留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

HMS-01的遗传毒性评价

陈弋 孙青䶮 黎翔 孙旸 刘霞

王璐暖, 吴建辉, 何贝轩, 张彦洁, 郭美丽. 羟基红花黄色素A生物合成途径短链还原酶基因的特征及功能研究[J]. 药学实践与服务, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
引用本文: 陈弋, 孙青䶮, 黎翔, 孙旸, 刘霞. HMS-01的遗传毒性评价[J]. 药学实践与服务, 2024, 42(4): 147-150, 156. doi: 10.12206/j.issn.2097-2024.202308061
WANG Lunuan, WU Jianhui, HE Beixuan, ZHANG Yanjie, GUO Meili. Characterization and function of short-chain dehydrogenases/reductases in hydroxysafflower yellow A biosynthesis pathway[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
Citation: CHEN Yi, SUN Qingyan, LI Xiang, SUN Yang, LIU Xia. Genotoxicity evaluation of HMS-01[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(4): 147-150, 156. doi: 10.12206/j.issn.2097-2024.202308061

HMS-01的遗传毒性评价

doi: 10.12206/j.issn.2097-2024.202308061
基金项目: 国家自然科学基金项目(82073907,82073842);上海市科委生物医药领域科技支撑项目(20S11902700);上海市 2021 年度 “科技创新行动计划 ” 优秀学术/技术带头人计划项目(21XD1404700)
详细信息
    作者简介:

    陈 弋,硕士研究生,Tel:15651270023, Email:100397337@qq.com

    通讯作者: 孙 旸,副教授,硕士生导师,研究方向:代谢性疾病药物药理,Email:DawnySun@126.com刘 霞,教授,博士生导师,研究方向:心脑血管药理学,Email:lxflying@aliyun.com

Genotoxicity evaluation of HMS-01

  • 摘要:   目的  检测HMS-01的遗传毒性,并对其进行临床前安全评价研究,为后续该药物进入临床试验提供支持。  方法  采用鼠伤寒沙门氏菌进行细菌回复突变试验(Ames试验)评价HMS-01的遗传毒性。  结果  HMS-01在20.6、61.7、185.2、555.6、1 666.7、5 000 μg/皿的6个剂量下,无论有无代谢活化条件,对鼠伤寒沙门氏菌均无致突变性。  结论  在本实验剂量范围内,HMS-01未见致突变性。
  • 中药红花(Carthami Flos)是菊科植物红花(Carthamus tinctorius L.)的干燥花,传统本草学著作《本草纲目》记载,红花具有活血散瘀,通经止痛的功效[1],其药材和制剂在临床上被广泛用于心脑血管疾病的预防和治疗。现代药理研究表明,其主要药效物质是以羟基红花黄色素A(hydroxysafflower yellow A,HSYA)为代表的查尔酮类化合物和以菸花苷为代表的黄酮醇类化合物,这些化合物均具有良好的心脑血管损伤保护活性[2-3]。红花药材的产量偏低,每平方千米产量仅为18.0~22.5 t[4],其中特有的HSYA[5]、红花红色素等查尔酮类成分在不同品种间差异较大[6]。由于红花中的查尔酮类成分仅特异性地存在于花冠中[7],加之体外组织培养再生率低[8]等原因,对其功能基因的研究工作一直进展缓慢。特别是对于HSYA等红花特有的有效成分,其生物合成相关的功能基因尚不完全清楚,合成通路也未被完全解析[9]。因此,用现代分子生物学技术手段以提高药效物质的含量,是提高红花品质,节约土地资源、降低制药成本的一条新途径。

    短链脱氢酶/还原酶(short-chain dehydrogenases/reductases,SDR)在植物次生代谢物的生物合成中广泛参与各类碳-氧双键,碳-碳双键以及烯酮键的氧化还原催化反应。根据SDRs基因序列的特征结构,SDRs超家族可以被分为5个亚家族[10-14]。最早发现并且进行鉴定的两类主要短链还原酶命名为classical和extend,classical类的SDRs基因拥有长度约为250个氨基酸残基,被称为Extended类的SDRs基因在碳基末端因其含有多余的约100个氨基酸残基而得名。另外3种类型SDRs基因分别被命名为intermediate、complex和divergent。这些类型的SDRs基因基于其结合辅酶类型和结合催化位点的不同进行命名分类。此外,SDRs存在与传统类型不同的含有“rossmann-fold”保守结构域的氧化还原酶结构[15-18]

    黄酮类化合物起源于莽草酸途径和苯丙素生物合成途径,1个香豆酰辅酶A(coumaroyl CoA)和3个丙二酰辅酶A(malonyl CoA)在查尔酮合酶的作用下生成二氢查尔酮,然后经查尔酮异构酶催化为二氢黄酮,进一步在各类还原酶,聚合酶和糖基转移酶的作用下,生成终端次生代谢产物组合[19-21]。红花中所含的主要有效成分HSYA具有查尔酮式结构,本课题组前期研究认为:HSYA从前体物质到合成,中间存在必不可少的氧化还原过程。短链脱氢还原酶家族广泛参与植物体内次生代谢,这一类还原酶都带有相似的折叠结构以及催化位点,已有研究表明,其对苯丙烷代谢途径起重要作用[22-23],但有关红花中还原酶基因相关报道较少[24]。故笔者通过对红花转录组数据库、基因表达谱数据库以及代谢组数据库进行分析,筛选在HSYA生物合成途径的关键还原酶基因,并进行功能验证,以期揭示红花次生代谢成分生物合成途径,为定向调控红花的品质提供科学依据。

    云南巍山红花品系(ZHH0119),采自海军军医大学药学系温室,经海军军医大学郭美丽教授鉴定为菊科植物红花(Carthamus tinctorius L.)。红花种植条件:温度恒定25 ℃,16 h光照,8 h黑暗。采集相关花与组织后迅速存放于液氮或者−80 ℃冰箱中冷冻。

    按照Trans ZOL Plant植物总RNA提取试剂盒(北京全式金公司,中国)说明书方法提取红花花冠总RNA,按照Transtart One-Step gDNA Removal and cDNA Synthesis Super Mix逆转录试剂盒(北京全式金公司,中国)说明书方法进行cDNA第一链的合成。cDNA于−20 ℃保存。

    基于数据库中的基因注释以“黄酮还原酶”和“黄酮类化合物生物合成”作为关键词进行检索,筛选出其中可能与HSYA生物合成相关的还原酶基因,将筛选基因不同花期时间的表达量,将其与红花代谢组数据库中同花期的芦丁(rutin)、山柰酚(kaempferol)、槲皮素(quercetin)、HSYA、柚皮素(naringenin)、山柰酚-3-O-芸香糖苷(kaempferol-3-O-rutinoside)、山柰酚-3-O-葡萄糖苷(kaempferol-3-O-gluciside)、Carthamin、芹菜素(apigenin)、黄芩素(scutellarein)、木犀草素(luteolin)、苯丙氨酸(D-phenylalanine) 12个主要成分的含量[12,25]进行皮尔森相关性分析。

    基于红花花冠EST转录组文库,结合第三代测序技术[26-29]红花花冠全长转录组数据库筛选得到目的基因序列。在其5'端、3'端分别设计特异性引物。按照2× Phanta Flash Master Mix(Dye Plus)高保真酶(南京诺唯赞公司,中国)说明书进行PCR扩增,扩增片段经EasyPure Quick Gel Extraction Kit胶回收试剂盒(北京全式金公司,中国)说明书操作回收后,连接于pEASY-Blunt Zero Cloning Kit(北京全式金公司,中国)载体上,转化至大肠杆菌T1感受态细胞(北京全式金公司,中国)后,涂布在LBA平板上,恒温培养37 ℃过夜,挑取阳性单克隆菌落[30-31],送至上海生工生物有限公司进行菌液测序。

    用ExPASyProtParam工具(http://web.expasy.org/compute/)对目的基因的理论等电点(pI),蛋白分子量(MW)和蛋白分子式进行预测。通过Simple Molecule Architecture Research Tool工具(http://smart.embl-heidelberg.de/)对目的基因编码的蛋白质结构功能域进行分析。使用ProtScale(http://us.Expasy.org/cgi-bin/protscale.pl)以及TMHMM(http://www.cbs.dtu.dk/services/TMHMM/)对蛋白质的亲/疏水性和跨膜区域做出预测。使用SignaIP 4.0(http://www.cbs.dtu.dk/services/SignalP/)预测目的蛋白是否含有信号肽。使用NCBI BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi)对筛选出的SDRs基因进行BLAST序列比对。通过Neighbor-Joining相邻节点法构建系统发育进化树,自展分析法进行1000次重复[32-34]。使用PBILYON-GRLAND数据库预测构建蛋白质二级结构模型。蛋白三级结构由Protein Homology/analogy Recognition Engine预测。用WOLFPSORT软件(https://wolfpsort.hgc.jp/)进行亚细胞定位预测。

    取盛花期新鲜红花根、茎、叶、花冠4个部位的新鲜组织和花期Ⅰ(开花前3 d)、花期Ⅱ(开花当天)、花期Ⅲ(开花后1 d)、花期Ⅳ(开花后3 d)4个花期的新鲜花冠,提取总RNA,合成cDNA第一链后,在靠近5'端处对各个基因设计引物,依据Transtart Top Green qPCR super Mix(北京全式金公司,中国)试剂盒推荐体系,以Ct60s(KJ634810)作为内参标记基因,进行qRT-PCR实验,结果使用2−ΔΔCt的方法进行计算分析[35]

    根据CtSDR3的开放阅读框和植物真核表达载体pMT-39序列信息,设计无缝克隆引物。以红花cDNA做模板,使用高保真酶进行PCR反应。产物经胶回收后依无缝克隆试剂盒说明书与经NcoI酶切线性化的pMT-39载体进行重组连接。重组载体转化大肠杆菌T1感受态细胞,挑取阳性克隆菌株扩大培养后抽提质粒,提取的pMT39-CtSDR3质粒用冷冻法转至农杆菌GV3101中。LBK+Rif平板筛选阳性克隆后,取1ml OD600 = 0.8的菌液经6 000 r/min,离心3 min后用1 ml 5%蔗糖溶液重悬,加入Silwet-L 1μl,用注射器注射于红花花柱,套袋避光[35]

    在pMT-39的35 s启动子区域设计5'端特异性引物,在目的基因CtSDR3中设计3'端引物。取T2代新鲜叶cDNA第一链作为模板,2× Easy Taq PCR Mix(北京全式金,中国)推荐体系进行PCR反应,确定是否存在目的条带。采集CtSDR3阳性植株花冠以及pMT-39空载体对照植株的花冠,按照上述的qRT-PCR反应体系评价CtSDR3基因的过表达水平,使用UPLC-Q-TOF/MS 检测CtSDR3过表达组和空载体对照组的黄酮代谢物含量,选择以HSYA为代表性成分的8个黄酮类化合物作为检测对象。

    根据CtSDR3的开放阅读框及蛋白表达载体pGEX-6p-1以及pET-28a序列信息,设计同源重组克隆引物[34]。以红花花冠cDNA为模板,使用高保真酶进行PCR反应。PCR产物经胶回收后依无缝克隆试剂盒说明书与经XhoI、BamHI酶切线性化的载体pGEX-6p-1以及pET-28a进行重组连接。重组载体转化大肠杆菌T1感受态细胞,挑取阳性菌株克隆扩大培养后抽提质粒,提取的重组质粒用热激法转至大肠杆菌Rosseta(DE3)(上海唯地生物,中国)中。

    在20 ml LBA液体培养基中培养至OD600为0.6左右,分2份10 ml菌液各加入终浓度为0.3 mmol/L的IPTG和生理盐水。恒温培养箱中16 ℃,100 r/min继续培养16 h[35-36]。菌液离心弃上清液,用1×PBS缓冲液洗涤两次后重悬。超声破碎仪中40 kW,工作时间5 s,循环间隔时间25 s,共15个循环进行破碎[16],裂解完成后取上清与沉淀15 μl,上样检测。

    通过分析,得到contig325、contig483、contig2863共3个与HSYA具有强相关性的基因(r>0.85),见图1

    图  1  不同花期红花还原酶基因表达量与黄酮类化合物积累量相关性分析热图

    3个目的基因序列信息经测序验证结果如下:contig325全长共1523 bp,开放阅读框1341bp,编码446个氨基酸;contig483全长1393 bp,开放阅读框792 bp,编码263个氨基酸;contig2863全长序列1527 bp,开放阅读框1023 bp,编码340个氨基酸。PCR产物电泳结果如图2所示。

    图  2  PCR产物电泳图

    contig325基因编码446个氨基酸,命名为CtSDR1(GenBank登录号:MW792035);Contig483基因编码263个氨基酸,命名为CtSDR2(GenBank登录号:MW792036);Contig2863基因编码339个氨基酸,命名为CtSDR3(GenBank登录号:MW792037)。系统进化树表明CtSDR1与蓟Cirsium japonicum (QQH14901.1)同源性最高;CtSDR2与小蓬草Erigeron canadensis (XP_043636506.1)同源性最高;CtSDR3与小豆蔻Cynara cardunculus var. scolymus (KVI09206.1)同源性最高。Prot-param分析CtSDR1基因所编码的蛋白质分子式C2230H3346N606O639S7,相对分子量为49.2×103,理论等电点pI=9.61;CtSDR2基因所编码的蛋白质分子式C1289H2072N360O379S13,相对分子量为29×103,理论等电点pI=8.63;CtSDR1基因所编码的蛋白质分子式C1691H2614N442O481S9,相对分子量为37.1×103,理论等电点pI=6.80。Prot Scale分析预测CtSDR1CtSDR2和CtSDR3蛋白为亲水性蛋白,无信号肽属非分泌蛋白。蛋白跨膜性分析显示CtSDR1、CtSDR2和CtSDR3不含有跨膜区域,为非跨膜蛋白。对CtSDR1、CtSDR2和CtSDR3蛋白二级结构的预测显示均属于不规则结构。对CtSDR1、CtSDR2、CtSDR3蛋白质三维结构预测如图3所示。系统进化树如图4所示。亚细胞定位预测显示,CtSDR1CtSDR2CtSDR3均可能定位于细胞质。

    图  3  CtSDR1、CtSDR2、CtSDR3蛋白三级结构预测
    图  4  CtSDR系统发育进化树

    取红花花期的Ⅳ期的红花各个部位进行分析,发现红花花冠内的CtSDR1CtSDR2CtSDR3基因表达量从高到低依次均为花冠>叶>茎>根。其中CtSDR1在花冠中的相对表达量约为根中的3倍、而CtSDR2CtSDR3在花冠中的相对表达量约为根中的4倍。将4个花期的红花花冠进行qRT-PCR分析表明,CtSDR1CtSDR2CtSDR3花冠中表达量均随着花冠发育逐渐升高,特别是CtSDR1CtSDR2CtSDR3的Ⅳ期花冠对比Ⅲ期花冠的表达量分别提高了7.2倍、2.7倍、2.3倍(图5)。

    图  5  目的基因在不同部位(A)和不同花期(B)的表达水平

    构建真和表达载体并通过PCR鉴定后,我们从19株农杆菌浸染的子代植株中得到5株pMT39-CtSDR3阳性红花植株(图6)。通过qPCR对其CtSDR3基因转录水平进行测定,结果发现阳性红花植株中CtSDR3基因的转录水平得到显著增加,约为空白组株系的2~3倍,CtSDR3的在花冠部位的高表达也证明了研究成功获取CtSDR3过表达红花植株(图7)。通过UPLC-QTOF/MS技术测定阳性转基因红花株系组和空白对照组的目标化合物含量,包括7个红花花冠主要黄酮类化合物及苯丙烷类代谢途径上游关键物质苯丙氨酸(图8),分别为:野黄芩素(scutellarein)、Carthamin、HSYA、山柰酚(kaempferol)、山柰酚-3-O-β-D-葡萄糖苷(kaempferol-3-O-β-D-glucoside)、山柰酚-3-O-β-D-芸香糖苷(kaempferol-3-O-β-rutinoside)、芦丁(rutin)和苯丙氨酸(D-Phenylalanine)。由图8可知,与空白组相比,CtSDR3过表达株系相较于空白组野黄芩素提高了3.6%~9.8%,HSYA提高了7.1%~16.6%,以及苯丙氨酸含量提高了5.5%~15.7%,具有显著性升高。其他化合物含量则有无显著性变化趋势。通过对过表达株系与空白组的含量分析,我们认为CtSDR3基因过表达会引起红花中黄酮类物质的变化,尤其是HSYA含量升高显著。同时,苯丙氨酸代谢途径属于植物重要的次生代谢途径,过表达组引起苯丙氨酸含量的显著上升,上述指标性成分的变化也进一步说明CtSDR3对红花黄酮类化合物次生代谢途径具有一定的影响,但目前我们尚难以判断CtSDR3红花中影响次生代谢产物积累的明确途径。

    图  6  真核表达载体构建及阳性鉴定电泳图
    注:1. CtSDR3基因开放阅读框(ORF)区扩增产物电泳图,a、b泳道均为CtSDR3基因ORF区克隆PCR产物;2. 真核表达载体pMT-39载体酶切产物电泳图,a、b泳道为CtSDR3 PCR产物,c泳道为pMT-39载体,d、e泳道为pMT-39线性化载体;3. pMT39-CtSDR3重组载体阳性转化子鉴定电泳图,a、b泳道为阳性转化子菌液PCR产物;4. pMT39-CtSDR3质粒转化农杆菌GV3101,a、c和e泳道为空白对照组,b、d和f泳道为阳性克隆菌液PCR产物;5. 红花pMT39-CtSDR3阳性转化植株鉴定PCR产物电泳图,1~19为待鉴定植株,p为pMT39-CtSDR3质粒,k为空白组,WT为野生型红花植株
    图  7  过表达植株CtSDR3的相对表达量
    **P<0.01,与CK组比较
    图  8  阳性植株黄酮类化合物含量测定
    注:A.黄芩素;B.Carthamin;C.HSYA;D.山柰酚;E.山柰酚-3-O-葡萄糖苷;F.山柰酚-3-O-芸香糖苷;G.芦丁;H.苯丙氨酸;CK.空白组株系;OVX.阳性过表达株系

    目的片段成功扩增,将目的条带进行胶回收、纯化。CtSDR1CtSDR1CtSDR1构建的pGEX-6p-1、pET-28a原核表达载体均有在大肠杆菌内表达,但是CtSDR1-pGEX-6p-1、 CtSDR2-pGEX-6p-1、CtSDR3-pGEX-6p-1、CtSDR1-pET-28、CtSDR2-pET-28a、CtSDR3-pET-28a表达的目的蛋白均形成包涵体,存在于沉淀中。无法进行下一步大量纯化实验,唯有CtSDR2-pGEX-6p-1诱导表达了存在于上清液的目的蛋白,明显可以在上清液中观察到分子量约为50 000的蛋白条带(图9)。

    图  9  目的片段PCR产物电泳及表达蛋白电泳分析
    注:A.目的片段PCR产物电泳:1~5为CtSDR1,6~10为CtSDR2,11~15为CtSDR3(其对应的PCR反应Tm值分别为67 ℃、65 ℃、63 ℃、59 ℃、57 ℃);B.pGEX-6p-1蛋白表达电泳分析;C.pET-28a蛋白表达电泳分析

    越来越多的红花药理学相关研究表明,红花的主要药效物质包括查尔酮类、黄酮醇类等多种黄酮类化合物,其中,查尔酮类HSYA对脑缺血具有保护作用,并且还能抗脑血栓形成以及抗氧化等。研究HSYA的生物合成分途径,对于HSYA的工业化生产具有重要意义。

    本研究借助生物学分子技术、结合代谢组分析测定,筛选出3个参与HSYA生物合成途径的关键短链脱氢还原酶基因CtSDR1CtSDR2CtSDR3,这3个基因序列具有高度保守性,在不同器官的表达模式均呈现出花冠>叶>茎>根的特点,而且在花冠中的表达量随花冠发育逐渐升高,表明其很有可能参与红花中HSYA等主要药用成分的积累。进一步研究发现,转CtSDR3过表达T2代阳性植株花冠中CtSDR3基因的转录水平增加了2~3倍,次生代谢物HSYA的含量提高了7.1%~16.6%(P<0.05),验证了我们对CtSDR3在红花体内参与黄酮类化合物生物合成功能的推测。本研究中,体外表达CtSDR3蛋白,得到目的蛋白条带,但由于包涵体等原因,蛋白表达和纯化条件仍需要进一步摸索。下一步,我们将对可能起黄酮类生物合成途径的关键SDRs进行深入的生物学特性特别是酶结合位点的研究,为更好地阐释SDRs的生物学功能、利用分子生物育种技术培育高HSYA含量的红花新品种奠定基础。

  • 表  1  各试验菌株生物学特性

    菌株名称 组氨酸
    缺陷
    脂多糖
    屏障缺损
    R因子
    缺失
    ΔuvrB
    突变
    抗四
    环素
    自发回
    落数
    TA97a + + + + 90~180
    TA98 + + + + 30~50
    TA100 + + + + 120~200
    TA102 + + + + 240~320
    TA1535 + + + 10~35
    下载: 导出CSV

    表  2  各试验菌对应的阳性诱变剂及剂量

    代谢活化 菌株名称 阳性诱变剂 剂量(μg/皿)
    −S9 TA97a ICR-191 1
    TA98 2-硝基芴 1
    TA100 叠氮钠 2
    TA102 甲基磺酸甲酯 1.3
    TA1535 叠氮钠 2
    +S9 TA97a 2-氨基蒽 3
    TA98 2-氨基蒽 3
    TA100 2-氨基蒽 3
    TA102 2-氨基蒽 30
    TA1535 2-氨基蒽 3
    下载: 导出CSV

    表  3  HMS-01细菌回复突变试验结果(n=3)

    代谢活化 组别 TA97a TA98 TA100 TA102 TA1535
    背景菌斑 沉淀 背景菌斑 沉淀 背景菌斑 沉淀 背景菌斑 沉淀 背景菌斑 沉淀
    +S9 阴性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    20.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    61.7 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    185.2 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    555.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    1 666.7 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    5 000.0 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    阳性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    −S9 阴性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    20.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    61.7 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    185.2 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    555.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    1 666.7 T0 P1 T0 P0 T0 P0 T0 P0 T0 P1
    5 000.0 T0 P1 T0 P0 T0 P0 T0 P0 T0 P1
    阳性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
    注:T0.正常; P0.正常;P1.镜下非干扰性沉淀。
    下载: 导出CSV

    表  4  HMS-01细菌回复突变试验结果(n=3)

    代谢活化 组别 回复突变菌落数
    TA97a TA98 TA100 TA102 TA1535
    +S9 阴性对照组 157.7±15.5 29.3±3.1 138.3±4.7 326.0±7.5 21.3±4.0
    20.6 156.7±17.8 34.7±7.1 119.3±8.0 334.3±16.7 21.0±5.2
    61.7 159.0±7.2 31.7±8.5 140.0±9.8 250.0±113.2 19.3±3.1
    185.2 147.7±22.7 33.3±4.2 151.7±6.0 319.0±6.2 18.7±0.6
    555.6 168.3±7.6 34.7±2.5 130.7±10.0 340.0±6.1 19.3±4.0
    1 666.7 157.7±2.1 34.7±5.8 148.7±2.9 287.0±84.1 20.3±4.6
    5 000 143.7±19.9 38.3±6.7 122.3±8.1 304.0±22.9 17.0±1.7
    阳性对照组 704.0±30.2 122.7±10.1 646.7±46.0 1 758.7±86.3 574.7±9.2
    −S9 阴性对照组 171.7±5.1 36.7±3.2 151.3±8.7 340.3±3.8 23.7±1.5
    20.6 168.0±11.8 40.0±1.7 125.7±9.1 338.7±7.4 25.3±3.1
    61.7 169.7±17.5 42.3±13.7 131.3±15.6 350.0±15.9 21.3±3.1
    185.2 152.0±13.1 34.3±5.5 148.0±8.7 366.0±5.0 24.7±3.2
    555.6 167.7±1.5 42.0±2.0 161.3±8.6 351.0±24.2 22.7±6.5
    1 666.7 163.0±3.6 45.3±3.2 156.0±3.6 376.7±25.7 22.3±3.1
    5 000 164.7±22.9 40.3±3.1 153.3±6.7 365.0±26.0 17.3±3.8
    阳性对照组 1 384.0±4.0 1 264.0±17.4 504.0±38.6 1 365.3±48.4 188.0±32.7
    下载: 导出CSV
  • [1] KIVIMÄKI M, STRANDBERG T, PENTTI J, et al. Body-mass index and risk of obesity-related complex multimorbidity: an observational multicohort study[J]. Lancet Diabetes Endocrinol, 2022, 10(4):253-263. doi:  10.1016/S2213-8587(22)00033-X
    [2] World Obesity Federation, World Obesity Atlas 2023[EB/OL]. (2023-03) [2023-08]. https://data.worldobesity.org/publications/?cat=19.
    [3] CHEN K, SHEN Z W, GU W J, et al. Prevalence of obesity and associated complications in China: a cross-sectional, real-world study in 15.8 million adults[J]. Diabetes Obes Metab, 2023, 25(11):3390-3399. doi:  10.1111/dom.15238
    [4] 国家药品监督管理局, 2023年07月04日药品批准证明文件送达信息发布[EB/OL]. (2023/07/04) [2023-08]. https://www.nmpa.gov.cn/zwfw/sdxx/sdxxyp/yppjfb/20230704155106142.html.
    [5] GRUNVALD E, SHAH R, HERNAEZ R, et al. AGA clinical practice guideline on pharmacological interventions for adults with obesity[J]. Gastroenterology, 2022, 163(5):1198-1225. doi:  10.1053/j.gastro.2022.08.045
    [6] SHI Q Y, WANG Y, HAO Q K, et al. Pharmacotherapy for adults with overweight and obesity: a systematic review and network meta-analysis of randomised controlled trials[J]. Lancet, 2022, 399(10321):259-269. doi:  10.1016/S0140-6736(21)01640-8
    [7] BULIK C M, HARDAWAY J A. Turning the tide on obesity?[J]. Science, 2023, 381(6657):463. doi:  10.1126/science.adj9953
    [8] PRILLAMAN M. Four key questions on the new wave of anti-obesity drugs[J]. Nature, 2023, 620(7972):28-30. doi:  10.1038/d41586-023-02445-4
    [9] SUN Y, YANG Y L, QIN Z, et al. The acute-phase protein orosomucoid regulates food intake and energy homeostasis via leptin receptor signaling pathway[J]. Diabetes, 2016, 65(6):1630-1641. doi:  10.2337/db15-1193
    [10] European Medicines Agency, ICH guideline M3(R2) on non-clinical safety studies for the conduct of human clinical trials and marketing authorisation for pharmaceuticals[S/OL]. 2013, https://www.ema.europa.eu/en/ich-m3-r2-non-clinical-safety-studies-conduct-human-clinical-trials-pharmaceuticals-scientific#current-effective-version-section.
    [11] 食品药品监管总局, 药物遗传毒性研究技术指导原则[EB/OL]. (2018.03.15) [2023-08]. https://www.nmpa.gov.cn/xxgk/ggtg/ypggtg/ypqtggtg/20180315160901208.html.
    [12] FAQI A S. Introduction[M]. A Comprehensive Guide to Toxicology in Nonclinical Drug Development. Amsterdam: Elsevier, 2017: 1-4.
    [13] PROUDLOCK R. Genetic Toxicology testing A laboratory manual [M]. Amsterdam: Elsevier, 2013.
  • [1] 续畅, 周心娜, 漆璐, 王瑜, 王兴河.  基于文献计量学对我国临床试验用药品管理研究现状的数据挖掘 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202404050
    [2] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [3] 王鹏, 陈顺, 赵逸, 高守红, 王志鹏.  卡培他滨致小鼠手足综合征模型的建立及评价 . 药学实践与服务, 2024, 42(9): 385-388, 398. doi: 10.12206/j.issn.2097-2024.202308045
    [4] 崔晓林, 付晓菲, 杜艳红, 刘娟, 朱茜, 刘子祺.  临床药师参与吉瑞替尼致QTc间期延长的病例分析 . 药学实践与服务, 2024, 42(6): 263-266. doi: 10.12206/j.issn.2097-2024.202309050
  • 加载中
计量
  • 文章访问数:  3333
  • HTML全文浏览量:  1612
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2024-02-04
  • 网络出版日期:  2024-04-24
  • 刊出日期:  2024-04-25

HMS-01的遗传毒性评价

doi: 10.12206/j.issn.2097-2024.202308061
    基金项目:  国家自然科学基金项目(82073907,82073842);上海市科委生物医药领域科技支撑项目(20S11902700);上海市 2021 年度 “科技创新行动计划 ” 优秀学术/技术带头人计划项目(21XD1404700)
    作者简介:

    陈 弋,硕士研究生,Tel:15651270023, Email:100397337@qq.com

    通讯作者: 孙 旸,副教授,硕士生导师,研究方向:代谢性疾病药物药理,Email:DawnySun@126.com刘 霞,教授,博士生导师,研究方向:心脑血管药理学,Email:lxflying@aliyun.com

摘要:   目的  检测HMS-01的遗传毒性,并对其进行临床前安全评价研究,为后续该药物进入临床试验提供支持。  方法  采用鼠伤寒沙门氏菌进行细菌回复突变试验(Ames试验)评价HMS-01的遗传毒性。  结果  HMS-01在20.6、61.7、185.2、555.6、1 666.7、5 000 μg/皿的6个剂量下,无论有无代谢活化条件,对鼠伤寒沙门氏菌均无致突变性。  结论  在本实验剂量范围内,HMS-01未见致突变性。

English Abstract

王璐暖, 吴建辉, 何贝轩, 张彦洁, 郭美丽. 羟基红花黄色素A生物合成途径短链还原酶基因的特征及功能研究[J]. 药学实践与服务, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
引用本文: 陈弋, 孙青䶮, 黎翔, 孙旸, 刘霞. HMS-01的遗传毒性评价[J]. 药学实践与服务, 2024, 42(4): 147-150, 156. doi: 10.12206/j.issn.2097-2024.202308061
WANG Lunuan, WU Jianhui, HE Beixuan, ZHANG Yanjie, GUO Meili. Characterization and function of short-chain dehydrogenases/reductases in hydroxysafflower yellow A biosynthesis pathway[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
Citation: CHEN Yi, SUN Qingyan, LI Xiang, SUN Yang, LIU Xia. Genotoxicity evaluation of HMS-01[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(4): 147-150, 156. doi: 10.12206/j.issn.2097-2024.202308061
    • 肥胖是因体内脂肪过度蓄积导致健康损害的一种机体状态。目前已证实与肥胖相关联的疾病多达21种,广泛涉及心血管、消化、呼吸、神经、肌肉骨骼等系统相关疾病甚至传染性疾病[1]。根据2023年3月世界肥胖联盟(WOF)公布的《2023世界肥胖地图》,预计到2035年,肥胖或超重(WHO标准BMI≥25 kg/m2)率将达到51%,引起的经济损失超过4万亿美元[2]。中国同样面临肥胖发病率逐年增高的严峻问题,根据最新报道,按照中国人的BMI分级(BMI≥24 kg/m2),我国目前已有34.8%的人超重,14.1%的人肥胖[3]。而我国上市的关于肥胖的治疗药物却屈指可数,自2007年脂肪酶抑制剂奥利司他获批以来,只有胰高血糖素样肽-1(GLP-1)受体激动剂利拉鲁肽和贝纳鲁肽于2023年7月获批超重(肥胖)适应证[4]。但这两类药物仍存在各自的弊端:奥利司他因严重脂肪泻导致部分患者不耐受,且因减肥效果有限而不被推荐用于合并并发症的肥胖治疗[5];利拉鲁肽和贝纳鲁肽减肥效果优异[6],但需注射给药且价格昂贵,近期还有报道称此类药物胃肠道不良反应远比其公布的要严重[7],并有可能增加肠梗阻风险,甚至使少数使用者产生自杀念头[8]。因此,研发可有效治疗肥胖且不良反应小的药物对治疗肥胖、减少并发症具有重要的意义。

      研究人员前期发现,脂肪因子血清类粘蛋白(ORM)可作用于下丘脑瘦素受体,抑制摄食并调控能量平衡[9],是潜在的减重药物研发靶点(专利号:ZL201510230870.2)。但ORM为高度糖基化的大分子蛋白质,制备困难且需注射给药,限制了其药物开发前景。研究人员前期筛选到一个全新小分子化合物HMS-01,该化合物由大环内酯类抗菌药红霉素改造而来,为一种未上市的在研新药,可显著升高ORM并降低肥胖小鼠体质量,且具有可经消化道用药、无抗菌活性的特征,有望为药物治疗肥胖开辟新赛道。

      根据创新药物临床前研究的国际国内指导原则[10-11],新药上市前需通过药效学和毒理学研究评估药物的有效性和安全性,其中,遗传毒性研究是毒理学研究的重要部分。遗传毒性是指化合物能直接或间接损伤生物体遗传物质,造成基因改变或突变,危及生物体及其后代健康。近年来,因具有致突变性而引起的药品召回事件时有发生[9]。本研究通过鼠伤寒沙门氏菌回复突变试验(Ames试验)对该化合物的遗传毒性进行实验探究,以期为创新药物的遗传安全性及其临床前毒理学评估提供支持。

    • 受试样品:HMS-0(西安秦申嘉合药物研究有限公司,批号20190127,纯度98%)。阴性对照品:二甲基亚砜(DMSO,Sigma-aldrich,CAS:67-68-5)。阳性对照品:吖啶诱变剂ICR-191(Sigma-aldrich,CAS:17070-45-0)、2-硝基芴(Sigma-aldrich,CAS:607-57-8)、叠氮钠(Sigma-aldrich,CAS:26628-22-8)、甲基磺酸甲酯(Sigma-aldrich,CAS:66-27-3)、2-氨基蒽(Sigma-aldrich,CAS:613-13-8)。

    • 营养肉汤(赛默飞,CM0067);磷酸盐缓冲液(生工生物);顶层琼脂培养基(Solarbio,货号:LA3080) ;底层培养基(Solarbio,货号:3090);S9混合液溶剂(按照180 ml试验用量配制):氯化钾(生工生物,CAS:7447-40-7)6.6 mmol、氯化镁(生工生物,CAS:7791-18-6)1.6 mmol、葡糖-6-磷酸(Sigma-aldrich,CAS:3671-99-6)1 mmol、辅酶Ⅱ(Sigma-aldrich,CAS:24292-60-2)0.8 mmol、0.2 mol/L磷酸盐缓冲液(20×PBS缓冲液,Solarbio,货号:P1032)120 ml、去离子水定容至180 ml;S9混合液: 代谢活化系统S9是经苯巴比妥/β-萘黄酮诱导的雄性SD大鼠肝匀浆上清液制备而成,购自Molecular Toxicology,使用前与S9溶剂按照1∶9(V/V)的比例配制。

    • 全自动 Ames 实验仪(北京慧荣和科技有限公司,型号:HRH-AMES116);全自动菌落分析仪(杭州泽析生物科技有限公司,型号:DTS3);倒置显微镜[徕卡贸易(上海)有限公司,型号:Leica DMi8 M/C/A]。

    • 此次试验所使用的组氨酸营养缺陷型(his)鼠伤寒沙门氏菌TA97a、TA98、TA100、TA102和TA1535,购自Molecular Toxicology公司,符合实验要求。

    • 根据毒理学研究的国际标准[12-13],设计制定Ames试验以检测受试药物HMS-01的遗传毒性。Ames试验亦称细菌回复突变实验,是利用伤寒沙门氏菌具有回复突变的特性,以鉴定受试物是否具有致突变性的一种试验方法。his鼠伤寒沙门氏菌,因不能自主合成组氨酸而不能在缺乏组氨酸的培养基上生长,但在外界致突变因素的作用下可突变为能自主合成组氨酸的原养型沙门氏菌,从而能在无组氨酸的培养基上正常生长。因此,可通过观测其经受试物作用后,在无组氨酸培养基上的菌落生长情况来判定受试物是否具有致突变毒性。

      试验结果要求应满足以下条件:①阴性对照组的回复突变菌落均数在历史阴性/溶媒对照范围内;②阳性对照组的回复突变菌落均数为其对应的阴性对照组的3倍以上;③污染平皿数不超过平皿总数的5%。

    • 5种试验菌(TA97a、TA98、TA100、TA102、TA1535)应具备表1所示的特性,因此于实验前进行如下生物学特性鉴定 : his鉴定、脂多糖屏障缺陷(rfa突变)鉴定、氨苄青霉素抗性(菌株R 因子缺失)鉴定、紫外线敏感性(ΔuvrB突变)鉴定、四环素(pAQ1)抗性的鉴定、自发回变菌落数(his+)测定 、对阳性诱变剂的回变敏感性测定,以确定试验菌株符合试验标准。

      表 1  各试验菌株生物学特性

      菌株名称 组氨酸
      缺陷
      脂多糖
      屏障缺损
      R因子
      缺失
      ΔuvrB
      突变
      抗四
      环素
      自发回
      落数
      TA97a + + + + 90~180
      TA98 + + + + 30~50
      TA100 + + + + 120~200
      TA102 + + + + 240~320
      TA1535 + + + 10~35

      取鉴定合格试验菌分别接种于装有7 ml营养肉汤培养基的试管中,于(35±2) ℃、(120±25) r/min条件下在空气恒温震荡器中扩增培养16~18 h,使用酶标仪检测菌液光密度并估算活菌浓度,待浓度达1×109 个/ml以上时可用于试验。

    • 设置6个HMS-01实验组,最高剂量为HMS-01 5 000 μg/皿,其下等比稀释设置5个剂量组分别为1 666.7、555.6、185.2、61.7、20.6 μg/皿。除此之外,另设置空白对照组及各菌对应的阳性对照组,分组情况见表2

      表 2  各试验菌对应的阳性诱变剂及剂量

      代谢活化 菌株名称 阳性诱变剂 剂量(μg/皿)
      −S9 TA97a ICR-191 1
      TA98 2-硝基芴 1
      TA100 叠氮钠 2
      TA102 甲基磺酸甲酯 1.3
      TA1535 叠氮钠 2
      +S9 TA97a 2-氨基蒽 3
      TA98 2-氨基蒽 3
      TA100 2-氨基蒽 3
      TA102 2-氨基蒽 30
      TA1535 2-氨基蒽 3
    • 用全自动Ames实验仪进行试验,即2 ml融溶状态下的顶层琼脂培养基与下列物质混合:0.5 ml S9混合液或0.5 ml磷酸盐缓冲液、0.1 ml对应受试药品、0.1 ml扩增菌液,迅速混匀,室温静置,待平皿凝固后倒置于(37±1) ℃培养箱内培养48~72 h。各组共设置3个平行皿,重复试验1次。

    • 培养结束后肉眼或显微镜下观察各皿的受试药品是否有析出以及背景菌斑的生长情况,并计数各平行皿的回变菌落数。每个组分别求均值,并将结果以($ \bar{x}\pm s $)的方式列出,各组平行数表示为$ n $

      根据中国食品药品检定研究院发布的《细菌回复突变试验技术指导原则(征求意见稿)》制定的结果判断标准,对于TA97a、TA98、TA100及TA102,其诱导的回复突变菌落均数大于各自阴性对照组的2倍,且具有浓度依赖性及可重现性,即可判定为阳性结果;对于TA1535,其诱导的回复突变菌落均数高出各自阴性对照组的3倍,且具有浓度依赖性及可重现性,结果可判定为阳性。受试药品在加S9或不加S9混合液的条件下,经上述5种试验菌株测定后,只要有1种试验菌株为阳性,即可认定该受试药品的细菌回复突变试验为致突变阳性,反之则判断为阴性。

    • 受试药品HMS-01在有S9处理条件下的TA97a和TA1535菌株实验中,1 666.7和5 000 μg/皿浓度组有观察到镜下非干扰沉淀,其余所有处理条件均未观察到供试品沉淀,结果见表3。所有试验组均未观察到背景菌斑抑制现象。

      表 3  HMS-01细菌回复突变试验结果(n=3)

      代谢活化 组别 TA97a TA98 TA100 TA102 TA1535
      背景菌斑 沉淀 背景菌斑 沉淀 背景菌斑 沉淀 背景菌斑 沉淀 背景菌斑 沉淀
      +S9 阴性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      20.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      61.7 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      185.2 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      555.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      1 666.7 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      5 000.0 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      阳性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      −S9 阴性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      20.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      61.7 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      185.2 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      555.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      1 666.7 T0 P1 T0 P0 T0 P0 T0 P0 T0 P1
      5 000.0 T0 P1 T0 P0 T0 P0 T0 P0 T0 P1
      阳性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0
      注:T0.正常; P0.正常;P1.镜下非干扰性沉淀。
    • 受试药品HMS-01在所有处理条件下的回复突变菌落平均数均小于各自阴性对照组的2倍,且无浓度依赖性升高,结果见表4。本次试验条件中,在有(或无)代谢活化条件时,受试品HMS-01对组氨酸营养缺陷型(his)鼠伤寒沙门氏菌TA97a、TA98、TA100、TA102和TA1535均无潜在致突变性。

      表 4  HMS-01细菌回复突变试验结果(n=3)

      代谢活化 组别 回复突变菌落数
      TA97a TA98 TA100 TA102 TA1535
      +S9 阴性对照组 157.7±15.5 29.3±3.1 138.3±4.7 326.0±7.5 21.3±4.0
      20.6 156.7±17.8 34.7±7.1 119.3±8.0 334.3±16.7 21.0±5.2
      61.7 159.0±7.2 31.7±8.5 140.0±9.8 250.0±113.2 19.3±3.1
      185.2 147.7±22.7 33.3±4.2 151.7±6.0 319.0±6.2 18.7±0.6
      555.6 168.3±7.6 34.7±2.5 130.7±10.0 340.0±6.1 19.3±4.0
      1 666.7 157.7±2.1 34.7±5.8 148.7±2.9 287.0±84.1 20.3±4.6
      5 000 143.7±19.9 38.3±6.7 122.3±8.1 304.0±22.9 17.0±1.7
      阳性对照组 704.0±30.2 122.7±10.1 646.7±46.0 1 758.7±86.3 574.7±9.2
      −S9 阴性对照组 171.7±5.1 36.7±3.2 151.3±8.7 340.3±3.8 23.7±1.5
      20.6 168.0±11.8 40.0±1.7 125.7±9.1 338.7±7.4 25.3±3.1
      61.7 169.7±17.5 42.3±13.7 131.3±15.6 350.0±15.9 21.3±3.1
      185.2 152.0±13.1 34.3±5.5 148.0±8.7 366.0±5.0 24.7±3.2
      555.6 167.7±1.5 42.0±2.0 161.3±8.6 351.0±24.2 22.7±6.5
      1 666.7 163.0±3.6 45.3±3.2 156.0±3.6 376.7±25.7 22.3±3.1
      5 000 164.7±22.9 40.3±3.1 153.3±6.7 365.0±26.0 17.3±3.8
      阳性对照组 1 384.0±4.0 1 264.0±17.4 504.0±38.6 1 365.3±48.4 188.0±32.7
    • 遗传毒性因其对生物体及其后代影响巨大,一直是新药临床前毒理学评价的重要组成部分。细菌回复突变试验由美国加利福尼亚大学B·N·Ames教授于1975年建立并经后来者的不断发展完善,也称为Ames试验,现今已成为全球基因毒性测试中的最为公认的方法之一,通常作为体外毒理学测试的第1步,被广泛应用于药物致突变性的初筛检验。该试验以his的沙门氏菌为指示生物,试验中包含了加与不加代谢活化系统,通过该菌特定的生物效应能检测基因突变,对受试物的遗传毒性进行分析。本研究利用细菌回复突变试验对受试药物HMS-01遗传毒性进行评价,结果显示,HMS-01在有(或无)代谢活化条件下,均无致突变性,未发现其具有遗传毒性。该结果将为HMS-01的后续新药研发提供有力支撑。

参考文献 (13)

目录

/

返回文章
返回