-
市售复方酮康唑乳膏包含酮康唑、硫酸新霉素和丙酸氯倍他索,是治疗浅部真菌感染的常用药物。其中,酮康唑是最常用的抗真菌药物,具有价格低、抗菌谱广、抗真菌活性强等优势。但细菌对硫酸新霉素易产生耐药性,可导致患者反复感染,难以根治,且丙酸氯倍他索不适合12岁以下儿童使用,副作用较多,可产生红斑、灼热、瘙痒等刺激症状,长期大面积用药可导致高血糖等[1-5]。针对上述问题,为改善市售产品的有效性和安全性,本课题组将硫酸新霉素替换为抗菌作用更强的莫匹罗星,将丙酸氯倍他索替换为副作用较少的糠酸莫米松,再结合酮康唑,制备新型复方酮康唑软膏,以提高患者的用药依从性[6-8]。
本研究采用反相高效液相色谱法同时测定复方酮康唑软膏中酮康唑、莫匹罗星和糠酸莫米松3种药效成分的含量,该方法目前未见有文献报道。本法简便,灵敏,分离度好,准确性高,可以为该制剂的质量标准研究提供依据。
-
AL204型电子天平(梅特勒-托利多仪器有限公司);TU-1901型紫外可见分光光度计(北京普析通用仪器有限责任公司);Agilent 1200型高效液相色谱仪(美国Agilent公司);Starter 2C型实验室pH计(奥豪斯仪器有限公司);KQ-800KDE型超声波清洗器(昆山市超声仪器有限公司)。
-
酮康唑对照品(批号:100294-201203,含量99.4%)、莫匹罗星对照品(批号:130568-200501,含量94.2%)、糠酸莫米松对照品(批号:100930-201201,含量99.9%)均购自中国食品药品检定研究院;酮康唑原料药(批号:20130405)、莫匹罗星原料药(批号:20130301)、糠酸莫米松原料药(批号:20130228)均购自武汉鑫佳公司;聚乙二醇400和聚乙二醇3350(中国医药对外贸易公司)。
-
分别取酮康唑、莫匹罗星和糠酸莫米松适量,精密称定,加流动相制备成适宜浓度的溶液,以相应的溶剂为空白溶液,在190~400 nm波长范围内进行紫外扫描,结果见图1。
由图1可见,莫匹罗星在220 nm处具有最大吸收波长,糠酸莫米松在248 nm处具有最大吸收波长,酮康唑在203 nm和245.5 nm具有最大吸收波长,三者在220 nm与248 nm之间均有吸收,因在供试品中酮康唑和莫匹罗星的浓度均是糠酸莫米松的20倍,糠酸莫米松在220 nm处响应值较小,为保证3种药物能同时测定,确定酮康唑、莫匹罗星和糠酸莫米松的检测波长为248 nm。
-
色谱柱:Intersil ODS-3柱(250 mm×4.6 mm,5 µm),流动相为甲醇-pH5.5磷酸盐缓冲液(65∶35),柱温45 ℃,流速1.0 ml/min,检测波长248 nm,进样量10 µl。理论塔板数以各组分峰计,均不低于5000,各色谱峰的分离度良好。
-
酮康唑对照品溶液:取酮康唑20 mg,精密称定,置10 ml量瓶中,加入适量65%甲醇,超声使其完全溶解,加65%甲醇稀释至刻度,摇匀,得到酮康唑的标准储备液,4 ℃低温避光保存。精密吸取酮康唑的标准储备液1 ml,置于10 ml量瓶中,加65%甲醇稀释至刻度,摇匀,即得。
莫匹罗星对照品溶液:取莫匹罗星20 mg,精密称定,置10 ml量瓶中,加入适量65%甲醇,超声使其完全溶解,加65%甲醇稀释至刻度,摇匀,得到莫匹罗星的标准储备液,4 ℃低温避光保存。精密吸取莫匹罗星的标准储备液1 ml,置于10 ml量瓶中,加65%甲醇稀释至刻度,摇匀,即得。
糠酸莫米松对照品溶液:取糠酸莫米松10 mg,精密称定,置100 ml量瓶中,加入适量65%甲醇,超声使其完全溶解,加65%甲醇稀释至刻度,摇匀,得到糠酸莫米松的标准储备液,4 ℃低温避光保存。精密吸取糠酸莫米松的标准储备液1 ml,置于10 ml量瓶中,加65%甲醇稀释至刻度,摇匀,即得。
混合对照品溶液:取酮康唑、莫匹罗星和糠酸莫米松的标准储备液各1 ml,置10 ml量瓶中,加65%甲醇稀释至刻度,摇匀,即得。
-
取复方酮康唑软膏0.5 g,精密称定,置于50 ml的容量瓶中,加65%甲醇适量,超声溶解,加65%甲醇稀释至刻度,摇匀,即得供试品溶液。
-
取空白软膏基质0.5 g,精密称定,置于50 ml的容量瓶中,加65%甲醇适量,超声溶解,加65%甲醇稀释至刻度,摇匀,即得阴性对照溶液。
-
取上述对照品溶液、供试品溶液和阴性对照溶液,用0.22 μm微孔滤膜过滤,弃去初滤液,续滤液分别按照上述色谱条件进样,记录色谱图及相关参数。莫匹罗星的保留时间为5.075 min,理论塔板数为9196,对称因子0.81;糠酸莫米松的保留时间为18.413 min,理论塔板数为11859,对称因子0.88;酮康唑的保留时间为23.318 min,理论塔板数为12291,对称因子0.89,空白基质对莫匹罗星、糠酸莫米松和酮康唑的测定无干扰,方法专属性好。对照品溶液、供试品溶液及阴性对照溶液色谱见图2。
-
分别精密吸取酮康唑、莫匹罗星和糠酸莫米松标准储备液各0.2、0.4、0.8、1.0、1.2、1.4、1.6、2 ml,置10 ml量瓶中,用65%甲醇稀释至刻度,摇匀,0.22 μm微孔滤膜过滤,弃去初滤液,续滤液按上述色谱条件分别进样10 µl,记录色谱图峰面积。以峰面积A对浓度C (µg/ml)进行线性回归,结果见表1。
表 1 复方酮康唑软膏中主药的线性方程
药名 线性方程 r 线性范围(µg/ml) 莫匹罗星 A=2.295C+10.20 0.9995 40.0~400.0 糠酸莫米松 A=28.240C+1.871 0.9995 2.0~20.0 酮康唑 A=12.280C+27.94 0.9995 40.0~400.0 -
分别精密量取同一批复方酮康唑软膏6份,每份约0.5 g,按“2.3.2”项下操作,测定,计算酮康唑、莫匹罗星和糠酸莫米松含量。结果见表2,结果表明该方法重复性良好。
表 2 复方酮康唑软膏中三种主药的重复性试验结果
药物 含量(µg/ml) 测得量(µg/ml) 平均含量(µg/ml) RSD(%) 莫匹罗星 200.00 203.60 204.30 1.51 200.00 204.90 200.00 201.70 200.00 208.80 200.00 206.40 200.00 200.40 糠酸莫米松 10.00 10.10 9.99 1.23 10.00 9.91 10.00 10.06 10.00 10.10 10.00 9.99 10.00 9.79 酮康唑 200.00 203.30 203.60 0.65 200.00 203.90 200.00 202.60 200.00 204.90 200.00 205.00 200.00 201.60 -
取供试品溶液,室温放置,分别于0、2、4、6、8、12、24 h进样10 µl测定,计算不同时间点莫匹罗星、糠酸莫米松和酮康唑的含量,结果见表3。
表 3 复方酮康唑软膏中三种主药的稳定性试验结果
主药 时间(t/h) RSD
(%)0 2 4 6 8 12 24 莫匹罗星 100.00 99.94 100.00 99.94 99.81 99.12 98.49 0.68 糠酸莫米松 100.00 99.69 100.49 100.38 100.38 99.65 98.37 0.74 酮康唑 100.00 99.90 100.06 100.02 100.04 99.64 100.00 0.15 -
分别精密称取莫匹罗星8、10、12 mg,糠酸莫米松0.4、0.5、0.6 mg,酮康唑8、10、12 mg(相当于标示量的80%、100%、120%),精密称定,分别置于0.5 g的空白基质中,加适量流动相溶液,超声10 min使溶解,置于50 ml量瓶中,加流动相溶液稀释至刻度,摇匀,得低、中、高不同浓度的溶液,每个浓度各3份。用0.22 µm微孔滤膜过滤,弃去初滤液,续滤液按上述色谱条件分别进样,记录色谱图峰面积。根据回归方程计算出相应浓度和含量,并计算回收率、平均回收率及RSD。结果见表4。
表 4 复方酮康唑软膏中三种主药回收率试验结果(n=3)
药名 加入量(µg/ml) 测得量(µg/ml) 回收率(%) 平均回收率(%) RSD
(%)莫匹罗星 160.00 154.40 96.50 97.50 0.59 160.00 156.59 97.87 160.00 155.87 97.42 200.00 195.76 97.88 200.00 193.35 96.67 200.00 194.55 97.28 240.00 235.70 98.21 240.00 234.92 97.88 240.00 234.74 97.81 糠酸莫米松 8.00 7.73 96.62 97.99 0.79 8.00 7.84 98.00 8.00 7.83 97.91 10.00 9.88 98.80 10.00 9.71 97.10 10.00 9.78 97.80 12.00 11.88 99.00 12.00 11.85 98.75 12.00 11.75 97.92 酮康唑 160.00 153.63 96.02 97.62 0.74 160.00 156.39 97.74 160.00 155.84 97.40 200.00 195.72 97.86 200.00 194.06 97.03 200.00 195.44 97.72 240.00 236.46 98.52 240.00 235.60 98.17 240.00 235.38 98.08 -
取3批样品,依法测定,结果见表5。
表 5 3批次样品含量测定结果(n=3,%)
样品批号 酮康唑 莫匹罗星 糠酸莫米松 20190411 99.03 99.20 101.4 20190415 106.3 99.76 101.6 20190408 100.6 100.7 100.7 -
本研究根据软膏剂的特性,选择了提取效率较高,操作简便的超声提取法进行样品前处理,对溶剂种类、溶剂体积、提取时间进行考察,最终选择65%甲醇50 ml,超声提取10 min,该提取方法可有效的除去样品中的杂质,让测定的专属性更高。
-
对于流动相的选择,本实验尝试以甲醇-0.6%醋酸铵溶液作为流动相[9-12],结果基线非常不稳定,这可能是由于醋酸铵的紫外吸收所造成。以甲醇-水、乙腈-水,甲醇-磷酸二氢钠溶液和甲醇-乙腈-水等作为流动相[13-15],使用磷酸二氢钠溶液分离效果及峰形较好,有机相甲醇的比例应控制在一定范围,甲醇低于50%则酮康唑峰保留时间过长;流动相的酸度对酮康唑(弱碱性)和莫匹罗星(弱酸性)[16]的峰形及保留时间亦有影响,用磷酸将磷酸二氢钠的pH值调节到4.5、5.0、5.5和6.0。结果表明,当流动相的pH值为5.5时,莫匹罗星、糠酸莫米松和酮康唑的三组峰值均具有较好的分离度,并且无前延和拖尾现象。对于检测波长的选择,酮康唑、莫匹罗星和糠酸莫米松在220 nm与248 nm均有吸收,因在供试品中酮康唑和莫匹罗星的浓度均是糠酸莫米松的20倍,为了让这三种药物能同时测定,提高检测的灵敏度,确定最佳检测波长为248 nm。对于色谱柱的选择,本研究考察了岛津、安捷伦和沃特世等品牌的色谱柱,最终选择了岛津Intersil ODS-3柱,三种待测成分在该柱上分离度好,峰形佳,所以确定为最佳色谱柱。
-
3个批次的复方酮康唑软膏均为实验室自制,从测定结果可以看出,不同批次的样品中酮康唑、莫匹罗星和糠酸莫米松的含量有一定波动,这提示我们在进行中试放大生产时,要充分考虑各因素的影响,保证制剂中主要成分的含量稳定,同时对软膏剂的长期稳定性也需要进行考察。
Determination of three constituents in compound ketoconazole ointment by RP-HPLC
-
摘要:
目的 建立同时测定复方酮康唑软膏中酮康唑、莫匹罗星和糠酸莫米松含量的方法。 方法 采用反相高效液相色谱法,色谱柱为Intersil ODS-3(250 mm×4.6 mm,5 μm),流动相为甲醇-pH5.5磷酸盐缓冲液(65∶35),柱温45 ℃,流速1.0 ml/min,检测波长248 nm。 结果 方法学验证表明,酮康唑、莫匹罗星和糠酸莫米松3种成分线性关系良好(r≥0.9995),日内日间精密度均小于3.0%,回收率在90%~108%之间,稳定性和重复性的RSD均小于3.0%,符合方法学要求。按照新建立的方法测定了3个批次样品中三组分的含量,结果符合要求。 结论 该方法简便可靠,可为复方酮康唑软膏的质量控制提供依据,也为其质量标准研究奠定了基础。 Abstract:Objective To establish a RP-HPLC method for determination of ketoconazole, mupirocin and mometasone furoate in compound ketoconazole ointment. Methods RP-HPLC was conducted on a Intersil ODS-3 column (250 mm×4.6 mm, 5 μm), with methanol-PBS with pH 5.5 (65:35) as the mobile phase and the column temperature was 45 ℃. The flow rate was 1.0 ml/min, and the detection wavelength was 248 nm. Results The methodological verification showed that ketoconazole, mupirocin and mometasone furoate had a good linearity (r≥0.9995). The inter/intra-day precisions were less than 3.0%, The recovery rates were between 90% and 108%. The stability and repeatability of RSD were also less than 3.0%, which met the requirements of method validation. The contents of the three components in three batches were determined by the new method. Conclusion The method is simple and reliable. It can provide a basis for the quality control of compound ketoconazole ointment and lay a foundation for its quality standard research. -
Key words:
- RP-HPLC /
- ketoconazole /
- mupirocin /
- mometasone furoate
-
超多孔水凝胶(SPF)是一种三维结构的亲水性高分子聚合网格,在水中能够溶胀但不溶解,且因其具有良好的生物相容及生物可降解性,被广泛应用于医学、药学等领域。与传统水凝胶相比,超多孔水凝胶通过致孔剂、模板等方法调整孔隙率,从而改变溶胀速率以及释药速率[1-3]。胰岛素等生物大分子类药物不仅体内稳定性差、易被酶解、生物半衰期短、不易透过生理屏障,故现有给药方式多以注射为主,患者依从性差[4]。有研究显示[5],超多孔水凝胶承载胰岛素灌胃后可以显著降低大鼠血糖:给药2 h后血糖显著下降,4~6 h降至最低,但12 h即回至最初血糖的80%,说明该制剂起效快但持续时间短,血糖波动大,需频繁给药,患者依从性差。上述情况,结合胃肠道对胰岛素的灭活等原因,本实验拟合成具有缓释作用的聚(丙烯酸-丙烯酰胺)/O-羧甲基壳聚糖[P(AA-co-AM)/O-CMC]互穿网络聚合物超多孔水凝胶(SPH-IPN),以期通过皮下给药包载胰岛素的SPH-IPN后,实现长效、减小血糖波动的目的。
1. 材料与仪器
1.1 材料与试剂
丙烯酰胺(AM)、丙烯酸(AA)、N,N′-亚甲基-双丙烯酸胺(Bis)、过硫酸铵(APS)、N,N,N′,N′-四甲基乙二胺(TEMED)均购自上海阿拉丁生化科技股份有限公司;泊洛沙姆127(PF127,北京化工厂);O-羧甲基壳聚糖(O-CMC,大连美仑生物技术有限公司);戊二醛(GA,上海阿拉丁生化科技股份有限公司);姜黄素(宝鸡国康生物科技有限公司);牛胰岛素(上海源叶生物有限公司);十二烷基硫酸钠(SDS)、乙二胺四乙酸二钠(EDTA)、碳酸氢钠、盐酸、乙醇、甲醇、乙酸乙酯、氢氧化钠均为分析纯,实验用水为去离子水。
1.2 仪器
85-2型恒温磁力搅拌器(上海司乐仪器有限公司);恒温水浴锅(余姚市东方电工仪器厂);透析袋(Viskase,美国);Nicolet iS50傅里叶变换红外光谱仪(Thermo,美国);AVANCE III 400核磁共振谱仪(Bruker,德国);FE28型pH计(Mettler Toledo,美国);Waters UPLC:二元溶剂管理系统、在线脱气机、自动进样器、PDA检测器(Waters公司,美国);TTL-DC型多功能氮吹仪(北京同泰联科技发展有限公司);SHA-B双功能恒温水浴振荡器(常州金坛良友仪器有限公司)。
1.3 实验动物
雄性SD大鼠,体重范围(220±20)g,合格证号:SCXK(京)2017-0002,购自北京斯贝福实验动物科技有限公司,饲养于北京中医药大学动物房。
2. 方法与结果
2.1 超多孔水凝胶(SPH-IPN)的制备[5]
依次向西林瓶中加入50% AM和AA溶液,以10 mol/L NaOH调节pH至5.0。随后再加入2.5% Bis溶液、10% PF 127溶液、20%APS溶液和50 μl 16.7% TEMED溶液,磁力搅拌混匀。室温放置15 min后,逐滴加入 6% O-CMC溶液,使溶液中O-CMC/单体比(w/w)为0.144,迅速加入NaHCO3粉末,搅拌约20 s使其产生气泡,将其置于40 ℃水浴加热5 min,室温固化30 min,即得半互穿网络水凝胶(semi-IPN)。将所得semi-IPN置于GA/O-CMC比(w/w)为2∶10的GA溶液(用0.2 mol/L的盐酸溶液调节pH至1.0)中至将其吸干,室温放置1 h,得粗P(AA-co-AM)/O-CMC超多孔水凝胶(SPH-IPN)。将SPH-IPN置于0.1 mol/L盐酸溶液中,透析5 d,无水乙醇中脱水透析2 d,30 ℃烘干至恒重,干燥密闭保存,即得纯化后的SPH-IPN。
2.2 SPH-IPN的结构表征
将样品充分干燥,KBr压片法制样,使用傅里叶变换红外光谱仪测定500~4 000 cm−1波数的SPH-IPN的IR谱。将样品置于氧化锆样品管(A=4 mm),转速5 000 Hz,固体碳谱测定。
2.3 SPH-IPN的溶胀性能测定
取干燥的SPH-IPN,室温下浸于过量水中(pH 7.0),于不同时间点用筛网取出SPH-IPN,吸去表面残余水后称重,根据以下公式计算SPH-IPN在不同时间点的溶胀比(QS):
$$ {Q_{\rm{S}}} = \frac{{{W_{\rm{S}}} - {W_{\rm{d}}}}}{{{W_{\rm{d}}}}} $$ 其中,WS为溶胀后SPH-IPN质量(g);Wd为干SPH-IPN质量(g)。
2.4 SPH-IPN孔隙率测定
采用乙醇替代法测定SPH-IPN的孔隙率[6]。取干燥的SPH-IPN,置无水乙醇中浸泡12 h,取出后吸去表面残余乙醇,称重,根据以下公式计算孔隙率:
$$ {\text{孔隙率}}=\frac{{M}_{2}-{M}_{1}}{\rho V}\times 100\;\text{%}$$ 其中,M1为干SPH-IPN质量(g);M2为乙醇浸泡后的SPH-IPN质量(g);ρ为乙醇密度(g/cm),V为SPH-IPN体积(cm3,以游标卡尺测量长方体SPH-IPN的长、宽、高后计算而得)。
2.5 载胰岛素SPH-IPN的制备及含量测定
2.5.1 载胰岛素SPH-IPN的制备
取胰岛素15 mg,精密称定,置10 ml量瓶中,加0.1 mol/L pH 7.4 PBS溶解并定容至刻度,得1.5 mg/ml的胰岛素溶液。称取50 mg SPH-IPN置装有10 ml胰岛素溶液的西林瓶中,37 ℃温浴放置2 h,取出,置烘箱内,30 ℃恒温干燥。
2.5.2 载药量的测定
取胰岛素SPH-IPN适量,研磨粉碎,取20 mg,精密称定,置10 ml量瓶中,加入0.1 mol/L pH 7.4 PBS,定容至刻度。37 ℃温浴2 h,超声10 min,精密量取上清液20 μl注入HPLC仪,记录色谱图,计算胰岛素含量,并根据以下公式计算载药量:
$$ {\text{载药量}}(\%)=\frac{cV}{M}\times 100$$ 其中,c为测得胰岛素的浓度(mg/ml),V为量瓶体积(ml),M为SPH-IPN的质量(mg)。
2.6 载胰岛素SPH-IPN降血糖实验
2.6.1 不同方法载药SPH-IPN的制备
按“2.5.1”项下方法制备载胰岛素SPH-IPN,采用冷冻干燥法将其冻干即得含胰岛素的冻干SPH-IPN。称取空白凝胶200 mg置于1.5 mg/ml的胰岛素溶液37 ℃中溶胀2 h,备用,即得含胰岛素的预溶胀SPH-IPN。
2.6.2 糖尿病大鼠模型的建立
给大鼠喂食高脂饲料(88.8%基础饲料、1%胆固醇、10%猪油和 0.2%胆盐[7])喂养4周,动物自由进食和饮水,每周记录体重。于喂养的第28天晚禁食,在第29天一次性腹腔注射链脲佐菌素(STZ)35 mg/kg,将一次性注射STZ 3 d后大鼠空腹血糖≥11.1 mmol/L或随机血糖≥16.7 mmol/L作为成模标准[8]。对照组大鼠则腹腔注射无菌生理盐水(0.3 ml/100 g)。注意测血糖前应禁食12 h,空腹测血糖。造模期间要防止感染,注意消毒。未造模成功的大鼠再次注射STZ35 mg/kg,3 d后测血糖验证是否造模成功。
2.6.3 分组、给药及血糖测定
取糖尿病大鼠12只,按随机数字表分为2组,即模型1组和模型2组;取正常大鼠12只,按随机数字表分为2组,即正常1组和正常2组。模型组1组和正常1组皮下埋植含胰岛素的预溶胀SPH-IPN,模型2组和正常2组皮下埋植含胰岛素的冻干SPH-IPN。给药后分别于1、2、4、6、8、10、12、24、28、32、36、48、60、72 h不同时间间隔大鼠尾部取血0.02 ml,用血糖仪测定血糖值,考察不同时间血糖值的变化情况。
3. 实验结果
3.1 IPN结构表征
3.1.1 傅立叶变换红外光谱(FTIR)
图1为SPH-IPN的FTIR图。在1 651 cm−1处有-COOH的伸缩振动峰,且1 615 cm−1附近无AA和AM的C=C双键吸收峰,说明已聚合成P(AA-co-AM),SPH-IPN中存在P(AA-co-AM),图中3 335和2 922 cm-1处分别为-O-H和-C-H的伸缩振动峰;1 604和1 416 cm−1处分别为羧酸盐-COO-的反对称伸缩振动峰和对称伸缩振动峰;1 086、1 044和1 171 cm−1处分别为O-CMC中糖环羟基-CH-OH、一级羟基-CH2-OH和醚基C-O-C中的C-O伸缩振动峰。以上结果表明SPH-IPN中存在P(AA-co-AM),还存在的一些杂峰可能是还有一些未反应单体未被除尽。
3.1.2 核磁共振(13C-NMR)
图2为SPH-IPN的13C-NMR图。图中41.926×10−6为P(AA-co-AM)上主链碳原子的化学位移峰;179.499处为羧基碳原子的化学位移峰,说明结构中含有羧基官能团,AA与AM已聚合形成P(AA-co-AM)。
由于制得的水凝胶未找到合适的溶液将其溶解,因此在测定核磁共振图谱时,采用的是固体核磁技术[9]。
综合红外和碳谱结果可知,通过该方法可聚合形成P(AA-co-AM)结构,而该结构又是超多孔水凝胶SPH-IPN的主要结构,由此可说明已成功聚合SPH-IPN。
3.2 SPH-IPN的溶胀性能
图3为不同温度介质中SPH-IPN的溶胀曲线,可见随着温度升高,SPH-IPN的溶胀速率加快,平衡溶胀比增大,原因是温度较高时相互缠绕的聚合物链松开,破坏分子间的氢键,增加链运动,水分子在凝胶骨架内外的扩散速率加快,从而促进了聚合物的溶胀[10]。
3.3 SPH-IPN孔隙率的测定
表1为SPH-IPN孔隙率测定结果,所制SPH-IPN超多孔水凝胶空隙分布均匀。除此之外,与传统水凝胶相比[11],孔隙率高,更利于药物的释放。
表 1 SPH-IPN的孔隙率测定结果干重M1
(m/g)湿重M2
(m/g)乙醇密度
(g/cm3)体积
(V/cm3)孔隙率
(%)平均值
(%)RSD
(%)0.5425 0.6327 0.816 0.13 85.03 81.63 3.88 0.5751 0.6779 0.816 0.16 78.74 0.5628 0.6621 0.816 0.15 81.13 3.4 SPH-IPN载胰岛素含量测定结果
37 ℃时SPH-IPN溶胀比较大,温度过高易引起胰岛素变性,故选择37 ℃温度载药,胰岛素的载药量试验结果见表2。
表 2 SPH-IPN对胰岛素的载药量试验组 载药量(w/w,%) 平均值(w/w,%) RSD(%) 1 3.13 3.19 1.88 2 3.25 3 3.20 3.5 载胰岛素凝胶降血糖实验
图4是含胰岛素的预溶胀SPH-IPN和冻干SPH-IPN对糖尿病大鼠和正常大鼠降糖作用的比较。图中预溶胀模型组在10 h时血糖值才有所降低,最低值为10 h的16.8 mmol/L,之后血糖又开始慢慢升高;预溶胀正常大鼠组在给药4 h后血糖开始降低,到24 h时血糖达到7.3 mmol/L,之后维持平稳状态;冻干模型组在包埋1 h后血糖便开始下降,血糖值降到6.7 mmol/L,在24 h后血糖开始慢慢升高,冻干正常大鼠组在1 h后血糖降至5.3 mmol/L,之后虽有起伏,但也一直在正常范围内。说明冻干凝胶的降糖作用较预溶胀组好,冻干凝胶在1~24 h时间段内的降糖作用较平稳。
4. 讨论
4.1 SPH-IPN的制备
本实验选用了能够迅速聚合的水溶性原料AA、AM为聚合反应单体;以APS/TEMED为引发体系;PF127为泡沫稳定剂,使产生的泡沫稳定时间更长;NaHCO3为起泡剂;O-CMC在合成过程中作为增稠剂,维持合适的起泡速率,使产生的气泡均匀、稳定,不致产生的气泡过快逸散[12]。采用溶液聚合法制备了含semi-IPN的水凝胶。因为该聚合反应在反应过程中会产生大量热量,这对泡沫的稳定极为有利,因此在常温条件下便能进行聚合反应,条件温和。以pH 1.0的GA溶液交联O-CMC时,可避免过度溶胀对孔隙结构的破坏,且pH 1.0时GA的交联能力较好。除此之外,相较于参考文献[5],本实验中O-CMC/单体比较高,当O-CMC/单体比为0.144时,虽然可形成具有大量相互贯通孔隙的聚合物,但会导致其溶胀速率减慢,溶胀比降低,从而影响载药量和释药速率。随着溶胀速率减慢,药物溶出速率也相应减慢;随着溶胀比的降低,吸收的药物溶液减少,载药量随之降低。本实验提高O-CMC/单体的目的是希望通过减慢SPH-IPN的溶胀速率,从而尝试制备缓释制剂。
4.2 水凝胶的载药方法
水凝胶的载药方法通常有2种:一是将药物与单体溶液混合,随着单体聚合、交联将药物包埋于水凝胶中[13];另一种方法为吸附载药,即凝胶在被载药液中溶胀,将载药水凝胶干燥,实现药物包埋[14]。姜黄素属于脂溶性药物,课题组前期研究结果表明,0.5%的SDS对姜黄素有一定的增溶效果;0.1 mol/L pH 7.4 PBS中SPH-IPN的溶胀比较大,对胰岛素具有一定的增溶作用,故分别选用这两种溶剂配制胰岛素溶液。
4.3 超多孔水凝胶的释药性能
文献[5]表明,超多孔水凝胶载药后的释药性能与O-CMC的含量、pH、离子强度、温度等多个因素有关,同时也有可能与载药SPH-IPN的制备过程有关。
笔者曾用SPH-IPN包载姜黄素,并开展探索性实验。结果发现20、40、60目不同粒径的凝胶累积释放率不同,前13 h三者的累积释放率均几乎一样(接近0),13 h后累积释放率逐渐增加,以40目凝胶的效果最佳,48 h后达到6.00%,明显高于其他组,但其释放速度慢,见图5。灌胃给予载姜黄素SPH-IPN后,部分大鼠排泄物中可见载姜黄素SPH-IPN,说明SPH-IPN在体内溶胀速率很慢;而载姜黄素SPH-IPN组和姜黄素原药组,灌胃后大鼠眼眶血中均未检出姜黄素,也进一步体现SPH-IPN未促进姜黄素的吸收。
将载胰岛素SPH-IPN予灌胃给药溶胀很慢,降糖效果极不明显,为延长SPH-IPN溶胀时间,最终考虑将其进行皮下包埋给药。
载胰岛素SPH-IPN皮下包埋给药发现,载胰岛素冻干SPH-IPN组的降糖效果优于载胰岛素溶胀SPH-IPN组,表明载药SPH-IPN的释放性能除与溶胀比有关外,其制备过程也会一定程度影响被载药物的疗效,与文献[5]报道一致。实验中将冻干组和溶胀组均进行包埋,均可延长溶胀时间,但冻干SPH-IPN组的降糖效果优,皮下包埋2 h后表现出明显的降糖作用,相比溶胀组而言,起效时间快(8 h左右)且持续时间长,24 h之内均具有良好的降糖作用。提示我们在制备载药SPH-IPN的过程中应该时刻关注被载药物的活性及稳定性,应在适当的条件下对药物进行包载以提高药物疗效,同时也说明载胰岛素冻干SPH-IPN可作为控释制剂,实现调节大鼠血糖的目的。结合实验结果分析可知,SPH-IPN能够增强药物的稳定性,提高生物利用度,比较适合作为蛋白质药物给药载体。
4.4 SPH-IPN载胰岛素的微针给药展望
文献研究发现,胰岛素经皮给药具有不错的疗效,与皮下给药效果几无差异,且依从性好,成为最新、有效、方便的给药方式。Norduist等[15]将微针贴剂用于胰岛素给药,结果发现,血浆胰岛素浓度变化与传统的皮下注射并无太大差异,但微针贴剂能极大地提高实验大鼠的依从性。无痛中空微针皮内胰岛素给药系统已获得 FDA批准,进入II期临床,相关产品有以色列纳米通道技术公司采用MEMS技术开发的中空微针器具,其中包括用于无痛释放胰岛素薄片与胰岛素微型泵相结合。Liu等[16]将可溶性材料透明质酸制备成负载胰岛素的微针阵列。在体实验发现,负载胰岛素的微针能够在1 h内完全溶解,携带的胰岛素快速释放入体内。
与上述研究及应用相比,本实验的载胰岛素SPH-IPN,释放药物无需微型泵,皮下包埋给药可以24 h内保持平稳、正常的血糖浓度,适合作为一日一次给药的控释制剂。为了提高患者的依从性,进一步研究将载胰岛素SPH-IPN制备为微针阵列的形式,以期得到一种方便、快捷、安全的胰岛素缓释递药系统。
-
表 1 复方酮康唑软膏中主药的线性方程
药名 线性方程 r 线性范围(µg/ml) 莫匹罗星 A=2.295C+10.20 0.9995 40.0~400.0 糠酸莫米松 A=28.240C+1.871 0.9995 2.0~20.0 酮康唑 A=12.280C+27.94 0.9995 40.0~400.0 表 2 复方酮康唑软膏中三种主药的重复性试验结果
药物 含量(µg/ml) 测得量(µg/ml) 平均含量(µg/ml) RSD(%) 莫匹罗星 200.00 203.60 204.30 1.51 200.00 204.90 200.00 201.70 200.00 208.80 200.00 206.40 200.00 200.40 糠酸莫米松 10.00 10.10 9.99 1.23 10.00 9.91 10.00 10.06 10.00 10.10 10.00 9.99 10.00 9.79 酮康唑 200.00 203.30 203.60 0.65 200.00 203.90 200.00 202.60 200.00 204.90 200.00 205.00 200.00 201.60 表 3 复方酮康唑软膏中三种主药的稳定性试验结果
主药 时间(t/h) RSD
(%)0 2 4 6 8 12 24 莫匹罗星 100.00 99.94 100.00 99.94 99.81 99.12 98.49 0.68 糠酸莫米松 100.00 99.69 100.49 100.38 100.38 99.65 98.37 0.74 酮康唑 100.00 99.90 100.06 100.02 100.04 99.64 100.00 0.15 表 4 复方酮康唑软膏中三种主药回收率试验结果(n=3)
药名 加入量(µg/ml) 测得量(µg/ml) 回收率(%) 平均回收率(%) RSD
(%)莫匹罗星 160.00 154.40 96.50 97.50 0.59 160.00 156.59 97.87 160.00 155.87 97.42 200.00 195.76 97.88 200.00 193.35 96.67 200.00 194.55 97.28 240.00 235.70 98.21 240.00 234.92 97.88 240.00 234.74 97.81 糠酸莫米松 8.00 7.73 96.62 97.99 0.79 8.00 7.84 98.00 8.00 7.83 97.91 10.00 9.88 98.80 10.00 9.71 97.10 10.00 9.78 97.80 12.00 11.88 99.00 12.00 11.85 98.75 12.00 11.75 97.92 酮康唑 160.00 153.63 96.02 97.62 0.74 160.00 156.39 97.74 160.00 155.84 97.40 200.00 195.72 97.86 200.00 194.06 97.03 200.00 195.44 97.72 240.00 236.46 98.52 240.00 235.60 98.17 240.00 235.38 98.08 表 5 3批次样品含量测定结果(n=3,%)
样品批号 酮康唑 莫匹罗星 糠酸莫米松 20190411 99.03 99.20 101.4 20190415 106.3 99.76 101.6 20190408 100.6 100.7 100.7 -
[1] 万芳友, 李爱华. 反相高效液相色谱法同时测定复方酮康唑搽剂中三种组分的含量[J]. 药物分析杂志, 2013, 33(7):1263-1266. [2] AMRUTIYA N, MADAN M, BAJAJ A. Development and validation of RP-HPLC method for simultaneous estimation of prednicarbate, mupirocin and ketoconazole in topical dosage forms[J]. J Anal Chem,2010,65(11):1148-1154. doi: 10.1134/S1061934810110109 [3] 王爱平, 李若瑜. 2%酮康唑乳膏在皮肤科疾病中的应用[J]. 中国真菌学杂志, 2010, 5(3):179-183. [4] 陆雪华, 陆艳萍, 覃美玲, 等. 复方酮康唑莫匹罗星联合治疗真菌性皮肤溃疡疗效观察[J]. 基层医学论坛, 2018, 22(2):158-160. [5] 中国中西医结合学会皮肤性病学分会环境与职业性皮肤病学组. 糠酸莫米松乳膏临床应用专家共识[J]. 中国中西医结合皮肤性病学杂志, 2017, 16(1):88-90. [6] 孟甄, 金建玲, 刘玉庆, 等. 细菌耐药性的诱导与消除[J]. 中国药理学通报, 2003, 19(9):1047-1051. [7] 谢阳, 万苗坚. 皮肤科常用糖皮质激素类药物的类型及适应证[J]. 中国医学文摘(皮肤科学), 2015, 32(3):283-288. [8] 刘淮, 刘景桢. 外用糖皮质激素的适应症与副作用[J]. 皮肤病与性病, 2016, 38(1):19-20. [9] 李文仕. RP-HPLC法测定复方中风康复片中盐酸麻黄碱的含量[J]. 中国药事, 2012, 26(5):494-496. [10] 颜苗, 张金娇, 李焕德, 等. RP-HPLC法同时测定甘草酸制剂中18α-、18β-甘草酸的含量[J]. 药物分析杂志, 2012, 32(2):301-304, 309. [11] ABDELWAHAB N S, ALI N W, ABDELKAWY M, et al. Validated RP-HPLC and TLC-densitometric methods for analysis of ternary mixture of cetylpyridinium chloride, chlorocresol and lidocaine in oral antiseptic formulation[J]. J Chromatogr Sci,2016,54(3):318-325. [12] WAN F Y, LI A H. Determination of three constituents in compound ketoconazole liniment by RP-HPLC[J]. Chin J Pharm Anal,2013,33(7):1263-1266. [13] SHEHNAZ H, HAIDER A, SAEED ARAYNE M, et al. Carboxyterfenadine antacid interaction monitoring by UV spectrophotometry and RP-HPLC techniques[J]. Arab J Chem,2014,7(5):839-845. doi: 10.1016/j.arabjc.2013.01.011 [14] VENISHETTY V K, PARIKH N, SISTLA R, et al. Application of validated RP-HPLC method for simultaneous determination of docetaxel and ketoconazole in solid lipid nanoparticles[J]. J Chromatogr Sci,2011,49(2):136-141. doi: 10.1093/chrsci/49.2.136 [15] AHMMED S M, MUKHERJEE P K, BAHADUR S, et al. CYP450 mediated inhibition potential of Swertia chirata: an herb from Indian traditional medicine[J]. J Ethnopharmacol,2016,178:34-39. doi: 10.1016/j.jep.2015.11.046 [16] STAUB I, FLORES L, GOSMANN G, et al. Photostability studies of ketoconazole: isolation and structural elucidation of the main photodegradation products[J]. Lat Am J Pharm,2010,29(7):1100-1106. -