留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

藏药抗高原缺氧损伤保护作用研究进展

王子晗 赵安鹏 牟宏芳 郭茜文 程俊飞 王荣

王璐暖, 吴建辉, 何贝轩, 张彦洁, 郭美丽. 羟基红花黄色素A生物合成途径短链还原酶基因的特征及功能研究[J]. 药学实践与服务, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
引用本文: 王子晗, 赵安鹏, 牟宏芳, 郭茜文, 程俊飞, 王荣. 藏药抗高原缺氧损伤保护作用研究进展[J]. 药学实践与服务, 2022, 40(5): 408-415. doi: 10.12206/j.issn.2097-2024.202205094
WANG Lunuan, WU Jianhui, HE Beixuan, ZHANG Yanjie, GUO Meili. Characterization and function of short-chain dehydrogenases/reductases in hydroxysafflower yellow A biosynthesis pathway[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
Citation: WANG Zihan, ZHAO Anpeng, MU Hongfang, GUO Qianwen, CHENG Junfei, WANG Rong. Research progress of Tibetan medicine against plateau hypoxia[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(5): 408-415. doi: 10.12206/j.issn.2097-2024.202205094

藏药抗高原缺氧损伤保护作用研究进展

doi: 10.12206/j.issn.2097-2024.202205094
基金项目: 国家自然科学基金(81673508);中央高校基本科研业务费专项(3192020009);甘肃省青年科技基金计划(20JR10RA014);联勤保障部队第九四〇医院院内应急医学科研项目(20yjky017)
详细信息
    作者简介:

    王子晗,硕士研究生,研究方向:中药药理与毒理;Tel:18031866835,Email:wzh20210521@163.com

    通讯作者: 王 荣,教授,博士生导师;Tel:(0931)8994675,Email:wangrong-69@163.com
  • 中图分类号: R29

Research progress of Tibetan medicine against plateau hypoxia

  • 摘要: 藏医是在广泛吸收和融合中国传统医学、印度医学和大食医学理论的基础上,经过长期实践而形成的独特的医学体系,同时,青藏高原具有海拔高、资源匮乏、氧气不足等特点,但是也形成了其得天独厚的地理环境,生长出许多珍稀药用植物——藏药。藏药历史悠久,是中国比较完整和有影响力的民族药之一,在治疗高原疾病方面发挥了重要作用。近年来,随着高原经济活动增多,高原缺氧极大地影响了高原作业能力。根据《中国藏药》通过查阅文献,归纳具有抗高原缺氧作用的藏药其药理作用、有效成分、生长环境等,并根据作用部位将它们分为对肺保护作用、对心保护作用、对脑保护作用、对肝脏保护作用、改善疲劳和其他等6类药物,旨在为发现更多有潜力的抗缺氧药物提供理论依据。
  • 中药红花(Carthami Flos)是菊科植物红花(Carthamus tinctorius L.)的干燥花,传统本草学著作《本草纲目》记载,红花具有活血散瘀,通经止痛的功效[1],其药材和制剂在临床上被广泛用于心脑血管疾病的预防和治疗。现代药理研究表明,其主要药效物质是以羟基红花黄色素A(hydroxysafflower yellow A,HSYA)为代表的查尔酮类化合物和以菸花苷为代表的黄酮醇类化合物,这些化合物均具有良好的心脑血管损伤保护活性[2-3]。红花药材的产量偏低,每平方千米产量仅为18.0~22.5 t[4],其中特有的HSYA[5]、红花红色素等查尔酮类成分在不同品种间差异较大[6]。由于红花中的查尔酮类成分仅特异性地存在于花冠中[7],加之体外组织培养再生率低[8]等原因,对其功能基因的研究工作一直进展缓慢。特别是对于HSYA等红花特有的有效成分,其生物合成相关的功能基因尚不完全清楚,合成通路也未被完全解析[9]。因此,用现代分子生物学技术手段以提高药效物质的含量,是提高红花品质,节约土地资源、降低制药成本的一条新途径。

    短链脱氢酶/还原酶(short-chain dehydrogenases/reductases,SDR)在植物次生代谢物的生物合成中广泛参与各类碳-氧双键,碳-碳双键以及烯酮键的氧化还原催化反应。根据SDRs基因序列的特征结构,SDRs超家族可以被分为5个亚家族[10-14]。最早发现并且进行鉴定的两类主要短链还原酶命名为classical和extend,classical类的SDRs基因拥有长度约为250个氨基酸残基,被称为Extended类的SDRs基因在碳基末端因其含有多余的约100个氨基酸残基而得名。另外3种类型SDRs基因分别被命名为intermediate、complex和divergent。这些类型的SDRs基因基于其结合辅酶类型和结合催化位点的不同进行命名分类。此外,SDRs存在与传统类型不同的含有“rossmann-fold”保守结构域的氧化还原酶结构[15-18]

    黄酮类化合物起源于莽草酸途径和苯丙素生物合成途径,1个香豆酰辅酶A(coumaroyl CoA)和3个丙二酰辅酶A(malonyl CoA)在查尔酮合酶的作用下生成二氢查尔酮,然后经查尔酮异构酶催化为二氢黄酮,进一步在各类还原酶,聚合酶和糖基转移酶的作用下,生成终端次生代谢产物组合[19-21]。红花中所含的主要有效成分HSYA具有查尔酮式结构,本课题组前期研究认为:HSYA从前体物质到合成,中间存在必不可少的氧化还原过程。短链脱氢还原酶家族广泛参与植物体内次生代谢,这一类还原酶都带有相似的折叠结构以及催化位点,已有研究表明,其对苯丙烷代谢途径起重要作用[22-23],但有关红花中还原酶基因相关报道较少[24]。故笔者通过对红花转录组数据库、基因表达谱数据库以及代谢组数据库进行分析,筛选在HSYA生物合成途径的关键还原酶基因,并进行功能验证,以期揭示红花次生代谢成分生物合成途径,为定向调控红花的品质提供科学依据。

    云南巍山红花品系(ZHH0119),采自海军军医大学药学系温室,经海军军医大学郭美丽教授鉴定为菊科植物红花(Carthamus tinctorius L.)。红花种植条件:温度恒定25 ℃,16 h光照,8 h黑暗。采集相关花与组织后迅速存放于液氮或者−80 ℃冰箱中冷冻。

    按照Trans ZOL Plant植物总RNA提取试剂盒(北京全式金公司,中国)说明书方法提取红花花冠总RNA,按照Transtart One-Step gDNA Removal and cDNA Synthesis Super Mix逆转录试剂盒(北京全式金公司,中国)说明书方法进行cDNA第一链的合成。cDNA于−20 ℃保存。

    基于数据库中的基因注释以“黄酮还原酶”和“黄酮类化合物生物合成”作为关键词进行检索,筛选出其中可能与HSYA生物合成相关的还原酶基因,将筛选基因不同花期时间的表达量,将其与红花代谢组数据库中同花期的芦丁(rutin)、山柰酚(kaempferol)、槲皮素(quercetin)、HSYA、柚皮素(naringenin)、山柰酚-3-O-芸香糖苷(kaempferol-3-O-rutinoside)、山柰酚-3-O-葡萄糖苷(kaempferol-3-O-gluciside)、Carthamin、芹菜素(apigenin)、黄芩素(scutellarein)、木犀草素(luteolin)、苯丙氨酸(D-phenylalanine) 12个主要成分的含量[12,25]进行皮尔森相关性分析。

    基于红花花冠EST转录组文库,结合第三代测序技术[26-29]红花花冠全长转录组数据库筛选得到目的基因序列。在其5'端、3'端分别设计特异性引物。按照2× Phanta Flash Master Mix(Dye Plus)高保真酶(南京诺唯赞公司,中国)说明书进行PCR扩增,扩增片段经EasyPure Quick Gel Extraction Kit胶回收试剂盒(北京全式金公司,中国)说明书操作回收后,连接于pEASY-Blunt Zero Cloning Kit(北京全式金公司,中国)载体上,转化至大肠杆菌T1感受态细胞(北京全式金公司,中国)后,涂布在LBA平板上,恒温培养37 ℃过夜,挑取阳性单克隆菌落[30-31],送至上海生工生物有限公司进行菌液测序。

    用ExPASyProtParam工具(http://web.expasy.org/compute/)对目的基因的理论等电点(pI),蛋白分子量(MW)和蛋白分子式进行预测。通过Simple Molecule Architecture Research Tool工具(http://smart.embl-heidelberg.de/)对目的基因编码的蛋白质结构功能域进行分析。使用ProtScale(http://us.Expasy.org/cgi-bin/protscale.pl)以及TMHMM(http://www.cbs.dtu.dk/services/TMHMM/)对蛋白质的亲/疏水性和跨膜区域做出预测。使用SignaIP 4.0(http://www.cbs.dtu.dk/services/SignalP/)预测目的蛋白是否含有信号肽。使用NCBI BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi)对筛选出的SDRs基因进行BLAST序列比对。通过Neighbor-Joining相邻节点法构建系统发育进化树,自展分析法进行1000次重复[32-34]。使用PBILYON-GRLAND数据库预测构建蛋白质二级结构模型。蛋白三级结构由Protein Homology/analogy Recognition Engine预测。用WOLFPSORT软件(https://wolfpsort.hgc.jp/)进行亚细胞定位预测。

    取盛花期新鲜红花根、茎、叶、花冠4个部位的新鲜组织和花期Ⅰ(开花前3 d)、花期Ⅱ(开花当天)、花期Ⅲ(开花后1 d)、花期Ⅳ(开花后3 d)4个花期的新鲜花冠,提取总RNA,合成cDNA第一链后,在靠近5'端处对各个基因设计引物,依据Transtart Top Green qPCR super Mix(北京全式金公司,中国)试剂盒推荐体系,以Ct60s(KJ634810)作为内参标记基因,进行qRT-PCR实验,结果使用2−ΔΔCt的方法进行计算分析[35]

    根据CtSDR3的开放阅读框和植物真核表达载体pMT-39序列信息,设计无缝克隆引物。以红花cDNA做模板,使用高保真酶进行PCR反应。产物经胶回收后依无缝克隆试剂盒说明书与经NcoI酶切线性化的pMT-39载体进行重组连接。重组载体转化大肠杆菌T1感受态细胞,挑取阳性克隆菌株扩大培养后抽提质粒,提取的pMT39-CtSDR3质粒用冷冻法转至农杆菌GV3101中。LBK+Rif平板筛选阳性克隆后,取1ml OD600 = 0.8的菌液经6 000 r/min,离心3 min后用1 ml 5%蔗糖溶液重悬,加入Silwet-L 1μl,用注射器注射于红花花柱,套袋避光[35]

    在pMT-39的35 s启动子区域设计5'端特异性引物,在目的基因CtSDR3中设计3'端引物。取T2代新鲜叶cDNA第一链作为模板,2× Easy Taq PCR Mix(北京全式金,中国)推荐体系进行PCR反应,确定是否存在目的条带。采集CtSDR3阳性植株花冠以及pMT-39空载体对照植株的花冠,按照上述的qRT-PCR反应体系评价CtSDR3基因的过表达水平,使用UPLC-Q-TOF/MS 检测CtSDR3过表达组和空载体对照组的黄酮代谢物含量,选择以HSYA为代表性成分的8个黄酮类化合物作为检测对象。

    根据CtSDR3的开放阅读框及蛋白表达载体pGEX-6p-1以及pET-28a序列信息,设计同源重组克隆引物[34]。以红花花冠cDNA为模板,使用高保真酶进行PCR反应。PCR产物经胶回收后依无缝克隆试剂盒说明书与经XhoI、BamHI酶切线性化的载体pGEX-6p-1以及pET-28a进行重组连接。重组载体转化大肠杆菌T1感受态细胞,挑取阳性菌株克隆扩大培养后抽提质粒,提取的重组质粒用热激法转至大肠杆菌Rosseta(DE3)(上海唯地生物,中国)中。

    在20 ml LBA液体培养基中培养至OD600为0.6左右,分2份10 ml菌液各加入终浓度为0.3 mmol/L的IPTG和生理盐水。恒温培养箱中16 ℃,100 r/min继续培养16 h[35-36]。菌液离心弃上清液,用1×PBS缓冲液洗涤两次后重悬。超声破碎仪中40 kW,工作时间5 s,循环间隔时间25 s,共15个循环进行破碎[16],裂解完成后取上清与沉淀15 μl,上样检测。

    通过分析,得到contig325、contig483、contig2863共3个与HSYA具有强相关性的基因(r>0.85),见图1

    图  1  不同花期红花还原酶基因表达量与黄酮类化合物积累量相关性分析热图

    3个目的基因序列信息经测序验证结果如下:contig325全长共1523 bp,开放阅读框1341bp,编码446个氨基酸;contig483全长1393 bp,开放阅读框792 bp,编码263个氨基酸;contig2863全长序列1527 bp,开放阅读框1023 bp,编码340个氨基酸。PCR产物电泳结果如图2所示。

    图  2  PCR产物电泳图

    contig325基因编码446个氨基酸,命名为CtSDR1(GenBank登录号:MW792035);Contig483基因编码263个氨基酸,命名为CtSDR2(GenBank登录号:MW792036);Contig2863基因编码339个氨基酸,命名为CtSDR3(GenBank登录号:MW792037)。系统进化树表明CtSDR1与蓟Cirsium japonicum (QQH14901.1)同源性最高;CtSDR2与小蓬草Erigeron canadensis (XP_043636506.1)同源性最高;CtSDR3与小豆蔻Cynara cardunculus var. scolymus (KVI09206.1)同源性最高。Prot-param分析CtSDR1基因所编码的蛋白质分子式C2230H3346N606O639S7,相对分子量为49.2×103,理论等电点pI=9.61;CtSDR2基因所编码的蛋白质分子式C1289H2072N360O379S13,相对分子量为29×103,理论等电点pI=8.63;CtSDR1基因所编码的蛋白质分子式C1691H2614N442O481S9,相对分子量为37.1×103,理论等电点pI=6.80。Prot Scale分析预测CtSDR1CtSDR2和CtSDR3蛋白为亲水性蛋白,无信号肽属非分泌蛋白。蛋白跨膜性分析显示CtSDR1、CtSDR2和CtSDR3不含有跨膜区域,为非跨膜蛋白。对CtSDR1、CtSDR2和CtSDR3蛋白二级结构的预测显示均属于不规则结构。对CtSDR1、CtSDR2、CtSDR3蛋白质三维结构预测如图3所示。系统进化树如图4所示。亚细胞定位预测显示,CtSDR1CtSDR2CtSDR3均可能定位于细胞质。

    图  3  CtSDR1、CtSDR2、CtSDR3蛋白三级结构预测
    图  4  CtSDR系统发育进化树

    取红花花期的Ⅳ期的红花各个部位进行分析,发现红花花冠内的CtSDR1CtSDR2CtSDR3基因表达量从高到低依次均为花冠>叶>茎>根。其中CtSDR1在花冠中的相对表达量约为根中的3倍、而CtSDR2CtSDR3在花冠中的相对表达量约为根中的4倍。将4个花期的红花花冠进行qRT-PCR分析表明,CtSDR1CtSDR2CtSDR3花冠中表达量均随着花冠发育逐渐升高,特别是CtSDR1CtSDR2CtSDR3的Ⅳ期花冠对比Ⅲ期花冠的表达量分别提高了7.2倍、2.7倍、2.3倍(图5)。

    图  5  目的基因在不同部位(A)和不同花期(B)的表达水平

    构建真和表达载体并通过PCR鉴定后,我们从19株农杆菌浸染的子代植株中得到5株pMT39-CtSDR3阳性红花植株(图6)。通过qPCR对其CtSDR3基因转录水平进行测定,结果发现阳性红花植株中CtSDR3基因的转录水平得到显著增加,约为空白组株系的2~3倍,CtSDR3的在花冠部位的高表达也证明了研究成功获取CtSDR3过表达红花植株(图7)。通过UPLC-QTOF/MS技术测定阳性转基因红花株系组和空白对照组的目标化合物含量,包括7个红花花冠主要黄酮类化合物及苯丙烷类代谢途径上游关键物质苯丙氨酸(图8),分别为:野黄芩素(scutellarein)、Carthamin、HSYA、山柰酚(kaempferol)、山柰酚-3-O-β-D-葡萄糖苷(kaempferol-3-O-β-D-glucoside)、山柰酚-3-O-β-D-芸香糖苷(kaempferol-3-O-β-rutinoside)、芦丁(rutin)和苯丙氨酸(D-Phenylalanine)。由图8可知,与空白组相比,CtSDR3过表达株系相较于空白组野黄芩素提高了3.6%~9.8%,HSYA提高了7.1%~16.6%,以及苯丙氨酸含量提高了5.5%~15.7%,具有显著性升高。其他化合物含量则有无显著性变化趋势。通过对过表达株系与空白组的含量分析,我们认为CtSDR3基因过表达会引起红花中黄酮类物质的变化,尤其是HSYA含量升高显著。同时,苯丙氨酸代谢途径属于植物重要的次生代谢途径,过表达组引起苯丙氨酸含量的显著上升,上述指标性成分的变化也进一步说明CtSDR3对红花黄酮类化合物次生代谢途径具有一定的影响,但目前我们尚难以判断CtSDR3红花中影响次生代谢产物积累的明确途径。

    图  6  真核表达载体构建及阳性鉴定电泳图
    注:1. CtSDR3基因开放阅读框(ORF)区扩增产物电泳图,a、b泳道均为CtSDR3基因ORF区克隆PCR产物;2. 真核表达载体pMT-39载体酶切产物电泳图,a、b泳道为CtSDR3 PCR产物,c泳道为pMT-39载体,d、e泳道为pMT-39线性化载体;3. pMT39-CtSDR3重组载体阳性转化子鉴定电泳图,a、b泳道为阳性转化子菌液PCR产物;4. pMT39-CtSDR3质粒转化农杆菌GV3101,a、c和e泳道为空白对照组,b、d和f泳道为阳性克隆菌液PCR产物;5. 红花pMT39-CtSDR3阳性转化植株鉴定PCR产物电泳图,1~19为待鉴定植株,p为pMT39-CtSDR3质粒,k为空白组,WT为野生型红花植株
    图  7  过表达植株CtSDR3的相对表达量
    **P<0.01,与CK组比较
    图  8  阳性植株黄酮类化合物含量测定
    注:A.黄芩素;B.Carthamin;C.HSYA;D.山柰酚;E.山柰酚-3-O-葡萄糖苷;F.山柰酚-3-O-芸香糖苷;G.芦丁;H.苯丙氨酸;CK.空白组株系;OVX.阳性过表达株系

    目的片段成功扩增,将目的条带进行胶回收、纯化。CtSDR1CtSDR1CtSDR1构建的pGEX-6p-1、pET-28a原核表达载体均有在大肠杆菌内表达,但是CtSDR1-pGEX-6p-1、 CtSDR2-pGEX-6p-1、CtSDR3-pGEX-6p-1、CtSDR1-pET-28、CtSDR2-pET-28a、CtSDR3-pET-28a表达的目的蛋白均形成包涵体,存在于沉淀中。无法进行下一步大量纯化实验,唯有CtSDR2-pGEX-6p-1诱导表达了存在于上清液的目的蛋白,明显可以在上清液中观察到分子量约为50 000的蛋白条带(图9)。

    图  9  目的片段PCR产物电泳及表达蛋白电泳分析
    注:A.目的片段PCR产物电泳:1~5为CtSDR1,6~10为CtSDR2,11~15为CtSDR3(其对应的PCR反应Tm值分别为67 ℃、65 ℃、63 ℃、59 ℃、57 ℃);B.pGEX-6p-1蛋白表达电泳分析;C.pET-28a蛋白表达电泳分析

    越来越多的红花药理学相关研究表明,红花的主要药效物质包括查尔酮类、黄酮醇类等多种黄酮类化合物,其中,查尔酮类HSYA对脑缺血具有保护作用,并且还能抗脑血栓形成以及抗氧化等。研究HSYA的生物合成分途径,对于HSYA的工业化生产具有重要意义。

    本研究借助生物学分子技术、结合代谢组分析测定,筛选出3个参与HSYA生物合成途径的关键短链脱氢还原酶基因CtSDR1CtSDR2CtSDR3,这3个基因序列具有高度保守性,在不同器官的表达模式均呈现出花冠>叶>茎>根的特点,而且在花冠中的表达量随花冠发育逐渐升高,表明其很有可能参与红花中HSYA等主要药用成分的积累。进一步研究发现,转CtSDR3过表达T2代阳性植株花冠中CtSDR3基因的转录水平增加了2~3倍,次生代谢物HSYA的含量提高了7.1%~16.6%(P<0.05),验证了我们对CtSDR3在红花体内参与黄酮类化合物生物合成功能的推测。本研究中,体外表达CtSDR3蛋白,得到目的蛋白条带,但由于包涵体等原因,蛋白表达和纯化条件仍需要进一步摸索。下一步,我们将对可能起黄酮类生物合成途径的关键SDRs进行深入的生物学特性特别是酶结合位点的研究,为更好地阐释SDRs的生物学功能、利用分子生物育种技术培育高HSYA含量的红花新品种奠定基础。

  • 表  1  抗高原缺氧藏药及其有效成分

    作用藏药化学成分有效成分药理作用生长环境
    对肺保
    护作用
    蕨麻甾类、三萜类、黄酮类、酚酸类、香豆素等蕨麻多糖耐缺氧,抗疲劳、抗应激,抗病毒、保肝,抗氧化,对免疫功能的影响,保护心肌、补血作用等海拔600~3 600 m的山坡草地、河岸、路旁及草甸
    马齿苋生物碱类、黄酮类、萜类、香豆素类、有机酸类以及多糖、挥发油等马齿苋黄
    [71]
    抗炎、镇痛、抑菌,降血脂、血糖,抗肿瘤,抗氧化、抗疲劳,抗衰老,抗惊厥,止咳、平喘等作用海拔2 000 m以下的农田、路边,为田间常见杂草
    芍药芍药苷、芍药内酯苷、丹皮酚等芍药苷镇痛,抗炎,抗氧化、抗抑郁,抗肿瘤作用等东北多生长在海拔480~700 m的林下及山坡草地,其它省份主要生长在海拔1 000~2 300 m的山坡草地
    对心保
    护作用
    大蒜鲜蒜中主要含蒜氨酸、活性蒜酶、多聚果糖、脂质、肽类、硫苷等蒜油抗心肌缺血、降血脂、抗氧化、清除自由基、抗肿瘤、抗病原微生物作用等产于河南、山东、江苏等省
    天麻酚类、多糖类、有机酸类、甾体类等天麻素镇静催眠,抗惊厥、抑郁,抗氧化,增强免疫力等作用海拔600~3 200 m的疏林下,林中空地、林缘,灌丛边缘
    甘青青兰挥发油类、黄酮及黄酮苷类、植物甾醇类、有机酸及其酯类、无机元素等甘青青兰总黄酮和挥发油抗氧化、抗缺氧,抑菌,抗病毒和保肝作用等海拔1 900~4 000 m的干燥河谷的河岸、田野、草滩或松林边缘
    藏紫菀三萜及三萜皂苷、黄酮、肽类及挥发油等藏紫菀总黄酮[72]祛痰止咳平喘、抗氧化、抗肿瘤、止痛、抗溃疡、通便利尿作用等海拔2 700~4 000 m的高山针叶体外缘、灌丛及山坡草地或河滩草坝
    藏红花藏红花花酸、藏红花花素、藏红花苷等藏红花素[73]治疗心血管疾病、降血脂、抗肿瘤、利胆保肝、调节血压、抗血栓、免疫调节等作用主产于伊朗、希腊、印度、西班牙、意大利、摩洛哥等地
    毛诃子三萜皂苷、强心苷、木脂素、鞣质类、脂肪酸、维生素等水提取物、醇提取物抗氧化、保肝、抗动脉粥样硬化等作用常生于海拔540~1 350 m向阳山坡和树林中
    杜仲黄酮类、木脂素类、环烯醚萜类、酚类、甾体、苯丙素类、氨基酸、多糖等杜仲总多糖调节血糖、血脂、血压,抗骨质疏松、抗炎、抗氧化、安胎、保肝、免疫调节、抗肿瘤、抗癌作用等海拔600~1 700 m山地林中或栽培
    黄精多糖、皂苷、黄酮、木脂素、氨基酸以及微量元素、挥发油等黄精多糖降血糖、降血脂、抗肿瘤、抑菌抗炎、免疫调节、抗氧化及抗衰老、抗阿尔茨海默症、抗动脉粥样硬化、心肌保护、抗骨质疏松作用等海拔800~2 800 m的林下、灌丛或山坡阴处
    对脑保
    护作用
    石榴籽脂肪酸、挥发油、黄酮、多糖和有机酸类等石榴籽油,石榴酸保肝、降血糖、抗氧化、抗骨质疏松、抗肿瘤、调节免疫和抗抑郁等作用产于我国大部分地区
    红景天苷、狭叶红景天生物碱、黄酮类、糖苷类、苯酚类化合物、挥发油、香豆素类、甾体以及有机酸和微量无机元素等红景天苷,
    苷元酪醇
    抗炎、抗氧化、抗疲劳、抗缺氧、抗癌作用等海拔2 000~4 500 m的高山湿地、石缝中、近水边
    蔓菁皂苷、黄酮类、糖类及其苷、生物碱类、挥发油、酚类、鞣质、氨基酸、蛋白质等蔓菁多糖抗菌及抗寄生虫、抑制甲状腺素作用等全国各地栽培
    螃蟹甲环烯醚萜苷类、呋喃拉布素型二萜类、黄酮类、苯乙醇苷类、挥发油类等螃蟹甲苯乙醇苷,毛蕊花糖苷镇咳祛痰平喘、镇痛抗炎、抑菌作用等海拔4 300~4 600 m的干燥山坡、灌丛及田野
    石菖蒲黄酮苷、酰胺、木脂素、苯丙素、苯丙烷衍生物等挥发油和水溶性成分抗血栓、抗动脉粥样硬化、保护脑神经元、抗肿瘤、抗癫痫及抗抑郁作用等海拔600~2 600 m的林下阴湿处或溪畔
    石斛多糖类、生物碱类、黄酮类、菲类、联苄类、挥发油类、氨基酸及微量元素等铁皮石斛多糖抗氧化、降尿酸、抗肿瘤、抗疲劳、降血糖及免疫调节作用等海拔700~1 500 m的山地林中树干上或山谷岩石上;海拔600~3 000 m的阔叶林中树干或山谷岩壁上
    雪灵芝皂苷、黄酮、生物碱、香豆素、多糖、氨基酸和微量元素等雪灵芝总皂苷[74]抗缺氧、抗心律失常、抗炎、抑菌、抗肿瘤、增强免疫力及保护肝脏作用等海拔4 300~5 300 m的石灰岩山地草原或石隙间
    对肝脏
    保护
    作用
    木香土木香内酯、异土木香内酯、黄酮、多酚等乙醇提取物抗炎、抗肿瘤、利胆、促胃动力、抗溃疡、解痉镇痛及抗病原微生物作用等多省均有栽培
    改善
    疲劳
    冬虫夏草多糖、蛋白质、核苷酸、甘露醇、麦角甾醇、氨基酸、脂肪酸和微量元素等虫草多肽[75]抗炎、抗肿瘤、免疫调节、抗氧化、降血糖和抗纤维化作用等海拔3 000~5 000 m之间的高山草甸和高山灌丛带,寄生于虫草蝙蝠蛾的幼虫体上
    余甘子多酚、黄酮、有机酸、还原糖、多糖、维生素、蛋白质等余甘子水
    提物
    抗病原微生物、抗衰老、抗疲劳、抗氧化、抗肿瘤、保护肝脏、调节免疫系统、保护心脑血管和抗炎作用等分布于30~2 300 m地区,集中于600~1 300 m的荒山野林之中
    枸杞氨基酸、维生素、纤维素、矿物质、微量元素、多糖和生物活性物质等枸杞多糖抗氧化、抗肿瘤、调节血脂、抗疲劳、抗肿瘤、提高视力及具有血管内皮细胞的保护作用等土层深厚的沟岸、山坡、田埂及宅边
    其他当归挥发油、多糖、氨基酸、有机酸和黄酮等当归多糖舒张胃肠平滑肌、抗氧化、保护肝脏、促进造血细胞、抗炎、抗肿瘤、抗抑郁及平喘作用等栽培于海拔2 300~2 700 m的高寒阴湿地
    异叶青兰挥发油、黄酮和无机盐镇咳平喘作用等山地草原及半荒漠的多石干燥地区,青海甘肃以东分布于海拔1 100~2 800 m间,以西则可达5 000 m ,新疆则在2 200~3 100 m间
    灵芝多糖、三萜和核苷等灵芝多糖[76]防治心血管疾病、保护肝损伤、抗肿瘤、免疫调节及抗衰老作用等阔叶树发木桩旁
    垂头菊倍半萜类、三萜甾体类、苯丙素类、黄酮类和挥发油等垂头菊总黄酮抗菌、抗肿瘤及抗氧化作用等海拔3 300~3 400 m 的林缘,草地
    姜黄酚类和萜类,生物碱和甾醇类等姜黄素抗肿瘤、解毒、抗炎、镇痛、抗氧化及抗糖尿病作用等中国、东亚及东南亚广泛栽培
    淫羊藿黄酮类、木脂素、多糖、生物碱等淫羊藿总
    黄酮
    抗动脉粥样硬化、抗脑缺血、预防心肌缺血及抗肿瘤作用等海拔600~2 500 m的山坡路旁树林阴湿处;海拔600~1 300 m的山沟阴湿处或山坡丛林下
    黄芩黄酮类、甾类等黄芩素-7-甲醚解热、抗炎、抗菌、抗病毒、清除自由基、抗氧化、抗肿瘤、改善记忆、镇静、抗癫痫、抗帕金森、降血脂、抗动脉粥样硬化、保护肝脏及免疫调节作用等海拔600~2 000 m的向阳草坡、荒地上;海拔1 300~2 500 m山地向阳草坡
    远志皂苷、寡糖酯、多糖、黄酮、生物碱等远志皂苷增强学习记忆能力、抗抑郁、安神、抗氧化、抗衰老、抑菌及抗炎作用等草原、山坡草地、灌丛中以及杂木林下,海拔200~2 300 m
    玉竹多糖、甾体皂苷、黄酮、挥发油等玉竹多糖降血糖、免疫调节、抗肿瘤、抗氧化、抗疲劳及延缓皮肤衰老作用等海拔600~3 000 m的林下或山野阴坡
    下载: 导出CSV
  • [1] 格日力. 高原医学[M]. 北京: 北京大学医学出版社, 2014.
    [2] 景临林, 马慧萍, 樊鹏程, 等. Tempol对高原缺氧致小鼠脑组织损伤的保护作用[J]. 中国医院药学杂志, 2017, 37(20):2009-2013. doi:  10.13286/j.cnki.chinhosppharmacyj.2017.20.02
    [3] KONG F Y, LI Q, LIU S X. Poor sleep quality predicts decreased cognitive function independently of chronic mountain sickness score in young soldiers with polycythemia stationed in Tibet[J]. High Alt Med Biol,2011,12(3):237-242. doi:  10.1089/ham.2010.1079
    [4] SHLIM D R. The use of acetazolamide for the prevention of high-altitude illness[J]. J Travel Med,2020,27(6):106. doi:  10.1093/jtm/taz106
    [5] 万珠. 藏医学简史[J]. 中国民族医药杂志, 2010, 16(11):66-67. doi:  10.3969/j.issn.1006-6810.2010.11.043
    [6] 卓玛东智, 秀措吉. 藏医对高原病的认识[J]. 中国民族医药杂志, 2014, 20(3):66-68.
    [7] 王智森, 赵正平, 赵献超. 基础藏药学[M]. 北京: 中国中医药出版社, 2011.
    [8] 德 吉. 藏医药的起源与发展[J]. 中国民族医药杂志, 2001, 7(4):41-42. doi:  10.3969/j.issn.1006-6810.2001.04.033
    [9] 王旭萍. 急性高原缺氧大鼠脑皮质相关细胞因子变化及蕨麻的保护作用[J]. 高原医学杂志, 2012, 22(2):20.
    [10] 石继鹏. 蕨麻多糖抗高原缺氧作用及机制研究[D]. 兰州: 西北师范大学, 2020.
    [11] 谭越. 马齿苋提取物对小鼠高原肺水肿的预防作用及机制研究[D]. 上海: 第二军医大学, 2013.
    [12] 孙希云, 刘宁, 陈波, 等. 马齿苋总黄酮抗氧化性质的研究[J]. 沈阳农业大学学报, 2006, 37(1):108-110. doi:  10.3969/j.issn.1000-1700.2006.01.028
    [13] 吴晓芳, 易建华, 韩晶. 芍药苷对缺氧性损伤的保护作用及其机制研究[J]. 中国中西医结合杂志, 2017, 37(8):1020-1023. doi:  10.7661/j.cjim.20170703.144
    [14] QIAN G Q, CAO J, CHEN C, et al. Paeoniflorin inhibits pulmonary artery smooth muscle cells proliferation via upregulating A2B adenosine receptor in rat[J]. PLoS One,2013,8(7):e69141. doi:  10.1371/journal.pone.0069141
    [15] 张峙, 张鹏, 刘福玉, 等. 蒜油抗高原缺氧效应初探[J]. 西南国防医药, 2002, 12(6):498-500. doi:  10.3969/j.issn.1004-0188.2002.06.008
    [16] 邹驰, 樊光辉, 刘辉, 等. 天麻素对模拟高原缺氧大鼠动脉血气及脑组织损伤的影响[J]. 解放军医学杂志, 2017, 42(8):728-732.
    [17] 邹驰, 樊光辉, 马慧萍, 等. 天麻素对模拟高原缺氧大鼠心脏的保护作用[J]. 中药药理与临床, 2017, 33(4):24-27. doi:  10.13412/j.cnki.zyyl.2017.04.007
    [18] 李永慧, 李永芳, 杨梅. 唐古特青兰对高原低氧大鼠肝损伤的保护作用[J]. 高原医学杂志, 2016, 26(2):6-9.
    [19] 靳涵. 唐古特青兰提取物药效研究及其抗缺氧产品开发[D]. 兰州: 兰州大学, 2007.
    [20] 海平. 藏药唐古特青兰抗缺氧作用研究[J]. 山东中医杂志, 2005, 24(1):41-43. doi:  10.3969/j.issn.0257-358X.2005.01.022
    [21] 谢建锋, 朱林燕, 孔子铭, 等. 唐古特青兰总黄酮的提取及其体外抗氧化活性的研究[J]. 华西药学杂志, 2015, 30(4):422-424.
    [22] 张景瑜, 门连超, 吴晓军, 等. 抗高原缺氧藏药的研究进展[J]. 中国民族民间医药, 2017, 26(22):42-45.
    [23] 何蕾, 马慧萍, 景临林, 等. 藏紫菀总黄酮对缺氧诱导的心肌损伤的保护作用[J]. 中华中医药杂志, 2019, 34(4):1448-1451.
    [24] 余国禧, 陈素燕. 藏红花对缺氧模型小鼠的保护作用研究[J]. 中药材, 2006, 29(6):590-591. doi:  10.3321/j.issn:1001-4454.2006.06.028
    [25] 潘瑞蓉, 吴扬, 耿鹏, 等. 藏红花素对大鼠心肌细胞缺氧损伤的保护作用[J]. 江苏大学学报(医学版), 2011, 21(2):131-134,185. doi:  10.13312/j.issn.1671-7783.2011.02.001
    [26] 杨涛, 史超, 艾尼娃尔·艾克木, 等. 毛诃子提取物对高原肺动脉高压大鼠心脏的保护作用[J]. 新疆医科大学学报, 2019, 42(8):1058-1062,1067. doi:  10.3969/j.issn.1009-5551.2019.08.021
    [27] 辛晓明, 王远丽, 王浩, 等. 杜仲总多糖对小鼠耐缺氧能力的影响[J]. 医药导报, 2009, 28(2):160-162.
    [28] 武子敬, 林梦瑶, 杜跃中. 黄精对小鼠耐缺氧的实验研究[J]. 人参研究, 2019, 31(2):23-25.
    [29] 雷升萍, 王靓, 龙子江, 等. 黄精多糖通过TLR4-MyD88-NF-κB通路抑制缺氧/复氧H9c2心肌细胞炎性因子释放[J]. 中国药理学通报, 2017, 33(2):255-260. doi:  10.3969/j.issn.1001-1978.2017.02.021
    [30] 王晓临, 徐存栓, 王修杰, 等. 抗缺氧物质灌胃小鼠抗缺氧能力测定和Hsp70的表达[J]. 高原医学杂志, 2007, 17(2):16-19. doi:  10.3969/j.issn.1007-3809.2007.02.006
    [31] 李定格, 荆雪梅, 林清义, 等. 石榴叶注射液对脑微循环血流量影响的实验研究[J]. 时珍国医国药, 1998, 9(4):327.
    [32] 李薇, 郝吉, 张浪, 等. 石榴籽油在D-半乳糖诱导的衰老小鼠体内的抗氧化作用[J]. 中国油脂, 2018, 43(2):55-59,64. doi:  10.3969/j.issn.1003-7969.2018.02.013
    [33] 张早华, 孟竞壁, 樊菊芬, 等. 红景天胶囊对心肌缺氧、缺血保护作用的实验研究[J]. 中国中西医结合杂志, 1996, 16(10):617-619.
    [34] 李洋洋, 张延猛, 刘俊松, 等. 红景天对急性高海拔暴露下人体运动应激反应的作用研究[J]. 西北国防医学杂志, 2017, 38(7):421-424. doi:  10.16021/j.cnki.1007-8622.2017.07.001
    [35] 李剑, 李清宇, 闫志强. 红景天苷对缺氧缺血性脑损伤大鼠血脑屏障的影响[J]. 神经解剖学杂志, 2019, 35(5):510-514. doi:  10.16557/j.cnki.1000-7547.2019.05.009
    [36] 张早华, 王立义, 陈琴音, 等. 狭叶红景天预防高原对大鼠脏器损害的电镜观察[J]. 中国中药杂志, 1990, 15(3):49-53,64. doi:  10.3321/j.issn:1001-5302.1990.03.004
    [37] 盛春帅, 贾守宁. 狭叶红景天防治高原红细胞增多症的实验研究[J]. 新中医, 2012, 44(10):141-142.
    [38] 钱彦丛, 秦葵, 刘景东. 狭叶红景天的化学及药理研究[J]. 北京军区医药, 1999, 11(6):452-454.
    [39] 王宇, 王张, 邝婷婷, 等. 蔓菁多糖抗高原缺氧作用研究[J]. 成都大学学报(自然科学版), 2014, 33(2):115-117.
    [40] 栾飞, 李茂星, 周保柱, 等. 螃蟹甲中苯乙醇苷对急性减压低氧大鼠脑组织的保护作用及血管内皮生长因子表达的影响[J]. 解放军药学学报, 2016, 32(2):101-105.
    [41] 栾飞. 藏药螃蟹甲中苯乙醇苷类成分抗高原缺氧作用及机制研究[D]. 兰州: 甘肃中医药大学, 2016.
    [42] 王发宝. 石菖蒲对小鼠耐缺氧能力的影响及其机制初探[D]. 延吉: 延边大学, 2010.
    [43] 周大兴, 李昌煜, 张文龙, 等. 石菖蒲的促进小鼠学习记忆和提高耐缺氧力作用[J]. 现代应用药学, 1993, 10(4):4-6,74.
    [44] 肖杨晶, 陈婷. 铁皮石斛多糖对缺氧/复氧视网膜神经节细胞损伤的影响[J]. 中国中医眼科杂志, 2020, 30(9):613-617.
    [45] LI X L, HONG M. Aqueous extract of Dendrobium officinale confers neuroprotection against hypoxic-ischemic brain damage in neonatal rats[J]. Kaohsiung J Med Sci,2020,36(1):43-53. doi:  10.1002/kjm2.12139
    [46] 苏红卫, 徐维光, 刘军祥, 等. 雪灵芝的抗缺氧作用[J]. 泸州医学院学报, 2002, 25(5):371-374.
    [47] 张丽, 黎霞, 黄叶梅. 雪灵芝对大鼠脑缺血再灌注损伤的保护作用[J]. 四川师范大学学报(自然科学版), 2007, 30(3):395-397.
    [48] 靳婉君, 郝颖, 樊鹏程, 等. 木香70%乙醇提取物对缺氧小鼠肝保护作用[J]. 中国药理学与毒理学杂志, 2019, 33(9):745.
    [49] 靳婉君, 郝颖, 樊鹏程, 等. 木香乙醇提取物对缺氧小鼠肝脏保护作用研究[J]. 解放军医药杂志, 2020, 32(4):14-18. doi:  10.3969/j.issn.2095-140X.2020.04.004
    [50] 栾洁, 陈雅琳, 储智勇, 等. 冬虫夏草子实体对小鼠抗疲劳及耐缺氧能力的影响[J]. 时珍国医国药, 2013, 24(1):47-48. doi:  10.3969/j.issn.1008-0805.2013.01.021
    [51] 张钢, 周思敏, 田怀军, 等. 余甘子对模拟高原环境小鼠抗疲劳作用的实验研究[J]. 解放军药学学报, 2011, 27(3):208-211.
    [52] 崔炳权, 黄伟侨, 林元藻. 余甘子抗疲劳、抗缺氧作用实验研究[J]. 中国现代中药, 2008, 10(6):26-28. doi:  10.3969/j.issn.1673-4890.2008.06.010
    [53] 朱燕妮, 孙玉宁, 关文霞, 等. 枸杞多糖增加缺氧肺血管平滑肌细胞SIRT1表达并降低MMP-9及HIF-1α表达[J]. 细胞与分子免疫学杂志, 2016, 32(7):906-910,916.
    [54] 盛伟, 范文艳. 枸杞多糖对小鼠耐缺氧及抗疲劳能力的影响[J]. 新乡医学院学报, 2011, 28(3):298-300.
    [55] 骆亚莉, 李应东, 刘永琦, 等. 当归有效成分对冷应激小鼠抗氧化功能影响[J]. 中国公共卫生, 2014, 30(5):607-609. doi:  10.11847/zgggws2014-30-05-20
    [56] 马清林, 孙敏, 吴国泰, 等. 当归多糖的提取工艺及药理作用研究进展[J]. 中兽医医药杂志, 2020, 39(1):32-35.
    [57] 彭洪福. 异叶青兰提高机体抗缺氧耐力及加速高原适应的研究[J]. 解放军医学杂志, 1984, 9(2):95-98.
    [58] 王索安, 杨凤乡, 马志军, 等. 异叶青兰对高原实验家兔骨髓幼红血岛影响的体视学研究[J]. 青海医学院学报, 1996, 17(2):77-79. doi:  10.13452/j.cnki.jqmc.1996.02.003
    [59] SHARMA P, TULSAWANI R, AGRAWAL U. Pharmacological effects of Ganoderma lucidum extract against high-altitude stressors and its subchronic toxicity assessment[J]. J Food Biochem,2019,43(12):e13081.
    [60] 邱玉芳, 王新成, 程玉昌, 等. 灵芝多糖口服液对小鼠微循环及耐缺氧能力的研究[J]. 泰山医学院学报, 2003, 24(4):345-346.
    [61] 蒋炜. 垂头菊提取物抗高原缺氧作用及线粒体保护机制研究[D]. 兰州: 兰州大学, 2015.
    [62] 景临林, 马慧萍, 樊鹏程, 等. 矮垂头菊乙醇提取物的体外自由基清除活性及其对高原缺氧小鼠的保护作用研究[J]. 天然产物研究与开发, 2015, 27(10):1815-1820.
    [63] 杨江河, 苏德胜, 黄明军, 等. 姜黄素预防高原缺氧大鼠认知功能障碍的机制研究[J]. 中华神经外科疾病研究杂志, 2013, 12(1):12-15. doi:  10.3969/j.issn.1671-2897.2013.01.004
    [64] 张泉龙, 张清花, 周珺, 等. 淫羊藿总黄酮对模拟高原缺氧大鼠机体指标的改善作用[J]. 解放军药学学报, 2013, 29(4):305-309,324.
    [65] 景临林, 武柠子, 杨颖, 等. 黄芩素-7-甲醚对高原缺氧小鼠脑组织保护作用研究[J]. 天然产物研究与开发, 2018, 30(6):1054-1060. doi:  10.16333/j.1001-6880.2018.6.022
    [66] 邵瑾, 杨颖, 何蕾, 等. 黄芩素-7-甲醚对高原缺氧诱导小鼠心肌组织损伤的保护作用研究[J]. 解放军医药杂志, 2019, 31(6):1-5.
    [67] 刘威, 王爽, 温娜, 等. 远志皂苷对缺氧/复氧损伤新生大鼠神经细胞的保护作用及其机制[J]. 山东医药, 2016, 56(27):36-38. doi:  10.3969/j.issn.1002-266X.2016.27.011
    [68] 纪惜銮. 远志皂苷元对缺氧/复氧诱导PC12细胞损伤的作用及机制[D]. 广州: 暨南大学, 2011.
    [69] 孙立彦, 刘振亮, 孙金霞, 等. 玉竹多糖对小鼠常压耐缺氧作用的影响[J]. 山东农业大学学报(自然科学版), 2008, 39(3):335-338.
    [70] 朱欣佚, 王长松, 谢建军. 玉竹对缺氧模型小鼠抗缺氧作用的实验研究[J]. 长春中医药大学学报, 2007, 23(4):13-14. doi:  10.3969/j.issn.1007-4813.2007.04.008
    [71] 侯金佐, 赵蕊, 刘玉鹏, 等. 马齿苋黄酮类化合物的提取及活性研究综述[J]. 安徽农学通报, 2019, 25(1):30-33. doi:  10.3969/j.issn.1007-7731.2019.01.010
    [72] 马慧萍, 何蕾, 王昕, 等. 藏紫菀总黄酮对模拟高原缺氧小鼠的保护作用[J]. 解放军医药杂志, 2016, 28(6):1-4. doi:  10.3969/j.issn.2095-140X.2016.06.001
    [73] 吴扬, 潘瑞蓉, 王玉琴. 藏红花素对大鼠缺氧心肌的保护作用及其机制研究[J]. 中国循环杂志, 2011, 26(1):61-64. doi:  10.3969/j.issn.1000-3614.2011.01.018
    [74] 达珍, 李巧云, 谢云飞. 雪灵芝总皂苷抗氧化作用的实验研究[J]. 中药与临床, 2013, 4(3):26-29.
    [75] 隋明, 张彩, 张崇军, 等. 冬虫夏草药理学作用的研究[J]. 南方农机, 2020, 51(5):104. doi:  10.3969/j.issn.1672-3872.2020.05.066
    [76] 叶志能, 李德远, 王斌, 等. 灵芝多糖研究进展[J]. 食品研究与开发, 2012, 33(1):225-228. doi:  10.3969/j.issn.1005-6521.2012.01.062
  • [1] 杨金润, 黎翔, 孙旸.  ORM1促肝细胞增殖的作用及其机制探索 . 药学实践与服务, 2025, 43(5): 1-6. doi: 10.12206/j.issn.2097-2024.202410014
    [2] 张紫璇, 高苑, 张利, 李佳莉, 徐希科, 祖先鹏.  中药防治急性肺损伤的活性成分及其作用机制研究进展 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202404079
    [3] 周丽城, 欧已铭, 王园.  玉米须黄酮化学成分与药理作用研究进展 . 药学实践与服务, 2025, 43(2): 51-58. doi: 10.12206/j.issn.2097-2024.202309037
    [4] 宋泽成, 马闪闪, 胡巧灵, 仲华, 王彦.  小檗碱与氟康唑合用抗氟康唑耐受白念珠菌的研究 . 药学实践与服务, 2025, 43(2): 87-91. doi: 10.12206/j.issn.2097-2024.202409047
    [5] 王新霞, 刘祉君, 吕磊, 张爽, 高守红.  鬼针草降压作用研究及展望 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202408021
    [6] 郭灵怡, 刘艳超, 高路, 刘瑞瑶, 吕权真, 俞媛.  醋酸卡泊芬净单硬脂酸甘油酯纳米粒抗白色念珠菌感染的增效作用研究 . 药学实践与服务, 2025, 43(3): 136-142, 150. doi: 10.12206/j.issn.2097-2024.202310043
    [7] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 163-168, 194. doi: 10.12206/j.issn.2097-2024.202406035
    [8] 关梦瑶, 夏天爽, 何旭辉, 史策, 蒋益萍, 辛海量.  黑蒜多糖抗便秘作用研究 . 药学实践与服务, 2025, 43(4): 190-194. doi: 10.12206/j.issn.2097-2024.202403059
    [9] 杨念, 张博乐, 张俊霞, 张振强.  一种中药组合物对ANIT诱导的小鼠胆汁淤积肝损伤的保护作用研究 . 药学实践与服务, 2024, 42(12): 508-511, 519. doi: 10.12206/j.issn.2097-2024.202305008
    [10] 岳春华, 贲永光, 王海桥.  基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制 . 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
    [11] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [12] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [13] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [14] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [15] 温瑞睿, 许龙, 朱文静, 杨建伟.  浅谈国外药师主导开展戒烟服务的作用与挑战 . 药学实践与服务, 2024, 42(12): 537-541, 548. doi: 10.12206/j.issn.2097-2024.202408054
    [16] 张修平, 田家盛, 王道鑫, 李佳鑫, 王品, 缪朝玉.  MT-1207对小鼠血糖、血脂和动脉粥样硬化的作用 . 药学实践与服务, 2024, 42(11): 487-494. doi: 10.12206/j.issn.2097-2024.202306011
    [17] 李清, 郭宜银, 陈颖, 瞿发林, 董文燊, 戈煜.  夜宁胶囊对小鼠镇静催眠作用及其机制的研究 . 药学实践与服务, 2024, 42(8): 346-349. doi: 10.12206/j.issn.2097-2024.202211047
    [18] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [19] 张林晨, 张小琴, 张俊平.  山楂酸药理作用的研究进展 . 药学实践与服务, 2024, 42(5): 185-189. doi: 10.12206/j.issn.2097-2024.202307052
    [20] 史生辉, 石飞, 雷琼, 王亚峰, 吴雪花.  青藏高原肺结核合并念珠菌感染患者的病原菌分布特点及耐药率分析 . 药学实践与服务, 2024, 42(6): 260-262, 272. doi: 10.12206/j.issn.2097-2024.202304014
  • 加载中
表(1)
计量
  • 文章访问数:  9105
  • HTML全文浏览量:  3467
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-09-01
  • 网络出版日期:  2022-09-29
  • 刊出日期:  2022-09-25

藏药抗高原缺氧损伤保护作用研究进展

doi: 10.12206/j.issn.2097-2024.202205094
    基金项目:  国家自然科学基金(81673508);中央高校基本科研业务费专项(3192020009);甘肃省青年科技基金计划(20JR10RA014);联勤保障部队第九四〇医院院内应急医学科研项目(20yjky017)
    作者简介:

    王子晗,硕士研究生,研究方向:中药药理与毒理;Tel:18031866835,Email:wzh20210521@163.com

    通讯作者: 王 荣,教授,博士生导师;Tel:(0931)8994675,Email:wangrong-69@163.com
  • 中图分类号: R29

摘要: 藏医是在广泛吸收和融合中国传统医学、印度医学和大食医学理论的基础上,经过长期实践而形成的独特的医学体系,同时,青藏高原具有海拔高、资源匮乏、氧气不足等特点,但是也形成了其得天独厚的地理环境,生长出许多珍稀药用植物——藏药。藏药历史悠久,是中国比较完整和有影响力的民族药之一,在治疗高原疾病方面发挥了重要作用。近年来,随着高原经济活动增多,高原缺氧极大地影响了高原作业能力。根据《中国藏药》通过查阅文献,归纳具有抗高原缺氧作用的藏药其药理作用、有效成分、生长环境等,并根据作用部位将它们分为对肺保护作用、对心保护作用、对脑保护作用、对肝脏保护作用、改善疲劳和其他等6类药物,旨在为发现更多有潜力的抗缺氧药物提供理论依据。

English Abstract

王璐暖, 吴建辉, 何贝轩, 张彦洁, 郭美丽. 羟基红花黄色素A生物合成途径短链还原酶基因的特征及功能研究[J]. 药学实践与服务, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
引用本文: 王子晗, 赵安鹏, 牟宏芳, 郭茜文, 程俊飞, 王荣. 藏药抗高原缺氧损伤保护作用研究进展[J]. 药学实践与服务, 2022, 40(5): 408-415. doi: 10.12206/j.issn.2097-2024.202205094
WANG Lunuan, WU Jianhui, HE Beixuan, ZHANG Yanjie, GUO Meili. Characterization and function of short-chain dehydrogenases/reductases in hydroxysafflower yellow A biosynthesis pathway[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
Citation: WANG Zihan, ZHAO Anpeng, MU Hongfang, GUO Qianwen, CHENG Junfei, WANG Rong. Research progress of Tibetan medicine against plateau hypoxia[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(5): 408-415. doi: 10.12206/j.issn.2097-2024.202205094
    • 高原性缺氧是久居平原的人突然进入海拔3 000 m以上的高原或由高原进入更高海拔的地区,由于吸入气氧分压过低导致的缺氧类型。社会的快速发展伴随着经济旅游业的不断兴盛,高海拔地区也受到大批游客的垂爱,但高原低压低氧环境会对机体造成损伤,成为待解决的问题。研究调查[1]显示,平原久居人群急进海拔3 000 m以上高原后,有50%~75%的人出现急性高原病(急性高原反应、高原脑水肿、高原肺水肿),但经3~10 d的习服后症状逐渐消失。低压低氧环境导致脑组织中活性氧(ROS)大量蓄积,进而攻击DNA、蛋白质和核酸等生物大分子,诱发脑组织损伤[2]。高原缺氧会影响认知功能,低压低氧的环境会导致神经方面的损伤。高原低氧本身也会导致生理心理变化,如头痛、睡眠质量差和紧张焦虑等负性情绪也都与认知功能的降低密切相关[3]。这些负面影响严重影响了人们的正常生活。

      国外常使用乙酰唑胺[4]等化学药物防治高原病,但其疗效不甚理想,并伴有不良反应。

      藏医具有着悠久的历史,是独具特色、疗效显著的一门科学,是藏族人民在复杂的自然环境中与各种疾病长期斗争所形成的民族医学,是中国医学宝库中的重要组成部分[5]。经笔者查阅,急性高原病是藏医中“多血症”的一种,早在1000多年前,在藏医医学著作中就有对“多血症”病因及诊断的记录,即民间所谓的“蜡毒”,当时人们就意识到人从平原走向高原时会产生身体上的反应。《四部医典》将多血病列为“培根木布”病类中,直接的诱因是高原的自然地理环境和特殊的气候条件,即任何高原病的产生,无一不是人体自身不适应高原环境而表现出来的三大因素、七大物质功能失调造成的[6]。在藏医中治疗急性高原病所用药物主要为然纳桑培(七十味珍珠丸)。藏药是在广泛吸收、融合了中医药学、天竺医药学和大食医药学等医药体系理论的基础上,通过长期实践所形成的独特医药体系,迄今已有上千年历史,是我国较为完整、较有影响的民族药之一[7]。西藏是藏医药的发源地,至今已有2 000多年的历史[8]。青藏高原是我国藏族人民的聚居之地,也是藏药发生、发展的摇篮。藏药植物种类虽然繁多,但都有各自相适应的生态环境,虽然其生存环境海拔高、资源匮乏、氧气不足,但是也形成了其得天独厚的地理环境,生长出许多珍稀药用植物。例如,生长在高原环境的红景天,被制成红景天胶囊,作为治疗预防高原疾病的药物。本文综述了《中国藏药》中植物药物抗缺氧的作用,旨在总结归纳藏药植物药中具有对抗高原缺氧功能的共同特征,找出对抗高原缺氧疗效好、作用范围广的药物或方剂。

    • 为了更深入研究藏药,笔者归纳了可以对抗或治疗高原缺氧的藏药,并将它们分为对肺保护作用、对心保护作用、对脑保护作用、对肝脏保护作用、改善疲劳和其他等6类药物,以求更好地发现其中的规律。

    • 研究发现,蕨麻可降低促炎症细胞因子含量、升高抗炎症细胞因子含量,进而起到治疗急性高原缺氧的作用[9]。蕨麻多糖显著抑制了NF-κB和HIF-1α蛋白的相对表达,并减弱了下游促炎介质VEGF等引起的炎症反应,减轻了高原肺水肿(HAPE)所引起的大鼠肺水肿和肺损伤[10]

    • 马齿苋提取物可以降低小鼠肺组织氧化应激水平,抑制NF-κB通路的激活,抑制p50/p65异源二聚体入核所导致的炎症细胞因子、黏附分子和选择素mRNA转录活性的增加,减轻了肺组织中炎症反应[11],具有抗高原缺氧的功能。马齿苋黄酮对羟基自由基有清除能力,在非常低的浓度下就能表现出一定的清除作用,清除能力存在浓度相关性[12]

    • 研究发现,芍药苷对心、脑、肺等器官的缺氧性损伤有显著的保护作用,可以抑制NF-κB通路,减轻细胞氧化损伤,抑制HIF-1α的积累,抑制细胞凋亡等功能[13]。另有文献报道[14]芍药苷通过上调A2B腺苷受体的表达和激活来有效抑制大鼠肺动脉平滑肌细胞的增殖。

    • 实验证明蒜油对心肌收缩力有一定的抑制作用,可以降低心肌的耗氧量,同时蒜油改善了缺氧引起的自由基代谢失衡,蒜油可使换气功能和血液循环功能得到改善[15]。蒜油具有明确的治疗高原性缺氧的功能。

    • 实验证明天麻素可以通过提高血红蛋白 (Hb) 的含量从而提高对氧的结合和释放的能力,发现天麻素对模拟高原缺氧环境下的大鼠心脏具有明显的保护作用,可通过清除自由基、缓解脂质过氧化损伤、增加抗氧化作用,进而达到对心脏的保护作用,降低对心脏的损伤[16-17]

    • 实验发现,用甘青青兰进行干预的高原低氧大鼠,肝组织中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性明显增高,丙二醛(MDA) 含量明显减少;其对高原低氧引起的肝脏损伤具有一定的保护作用,可能与减少自由基产生,抑制脂质过氧化反应,增强机体抗氧化能力有关[18]。甘青青兰正丁醇萃取物的抗缺氧效果优于甘青青兰乙酸乙酯萃取物[19]。甘青青兰水提液具有明显的抗心脑组织缺血缺氧及降血压作用,可以减轻缺氧对心脑的病理损伤,所含挥发油也有良好的抗心肌缺血缺氧作用,而不影响心率和血压[20]。甘青青兰总黄酮可以很好地清除超氧阴离子自由基和对羟基自由基[21]

    • 现代医学研究发现藏紫菀具有一定的抗缺氧能力,其水提取物明显高于其乙醇提取物[22]。藏紫菀总黄酮对减压缺氧小鼠心肌的形态结构具有保护作用,藏紫菀总黄酮可以对抗缺氧对心肌组织的损伤作用,对组织内MDA和过氧化氢生成有明显的抑制作用,可以改善细胞乳酸脱氢酶(LD或LDH)和肌酸激酶(CK)蓄积[23]

    • 藏红花水提液不仅对常压缺氧和减压缺氧小鼠有明显的保护作用,而且对特异性增加心脏耗氧的小鼠能明显延长其生存时间[24]。研究发现藏红花素可明显提高超氧化物歧化酶(SOD)活性,降低MDA含量,对缺氧有明显抗氧化应激作用。藏红花素可促进缺氧心肌细胞低氧诱导因子-1(HIF-1)、血管内皮生长因子(VEGF)蛋白进一步的表达[25]

    • 水提取物、醇提取物可使高原肺动脉高压大鼠血清中C-反应蛋白(CRP)、促红细胞生成素(EPO)等指标都趋向正常水平,表明毛诃子水提取物、醇提取物对高原肺动脉高压大鼠的心脏损伤具有保护作用[26]

    • 实验发现杜仲总多糖能使心肌低氧小鼠的耗氧量降低,可以延长其在低氧条件下的存活时间[27]

    • 黄精可以提高小鼠耐缺氧的能力[28]。实验发现黄精多糖可以保护由于缺氧/复氧造成大鼠心肌细胞 H9C2的损伤,其保护作用机制是通过阻断TLR4-MyD88-NF-κB信号通路,下调缺氧/复氧介导心肌细胞炎性因子表达,从而减轻细胞炎症反应[29]

    • 实验发现,石榴籽超临界萃取物可延长小鼠密闭缺氧存活时间[30]。石榴可显著提高大鼠脑微循环血流量[31]。石榴作为比较常见的水果,来源广泛、副作用小,有着更为值得深入研究的前景。通过灌胃给予石榴籽油后,衰老小鼠中各组织及血清中的MDA含量明显减少,且具有剂量依赖性。衰老小鼠组织中的谷胱甘肽(GSH)含量和总抗氧化能力(T-AOC)活性出现了剂量依赖性的升高[32]

    • 红景天胶囊能显著提高动物常压和低压缺氧耐力[33]。急性高海拔缺氧触发了机体的应激反应使得机体神经递质和激素显著升高,红景天能够通过神经-免疫内分泌网络、酶的活性、体液内环境调节等多层次、整体性地调节,使人体在急性高海拔缺氧环境快速习服并提高劳动能力[34]。经过提前给大鼠腹腔注射红景天苷,脑损伤大鼠脑含水量下降,溴化乙锭(EB)漏出减少,红景天苷可以显著降低脑水肿的程度[35]。通过实验发现,狭叶红景天能明显减轻大鼠由于高原低氧环境所造成的损害,能改善动物的供氧状态,使机体可以更好地利用氧气,从而对缺氧的耐受性提高[36]。狭叶红景天能够降低高原红细胞增多症大鼠红血球 (RBC)、血红蛋白 (Hb)、红细胞压积 (HCT)和血液黏度[37]。狭叶红景天的化学成分比较复杂,主要活性成分为红景天苷及其苷元酪醇,可提高机体适应环境的能力[38]

    • 研究发现蔓菁多糖能增加急性低压缺氧小鼠脑组织的SOD活性,降低MDA含量。小鼠脑组织苏木精-伊红染色法 (HE) 染色实验显示,蔓菁多糖可使低压缺氧小鼠的脑组织的损伤减轻,蔓菁多糖对高原缺氧损伤具有保护作用[39]

    • 研究发现在低压缺氧情况下,螃蟹甲可以通过下调VEGF mRNA和蛋白的表达对脑组织进行保护[40]。实验发现螃蟹甲具有对抗高原性缺氧的功能,发现螃蟹甲苯乙醇苷(PhGCs)是发挥作用的主要部位,主要含有毛蕊花糖苷[41]

    • 石菖蒲具有清除自由基并具有减少过氧化物形成等功能,可以减少一氧化氮(NO)造成的神经毒性,具有保护脑细胞的能力。石菖蒲通过增强小鼠血液中的超氧化物歧化酶的活性和降低丙二醛的含量,即通过抗自由基途径,起到增强实验小鼠耐缺氧能力的药理学作用[42]。实验证明石菖蒲能明显地改善由于东莨菪碱引起的记忆障碍,还能改善由于大脑缺氧引起的脑功能减退和记忆功能的障碍[43]

    • 铁皮石斛多糖通过改变Bcl-2、Bax蛋白的表达发挥抗细胞凋亡作用,能够有效抑制缺氧/复氧诱导的RGC-5细胞凋亡[44]。当新生缺氧缺血性脑损伤大鼠随后被灌胃给予不同剂量的铁皮石斛水提物时,神经行为和抗氧化能力的损害减轻。这个研究强调铁皮石斛水提物能够减少缺氧缺血性脑损伤诱导的神经元凋亡并增强神经营养因子的表达,从而赋予新生大鼠神经保护作用并刺激抗氧化能力[45]

    • 实验证明雪灵芝有抗缺氧的功能,还具有改善慢性缺氧性肺血管收缩的作用[46]。雪灵芝可以保护缺血再灌注大鼠脑组织,并能增加对氧的利用,降低组织耗氧量,减少氧自由基生成,从而保护脑组织[47]

    • 木香70%乙醇提取物可以显著提高高原缺氧造成的小鼠肝脏线粒体膜电位,对高原缺氧小鼠肝脏线粒体具有保护作用[48-49]。木香粗提物对DPPH清除、NO清除和还原力测定等方面均显示出抗氧化活性,且对DPPH自由基清除活性存在剂量响应关系,其活性随着粗提取物浓度的增加而增加。

    • 实验表明冬虫夏草子实体能够明显延长小鼠在常压缺氧、亚硝酸钠中毒和急性脑缺血的存活时间,还能明显延长小鼠力竭游泳的存活时间[50]

    • 在模拟高原环境下余甘子具有抗疲劳的功效,其机制可能与其增强机体抗氧化酶活性,减少氧自由基生成等作用有关[51]。实验表明,余甘子水提取物能显著提高运动小鼠体内LD或LDH活性,还能增加小鼠体内肝糖原的含量, 显著延长小鼠负重游泳的时间长度,具有明显的抗疲劳功效, 余甘子具有明显提高小鼠血中Hb的含量、可以延长小鼠的存活时间[52]

    • 枸杞多糖(LBP)不仅能刺激沉默接合型信息调节因子2同源蛋白1(SIRT1)基因的表达而且能对抗低氧处理后SIRT1水平的下降,同时也能抑制缺氧后缺氧诱导因子1α(HIF-1α)及基质金属蛋白酶9(MMP-9)的上升[53]。实验发现枸杞多糖可明显改善小鼠的耐缺氧能力,还具有抗疲劳的能力,对于耐寒、耐热的能力也明显提高[54]

    • 当归多糖可升高模拟高原低氧小鼠的胸腺、脾脏指数,可以升高脾淋巴细胞增殖能力及血清白细胞介素-2(IL-2)水平[55]。当归抗高原缺氧的成分可能为当归多糖[56]

    • 通过进行现场人体双盲实验发现,异叶青兰可以减少人的5 000 m左右高山反应发生率并减轻高山反应症状[57]。异叶青兰对高原实验家兔外周血红细胞不仅可降低其体积,而且可降低其数量,从而降低血液的黏滞性,改善血循环[58]

    • 实验发现灵芝水提物通过抑制NF-κB、TNFα、IL-6等促炎症因子起到抗高原缺氧的作用[59]。灵芝多糖可提高血流的速度,改善微循环,从而增加耐缺氧能力[60]

    • 实验发现垂头菊抗缺氧与提高机体自由基清除能力及抗氧化应激相关,能够保护三羧酸循环和线粒体呼吸链的关键酶,改善线粒体抗氧化能力,减少线粒体的凋亡[61]。垂头菊抗高原缺氧的作用可能是垂头菊总黄酮[62]

    • 实验发现姜黄素具有减少慢性缺氧导致的海马细胞凋亡的能力,显著减轻慢性缺氧所导致的海马Bax水平升高及Bcl-2水平下降,从而改善大鼠由于高原缺氧所导致认知能力的障碍[63]

    • 给予淫羊藿总黄酮后大鼠血清SOD明显增加,MDA水平、自由基的生成明显降低,可以保护机体细胞,血清皮质酮大量增加,使大鼠缺氧时应激能力提高,NO水平升高,具有抗高原缺氧的作用[64]

    • 实验发现黄芩素-7-甲醚能够保护高原缺氧所造成的机体损伤,黄芩可以抑制脂质过氧化、清除自由基、改善机体能量代谢,此作用可能通过激活Nrf2/ARE/HO-1途径来提高抗氧化酶的活性,缓解机体氧化应激反应[65-66]

    • 研究发现远志皂苷可保护新生大鼠神经细胞缺氧/复氧的损伤,减少神经细胞的凋亡,其机制可能与抑制细胞凋亡的调控因子、提高细胞膜稳定性有关[67]。 研究发现远志皂苷可保护细胞缺氧/复氧所造成的损伤及细胞凋亡,可以降低细胞LDH的释放量,降低活性氧水平[68]

    • 实验表明玉竹多糖能降低小鼠前20 min的累计耗氧量,20 min后,其降低累计耗氧量的强度逐渐减弱。玉竹多糖具有耐缺氧的作用[69]。玉竹可以降低过氧化物的含量,减少氧自由基对组织造成的损伤,提高小鼠的抗缺氧能力[70]

      抗高原缺氧藏药及其可能的有效成分见表1

      表 1  抗高原缺氧藏药及其有效成分

      作用藏药化学成分有效成分药理作用生长环境
      对肺保
      护作用
      蕨麻甾类、三萜类、黄酮类、酚酸类、香豆素等蕨麻多糖耐缺氧,抗疲劳、抗应激,抗病毒、保肝,抗氧化,对免疫功能的影响,保护心肌、补血作用等海拔600~3 600 m的山坡草地、河岸、路旁及草甸
      马齿苋生物碱类、黄酮类、萜类、香豆素类、有机酸类以及多糖、挥发油等马齿苋黄
      [71]
      抗炎、镇痛、抑菌,降血脂、血糖,抗肿瘤,抗氧化、抗疲劳,抗衰老,抗惊厥,止咳、平喘等作用海拔2 000 m以下的农田、路边,为田间常见杂草
      芍药芍药苷、芍药内酯苷、丹皮酚等芍药苷镇痛,抗炎,抗氧化、抗抑郁,抗肿瘤作用等东北多生长在海拔480~700 m的林下及山坡草地,其它省份主要生长在海拔1 000~2 300 m的山坡草地
      对心保
      护作用
      大蒜鲜蒜中主要含蒜氨酸、活性蒜酶、多聚果糖、脂质、肽类、硫苷等蒜油抗心肌缺血、降血脂、抗氧化、清除自由基、抗肿瘤、抗病原微生物作用等产于河南、山东、江苏等省
      天麻酚类、多糖类、有机酸类、甾体类等天麻素镇静催眠,抗惊厥、抑郁,抗氧化,增强免疫力等作用海拔600~3 200 m的疏林下,林中空地、林缘,灌丛边缘
      甘青青兰挥发油类、黄酮及黄酮苷类、植物甾醇类、有机酸及其酯类、无机元素等甘青青兰总黄酮和挥发油抗氧化、抗缺氧,抑菌,抗病毒和保肝作用等海拔1 900~4 000 m的干燥河谷的河岸、田野、草滩或松林边缘
      藏紫菀三萜及三萜皂苷、黄酮、肽类及挥发油等藏紫菀总黄酮[72]祛痰止咳平喘、抗氧化、抗肿瘤、止痛、抗溃疡、通便利尿作用等海拔2 700~4 000 m的高山针叶体外缘、灌丛及山坡草地或河滩草坝
      藏红花藏红花花酸、藏红花花素、藏红花苷等藏红花素[73]治疗心血管疾病、降血脂、抗肿瘤、利胆保肝、调节血压、抗血栓、免疫调节等作用主产于伊朗、希腊、印度、西班牙、意大利、摩洛哥等地
      毛诃子三萜皂苷、强心苷、木脂素、鞣质类、脂肪酸、维生素等水提取物、醇提取物抗氧化、保肝、抗动脉粥样硬化等作用常生于海拔540~1 350 m向阳山坡和树林中
      杜仲黄酮类、木脂素类、环烯醚萜类、酚类、甾体、苯丙素类、氨基酸、多糖等杜仲总多糖调节血糖、血脂、血压,抗骨质疏松、抗炎、抗氧化、安胎、保肝、免疫调节、抗肿瘤、抗癌作用等海拔600~1 700 m山地林中或栽培
      黄精多糖、皂苷、黄酮、木脂素、氨基酸以及微量元素、挥发油等黄精多糖降血糖、降血脂、抗肿瘤、抑菌抗炎、免疫调节、抗氧化及抗衰老、抗阿尔茨海默症、抗动脉粥样硬化、心肌保护、抗骨质疏松作用等海拔800~2 800 m的林下、灌丛或山坡阴处
      对脑保
      护作用
      石榴籽脂肪酸、挥发油、黄酮、多糖和有机酸类等石榴籽油,石榴酸保肝、降血糖、抗氧化、抗骨质疏松、抗肿瘤、调节免疫和抗抑郁等作用产于我国大部分地区
      红景天苷、狭叶红景天生物碱、黄酮类、糖苷类、苯酚类化合物、挥发油、香豆素类、甾体以及有机酸和微量无机元素等红景天苷,
      苷元酪醇
      抗炎、抗氧化、抗疲劳、抗缺氧、抗癌作用等海拔2 000~4 500 m的高山湿地、石缝中、近水边
      蔓菁皂苷、黄酮类、糖类及其苷、生物碱类、挥发油、酚类、鞣质、氨基酸、蛋白质等蔓菁多糖抗菌及抗寄生虫、抑制甲状腺素作用等全国各地栽培
      螃蟹甲环烯醚萜苷类、呋喃拉布素型二萜类、黄酮类、苯乙醇苷类、挥发油类等螃蟹甲苯乙醇苷,毛蕊花糖苷镇咳祛痰平喘、镇痛抗炎、抑菌作用等海拔4 300~4 600 m的干燥山坡、灌丛及田野
      石菖蒲黄酮苷、酰胺、木脂素、苯丙素、苯丙烷衍生物等挥发油和水溶性成分抗血栓、抗动脉粥样硬化、保护脑神经元、抗肿瘤、抗癫痫及抗抑郁作用等海拔600~2 600 m的林下阴湿处或溪畔
      石斛多糖类、生物碱类、黄酮类、菲类、联苄类、挥发油类、氨基酸及微量元素等铁皮石斛多糖抗氧化、降尿酸、抗肿瘤、抗疲劳、降血糖及免疫调节作用等海拔700~1 500 m的山地林中树干上或山谷岩石上;海拔600~3 000 m的阔叶林中树干或山谷岩壁上
      雪灵芝皂苷、黄酮、生物碱、香豆素、多糖、氨基酸和微量元素等雪灵芝总皂苷[74]抗缺氧、抗心律失常、抗炎、抑菌、抗肿瘤、增强免疫力及保护肝脏作用等海拔4 300~5 300 m的石灰岩山地草原或石隙间
      对肝脏
      保护
      作用
      木香土木香内酯、异土木香内酯、黄酮、多酚等乙醇提取物抗炎、抗肿瘤、利胆、促胃动力、抗溃疡、解痉镇痛及抗病原微生物作用等多省均有栽培
      改善
      疲劳
      冬虫夏草多糖、蛋白质、核苷酸、甘露醇、麦角甾醇、氨基酸、脂肪酸和微量元素等虫草多肽[75]抗炎、抗肿瘤、免疫调节、抗氧化、降血糖和抗纤维化作用等海拔3 000~5 000 m之间的高山草甸和高山灌丛带,寄生于虫草蝙蝠蛾的幼虫体上
      余甘子多酚、黄酮、有机酸、还原糖、多糖、维生素、蛋白质等余甘子水
      提物
      抗病原微生物、抗衰老、抗疲劳、抗氧化、抗肿瘤、保护肝脏、调节免疫系统、保护心脑血管和抗炎作用等分布于30~2 300 m地区,集中于600~1 300 m的荒山野林之中
      枸杞氨基酸、维生素、纤维素、矿物质、微量元素、多糖和生物活性物质等枸杞多糖抗氧化、抗肿瘤、调节血脂、抗疲劳、抗肿瘤、提高视力及具有血管内皮细胞的保护作用等土层深厚的沟岸、山坡、田埂及宅边
      其他当归挥发油、多糖、氨基酸、有机酸和黄酮等当归多糖舒张胃肠平滑肌、抗氧化、保护肝脏、促进造血细胞、抗炎、抗肿瘤、抗抑郁及平喘作用等栽培于海拔2 300~2 700 m的高寒阴湿地
      异叶青兰挥发油、黄酮和无机盐镇咳平喘作用等山地草原及半荒漠的多石干燥地区,青海甘肃以东分布于海拔1 100~2 800 m间,以西则可达5 000 m ,新疆则在2 200~3 100 m间
      灵芝多糖、三萜和核苷等灵芝多糖[76]防治心血管疾病、保护肝损伤、抗肿瘤、免疫调节及抗衰老作用等阔叶树发木桩旁
      垂头菊倍半萜类、三萜甾体类、苯丙素类、黄酮类和挥发油等垂头菊总黄酮抗菌、抗肿瘤及抗氧化作用等海拔3 300~3 400 m 的林缘,草地
      姜黄酚类和萜类,生物碱和甾醇类等姜黄素抗肿瘤、解毒、抗炎、镇痛、抗氧化及抗糖尿病作用等中国、东亚及东南亚广泛栽培
      淫羊藿黄酮类、木脂素、多糖、生物碱等淫羊藿总
      黄酮
      抗动脉粥样硬化、抗脑缺血、预防心肌缺血及抗肿瘤作用等海拔600~2 500 m的山坡路旁树林阴湿处;海拔600~1 300 m的山沟阴湿处或山坡丛林下
      黄芩黄酮类、甾类等黄芩素-7-甲醚解热、抗炎、抗菌、抗病毒、清除自由基、抗氧化、抗肿瘤、改善记忆、镇静、抗癫痫、抗帕金森、降血脂、抗动脉粥样硬化、保护肝脏及免疫调节作用等海拔600~2 000 m的向阳草坡、荒地上;海拔1 300~2 500 m山地向阳草坡
      远志皂苷、寡糖酯、多糖、黄酮、生物碱等远志皂苷增强学习记忆能力、抗抑郁、安神、抗氧化、抗衰老、抑菌及抗炎作用等草原、山坡草地、灌丛中以及杂木林下,海拔200~2 300 m
      玉竹多糖、甾体皂苷、黄酮、挥发油等玉竹多糖降血糖、免疫调节、抗肿瘤、抗氧化、抗疲劳及延缓皮肤衰老作用等海拔600~3 000 m的林下或山野阴坡
    • 大量的文献报道,中药对抗高原损伤有一定的疗效,研究发现,有多种藏药对于高原缺氧引发的机体损伤具有一定的治疗作用。目前藏药用于抗高原缺氧的研究基本处在初步的药效学方面,存在研究不系统、不深入的问题,且对于药物的有效成分及作用机制研究尚不明确。表1总结了具有抗高原缺氧的藏药的有效成分及作用功效,由此可知,抗高原缺氧藏药中有效成分大多为水溶性的黄酮、多糖以及皂苷类。基于本综述总结归纳结果发现,芍药苷、甘青青兰、雪灵芝等药物对高原缺氧造成的心组织、肺组织、脑组织损伤均有一定的保护作用,后续可继续深入研究这三味药对高原缺氧各方面的治疗作用,也可以将这三味药进行配伍,制成新的方剂,探究这一新方剂对高原缺氧预防保护及治疗的作用。通过总结还发现大多数具有抗高原缺氧作用的藏药都具有凉血、活血的功效,这可能与改善由于高原缺氧引起的红细胞增多症有关。结合中医及藏医理论,探索治疗高原缺氧所引起的疾病是未来值得研究的方向,也提示藏药在抗高原缺氧研究方面有很广阔前景,对治疗高原性疾病有着很大的潜力,将为提高高原作业能力提供有力的保障。

参考文献 (76)

目录

/

返回文章
返回