-
麻黄碱是中药麻黄的主要有效成分,但它也可以引起中枢神经系统毒副作用。麻黄碱属于小分子生物碱,能够通过血脑屏障对神经细胞产生直接毒性作用 [1-4]。然而,有关麻黄碱神经毒性的作用机制并不完全清楚。脑源性神经营养因子(BDNF)已被证实参与学习、记忆等多种中枢神经系统的活动[5]。突触后致密蛋白是突触后膜胞质面聚集的一层均匀而致密的蛋白,其中PSD95是主要成分之一[6]。而synapsin1是维持突触前膜功能的重要成分之一[7]。BNDF、PSD95和synapsin1与神经元结构完整性和功能的完备性密切相关。本研究以PC12细胞为研究对象,考察麻黄碱的细胞毒性,同时检测BDNF、PSD95和synapsin1表达水平的变化,初步探讨麻黄碱引起细胞毒性的可能机制。
Effects of ephedrine on the expression levels of BDNF, PSD95 and synapsin1 in PC12 cells
-
摘要:
目的 考察麻黄碱对PC12细胞内的脑源性神经营养因子(BDNF)、突触后致密蛋白95(PSD95)和神经突触素1(synapsin1)表达水平的影响,探讨麻黄碱对PC12细胞毒性的作用机制。 方法 通过不同浓度的麻黄碱处理PC12细胞后,采用噻唑蓝试剂(MTT)法测定细胞存活率;采用倒置显微镜观察细胞的形态学变化;采用蛋白印迹(Western blot)法检测BDNF、PSD95和synapsin1的蛋白表达水平。 结果 麻黄碱呈浓度依赖性降低PC12细胞活力,其引起PC12细胞死亡的IC25和IC50分别为0.536 mmol和2.8 mmol。随着麻黄碱浓度的升高,PC12细胞体积变小,边界模糊,突触数减少,轴突长度减短;BDNF和PSD95的表达水平明显升高;synapsin1的表达水平有所降低。 结论 麻黄碱对PC12细胞的毒性作用机制可能与影响BDNF、PSD95和synapsin1的表达水平有关。 Abstract:Objective To investigate the effects of ephedrine on the expression levels of brain-derived neurotropic factor (BDNF) and postsynaptic density protein 95 (PSD95) and synapsin1 in PC12 cells, and to explore the mechanism of ephedrine cytotoxicity on PC12. Methods After PC12 cells were treated with different concentration of ephedrine, the cell survival rate was measured by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The morphology changes of PC12 cells were observed by an inverted microscope. Western blot was used to detect the protein expression levels of BDNF, PSD95 and synapsin1 in PC12 cells. Results Ephedrine decreased the viability of PC12 cell in a concentration-dependent manner,with an IC25 and IC50 of 0.536 mmol and 2.8 mmol, respectively, for PC12 cell death. As ephedrine concentration increased, PC12 cells became smaller in size, with blurred boundary blurred, reduced synapses and shorter axon lengths. The expression levels of BDNF and PSD95 increased significantly. Meanwhile the expression level of synapsin1 decreased. Conclusion The mechanism of ephedrine cytotoxicity on PC12 may be related to the expression levels of BDNF, PSD95 and synapsin1. -
[1] WELLMAN P J, MILLER D K, LIVERMORE C L, et al. Effects of (-)-ephedrine on locomotion, feeding, and nucleus accumbens dopamine in rats[J]. Psychopharmacology (Berl),1998,135(2):133-140. [2] MILLER D K, NATION J R, WELLMAN P J. Sensitization of anorexia and locomotion induced by chronic administration of ephedrine in rats[J]. Life Sci,1999,65(5):501-511. doi: 10.1016/S0024-3205(99)00271-4 [3] SCHMUED L C, BOWYER J F. Methamphetamine exposure can produce neuronal degeneration in mouse hippocampal remnants[J]. Brain Res,1997,759(1):135-140. doi: 10.1016/S0006-8993(97)00173-X [4] BOWYER J F, HOPKINS K J, JAKAB R, et al. L-ephedrine-induced neurodegeneration in the parietal cortex and thalamus of the rat is dependent on hyperthermia and can be altered by the process of in vivo brain microdialysis[J]. Toxicol Lett,2001,125(1-3):151-166. doi: 10.1016/S0378-4274(01)00440-4 [5] LOHOF A M, IP N Y, POO M M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF[J]. Nature,1993,363(6427):350-353. doi: 10.1038/363350a0 [6] EL-HUSSEINI A E, SCHNELL E, CHETKOVICH D M, et al. PSD-95 involvement in maturation of excitatory synapses[J]. Science,2000,290(5495):1364-1368. doi: 10.1126/science.290.5495.1364 [7] HANSEN S, JØRGENSEN J, NYENGAARD J, et al. Early life vitamin C deficiency does not alter morphology of hippocampal CA1 pyramidal neurons or markers of synaptic plasticity in a Guinea pig model[J]. Nutrients,2018,10(6):749. doi: 10.3390/nu10060749 [8] 郑芳昊, 罗佳波. 麻黄对大鼠中枢神经系统毒副作用的研究[J]. 时珍国医国药, 2015, 26(3):534-536. [9] 郑芳昊, 罗佳波. 麻黄对大鼠额叶皮层氧化损伤的影响[J]. 时珍国医国药, 2016, 27(6):1313-1316. [10] VICARIO-ABEJÓN C, COLLIN C, MCKAY R D, et al. Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons[J]. J Neurosci,1998,18(18):7256-7271. doi: 10.1523/JNEUROSCI.18-18-07256.1998 [11] SHERWOOD N T, LO D C. Long-term enhancement of central synaptic transmission by chronic brain-derived neurotrophic factor treatment[J]. J Neurosci,1999,19(16):7025-7036. doi: 10.1523/JNEUROSCI.19-16-07025.1999 [12] NARISAWA-SAITO M, CARNAHAN J, ARAKI K, et al. Brain-derived neurotrophic factor regulates the expression of AMPA receptor proteins in neocortical neurons[J]. Neuroscience,1999,88(4):1009-1014. doi: 10.1016/S0306-4522(98)00496-5 [13] NARISAWA-SAITO M, SILVA A J, YAMAGUCHI T, et al. Growth factor-mediated Fyn signaling regulates alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression in rodent neocortical neurons[J]. Proc Natl Acad Sci USA,1999,96(5):2461-2466. doi: 10.1073/pnas.96.5.2461 [14] CUNHA C, BRAMBILLA R, THOMAS K L. A simple role for BDNF in learning and memory[J]. Front Mol Neurosci,2010(3):1. [15] TAFT C E, TURRIGIANO G G. PSD-95 promotes the stabilization of young synaptic contacts[J]. Philos Trans R Soc Lond B Biol Sci,2014,369(1633):20130134. [16] LIM I A, MERRILL M A, CHEN Y C, et al. Disruption of the NMDA receptor-PSD-95 interaction in hippocampal neurons with no obvious physiological short-term effect[J]. Neuropharmacology,2003,45(6):738-754. doi: 10.1016/S0028-3908(03)00276-4