, et al. Physicochemical and biocompatibility properties of type I collagen from the skin of Nile tilapia (Oreochromis niloticus) for biomedical applications[J]. Mar Drugs,2019,17(3):E137. doi: 10.3390/md17030137 [16] ZHANG X, CHEN Y R, ZHAO Y L, et al. Type I collagen or gelatin stimulates mouse peritoneal macrophages to aggregate and produce pro-inflammatory molecules through upregulated ROS levels[J]. Int Immunopharmacol,2019,76:105845. doi: 10.1016/j.intimp.2019.105845 [17] RODRÍGUEZ F, MORÁN L, GONZÁLEZ G, et al. Collagen extraction from mussel byssus: a new marine collagen source with physicochemical properties of industrial interest[J]. J Food Sci Technol,2017,54(5):1228-1238. doi: 10.1007/s13197-017-2566-z [18] WALTER M N, DEHSORKHI A, HAMLEY I W, et al. Supra-molecular assembly of a lumican-derived peptide amphiphile enhances its collagen-stimulating activity[J]. Biomater Sci,2016,4(2):346-354. doi: 10.1039/C5BM00428D [19] CHINH N T, MANH V Q, TRUNG V Q, et al. Characterization of collagen derived from tropical freshwater carp fish scale wastes and its amino acid sequence[J]. Nat Prod Commun,2019,14(7):1-12. [20] BOU-GHARIOS G, ABRAHAM D, DE CROMBRUGGHE B. Type I collagen structure, synthesis, and regulation[M]//Principles of Bone Biology. Amsterdam: Elsevier, 2020: 295-337. [21] ASADUZZAMAN A K M, GETACHEW A T, CHO Y J, et al. Characterization of pepsin-solubilised collagen recovered from mackerel (Scomber japonicus) bone and skin using subcritical water hydrolysis[J]. Int J Biol Macromol,2020,148:1290-1297. doi: 10.1016/j.ijbiomac.2019.10.104 [22] ELANGO J, LEE J W, WANG S J, et al. Evaluation of differentiated bone cells proliferation by blue shark skin collagen via biochemical for bone tissue engineering[J]. Mar Drugs,2018,16(10):E350. doi: 10.3390/md16100350 [23] COELHO R C G, MARQUES A L P, OLIVEIRA S M, et al. Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering[J]. Mater Sci Eng C Mater Biol Appl,2017,78:787-795. doi: 10.1016/j.msec.2017.04.122 [24] KRISHNAN S, PERUMAL P. Preparation and biomedical cha- racterization of jellyfish (Chrysaora Quinquecirrha) collagen from Southeast Coast of India[J]. Int J Pharm Pharm Sci,2013,5(3):698-701. [25] WICHUDA J, SUNTHORN C, BUSARAKUM P. Comparison of the properties of collagen extracted from dried jellyfish and dried squid[J]. Afr J Biotechnol,2016,15(16):642-648. doi: 10.5897/AJB2016.15210 -