-
在高原低氧环境下,会出现消化系统不适症状,如上腹疼痛、消化不良、腹泻等,症状严重时可导致胃肠出血(GIB)甚至器官器质性损伤[1],对进入高原的人群身体有严重的危害。因此讨论进入高原人群胃肠道损伤的原因及保护十分必要。
-
胃肠运动为食物消化吸收提供条件,胃肠道内部的胃酸、胆汁、消化酶的减少导致胃肠道运动减缓[2],引起胃肠道功能受损。急进高原后,胃肠运动减慢主要与胃肠道激素的分泌及Cajal间质细胞(Interstitial cells of Cajal, ICC)有关。
-
胃肠激素对胃肠运动有一定的调节作用,主要包括胃泌素(GAS)、胃动素(MTL)、生长抑素等[3]。胃泌素主要由胃及十二指肠黏膜开放型G细胞分泌,具有促进胃肠蠕动的作用,分泌过多则会导致胃肠黏膜损伤,影响胃肠道功能。胃动素由Mo细胞分泌,分布于小肠,能够促进和影响胃肠运动及胃肠道对水及电解质的运输,胃动素升高,肠蠕动加快,可能会导致腹痛、腹泻等症。高原低氧环境下胃肠运动紊乱表现为激素分泌紊乱和胃肠运动收缩的频率的改变。李红[4]对急进高原个体胃肠激素进行检测,包括GAS、P物质(SP)及MTL,发现MTL、SP显著降低,GAS显著升高,说明急进高原后机体胃肠运动受到抑制,上述研究表明,急进高原后腹痛可能是GAS分泌增加引起。高原低氧环境会引起个体胃肠动力激素改变,进而导致胃肠运动缓慢,胃肠道分泌化学物质减少,化学屏障被破坏,从而引起急性胃肠黏膜损伤。
-
ICC是胃肠道慢波的启动细胞,在消化道电活动的传播及介导神经信号转导中发挥重要作用, ICC细胞受损,会导致慢波传导异常,影响胃肠道运动[5]。ICC特异性表达酪氨酸激酶受体 (C-kit) , 干细胞因子 (SCF) 是C-kit的天然配体,SCF/C-kit信号通路关系着ICC的生长、发育及增殖的过程[6]。在急进一定海拔高原后,小肠推进率与 C-kit mRNA表达呈正相关[7],C-kit mRNA、SCF mRNA的表达和小肠推进率均降低[8],表明急进高原导致胃肠道运动功能紊乱与SCF/C-kit机制有关。高原低氧条件下,SCF以及C-kit mRNA及蛋白表达水平均下降,说明高原低氧环境抑制SCF/C-kit信号通路,同时SCF 与C-kit结合减少,影响ICC的生长、发育及繁殖,进而影响小肠推进功能,SCF/C-kit信号通路图如图1所示。
缝隙连接又称为通讯连接,是细胞间跨膜信号传导的重要方式之一,缝隙连接蛋白43 (Cx43) 作为重要的连接蛋白之一,大量存在于胃肠道壁中, 发挥信号传导作用。急进高原后大鼠小肠ICC细胞间缝隙连接受损,而且Cx43的表达出现异常[9]。说明急进高原后胃肠道运动功能受到影响与ICC以及缝隙连接蛋白有关,ICC细胞与消化道平滑肌间物质及电信号传递障碍,导致胃肠道运动功能障碍。
-
胃肠黏膜屏障对维持机体内环境稳态有着至关重要的作用,高原低氧环境会对机体胃黏膜屏障产生不同程度的破坏,低氧刺激肥大细胞释放组织胺和胃窦G细胞释放胃泌素,使血清胃泌素浓度显著升高。升高的胃泌素促进H+分泌,导致组织胺浓度上升,毛细血管扩张,通透性增加[10],引起血浆渗入胃腔, 使血液黏稠度增加, 同时缺氧导致红细胞增多,加剧了血液黏稠程度,导致血栓以及出血的形成,即胃黏膜层细胞因缺血而糜烂、溃疡、出血等。在这个过程中,氧自由基、炎症因子、自噬和细胞因子发挥重要作用。
-
在高原低氧刺激下,胃肠黏膜产生大量的氧自由基(ROS)。产生的自由基数量过多会导致胃肠黏膜的损伤。低氧暴露可使大鼠小肠绒毛长度和数量均显著减少, 氧自由基生成增多,导致小肠黏膜的结构和功能发生损伤[11]。ROS上调 HIF-1α的水平,ROS介导的 HIF-1α信号转导可能是高原条件下胃功能受损的相关机制[12]。
缺氧后机体炎症也会导致胃肠黏膜损伤,Wang等人[13]发现将大鼠置于低压氧舱后,其血清中 Zonulin、TNF-α、IL-1β 和 IL-6 水平升高,CD4+/CD8+ T 细胞比值和小肠 NK 细胞数量增加,小肠 NK 细胞的 mRNA 和蛋白表达水平升高。肠道 TLR4、NF-κB、HIF-1α 和 iNOS mRNA 和蛋白表达水平均有所升高。急进高原后肠组织炎症因子有所上升,原因可能是在机体缺氧情况下,为了保证脑以及心脏等重要器官的血流供应,机体对血流进行重新分配,胃肠道在受到低张性以及循环性双重缺氧下,黏膜产生明显的损伤,引起机体炎症,炎症因子表达上升又反作用于胃肠道,使胃肠道损伤进一步加重。
-
自噬是由溶酶体介导的吞噬自身衰老或损伤的细胞器、蛋白质以及细胞内病原体的过程,从而实现细胞的自我更新[14],其能增强肠黏膜屏障,减轻肠道炎症,在维持肠黏膜稳态中发挥重要作用[15]。大鼠急进高原后使用自噬抑制剂会使肠组织的病理性损伤明显加重,无抑制剂时损伤减轻[16],说明自噬可能是缺氧肠上皮细胞损伤过程中的保护因素之一。高原急性暴露导致肠上皮细胞的时间依赖性损伤,观察急性高原暴露肠功能衰竭大鼠自噬体的表达,发现Beclin1和LC3B蛋白的表达明显升高[17],表明自噬可能有助于清除肠上皮组织中受损的细胞和蛋白,在修复受损细胞中发挥着重要作用。
-
三叶因子(TFF)家族是一种参与胃肠道黏膜愈合的重要因子,该家族由TFF1、TFF2和TFF3多肽组成[18],TFFs有影响胃黏膜黏液的黏度和弹性及促进黏膜创面愈合[19]的作用,高原缺氧环境条件下肠上皮组织中TFF mRNA表达量明显升高[20],说明高原缺氧环境导致胃肠黏膜损伤后,机体会启动损伤修复的相关机制,TFF家族在此过程中会发挥一定的保护作用。
-
人肠道内寄生着10万亿个细菌,其参与了人体内许多生理过程,包括消化和代谢功能、上皮屏障的调节、发育和免疫系统的调节等,是影响人胃肠道功能的重要因素。急进高原除了会对胃、肠黏膜有损伤作用,对人体内肠道菌群的数量和组成也有影响。肠道菌群是人体肠道的正常微生物,如双歧杆菌,乳酸杆菌等,能够合成机体所必需的维生素以及利用蛋白质残渣合成氨基酸,在缺氧情况下,随着时间的延长,肠黏膜受到严重破坏,肠道菌群发生转移,破坏肠系膜淋巴结的结构,加剧氧化应激,进而影响肠道自身免疫功能的完整性[21]。
肠道菌群包含了极为多样的微生物群落,每个个体约有500种细菌,其中拟杆菌门(Bacteroidetes)最为丰富和多样,而高原环境会导致拟杆菌门组成显著增加[22],Han等人运用基因敲除法敲除Hif-1β,发现拟杆菌门在Hif-1β缺失小鼠中比高原空白组小鼠中的数量更多[23],这表明拟杆菌门不仅对氧含量敏感,而且可能能够感知氧相关基因的变化。与拟杆菌门相同,肠杆菌门(Enterobacteriaceae)与γ变形菌门(Gammaproteobacteria)有相同的变化。缺氧后,肠杆菌门丰度增加,肠杆菌门的过度生长促使细菌易位,从而导致内毒素的扩散[24],这表明缺氧会引起机体内肠道菌群紊乱,进而引起胃肠道功能被破坏。
短链脂肪酸(SCFAs)作为结肠细胞的能量来源,具有调节葡萄糖代谢、调控肝脏甘油三酯和胆固醇的生物合成、抑制病原体生长及减轻肠道炎症等作用。其中丁酸在肠上皮细胞增殖,分化,功能方面有重要作用。丁酸盐能通过营养功能及保护细胞内信号传导作用保护猪结肠上皮免受缺氧诱导的损伤,同时降低炎症因子的表达[25]。肠道菌群能通过调节嗜中性粒细胞的迁移和功能影响T细胞分化,有利于调节性T细胞(Tregs)的分化和扩增,而调节性T细胞是介导免疫耐受的关键组成部分[26]。在T淋巴细胞中 SCFAs刺激G蛋白偶联受体(GPR41),抑制炎症细胞因子如白介素10(IL-10)和干扰素(IFN)的生成等[27]。在体内和体外,丁酸盐通过抑制组蛋白脱乙酰基酶(HDAC)的活性,改变CYP1A1的表达及活性,减少了吲哚代谢物的清除,并增加了吲哚代谢物进入固有层的途径,在固有层中,它们通过刺激IL-C3和Th17细胞分泌IL-22和IL-17来增强肠道免疫力。这些细胞因子能增加黏蛋白和抗菌肽的产生,从而改善肠道屏障功能。丁酸盐对肠道保护作用如图2。
高原低氧环境会导致肠道菌群的组成和比例发生改变,例如肠杆菌门的增加会导致机体内毒素扩散,影响肠屏障功能以及导致肠道炎症。厚壁菌门减少会导致SCFAs生成减少,低温低氧环境会导致肠道菌群产生的SCFAs减少[28],丁酸盐产生量降低,致丁酸盐对肠道保护作用降低,进而影响肠道功能以及完整性,说明高原低氧条件会通过肠道菌群的改变破环肠道屏障功能以及导致肠道损伤,同时降低SCFAs对肠道的保护作用,影响肠功能。
高原低氧环境可造成急性胃黏膜损伤甚至急性上消化道大出血等严重情况。目前对于急进高原病的研究较多,但急进高原导致的胃肠道损伤具体机制尚不明确,因此,研究急进高原个体胃肠损伤对防治应激损伤、加快疾病恢复具有重要的意义。
-
中药复方擅于从整体出发,主张辨证论治,标本兼治,治疗多种疾病成效显著。急进高原导致胃肠运动减慢,除了使用常用的促胃动力药物治疗以外,使用中药复方等也能达到促进胃肠道运动的作用,如表1所示。
表 1 保护胃肠道功能的药物及相关机制
改善胃肠道功能的
药物类型复方名(药物名称) 作用效果及机理 改善胃肠道运动
功能的药物丹皮-蒲公英配伍[31] 提升小肠推进率,降低胃残留率,改善胃肠动力障碍。 大承气汤改良方[32] 促进MTL释放,改善肠梗阻小鼠的胃肠道运动功能,减轻炎症反应,调节肠道菌群。 胃理气方[33] 升高C-kit、SCF的mRNA及蛋白的表达水平,上调SCF/C-kit信号通路相关蛋白表达。 白术内酯I(Atractylenolide-1)[34] 激活SCF/C-kit信号通路,调节氧化应激反应,抑制Cajal间质细胞的凋亡,改善胃运动功能。 阿奇霉素[35] 激动胃动素受体,诱发大幅度的胃推进型收缩,且药物相互作用及副作用少。 普鲁卡必利[36] 高选择性 5-羟色胺4 (5-HT4) 受体激动剂,与受体结合后,抑制环状平滑肌松弛和胆碱能传递,增强乙酰胆碱的释放,促进胃肠蠕动和黏液分泌。 改善胃肠道黏膜
屏障功能的药物肠黏膜抗氧化活性肽[37] 清除自由基,提升超氧化物歧化酶(SOD)活性,降低丙二醛(MDA)活性,保护肠黏膜。 香连丸[38] 促进DSS诱导的溃疡性结肠炎小鼠的自噬作用,抑制炎症反应,保护肠上皮屏障。 阿菠萝素[39] 调节自噬途径,抑制肠上皮细胞凋亡,改善肠上皮屏障及屏障稳态。 微囊化阿霉素(NLC-DOX)[40] 改善绒毛高度和隐窝深度,降低炎症因子表达,保持肠道通透性,增加紧密连接蛋白跨膜蛋白(ZO-1)和胞浆附着蛋白(Occludin)的表达。 Emu Oil Combined with Lyprinol™[41] 小肠中部的隐窝深度标准化,降低了肠 髓过氧化物酶(MPO)水平,减轻肠道炎症,保护肠黏膜。 Dissotis rotundifolia[42] 减少出血、水肿和白细胞浸润以及提升谷胱甘肽(GSH)水平,降低MDA 水平,增强过氧化氢酶 (CAT) 和SOD 酶水平,保护胃黏膜。 Rosmarinic Acid[43] 降低溃疡指数、减少胃液分泌量和降低酸度,通过抗炎和抗凋亡机制保护胃黏膜。 维持肠道菌群稳定
的药物多酚(绿茶多酚、姜黄素、白藜芦醇和槲皮素)[44] 促进有益细菌种的产生和生长,对抗胃肠道损伤。 益生菌[45] 防止胃肠道应激反应和肠道菌群失调的发生,减轻胃肠道反应的症状。 粪便菌群移植[46] 调节肠道菌群的组成与稳定及SCFAs的生成。 rhein[47] 调节肠道微生物群,间接改变肠道中的嘌呤代谢,从而缓解肠道炎症,保护肠道。 -
急进高原后,导致胃肠道黏膜的损伤,可以给予平原常用黏膜保护药,例如米索前列醇、硫糖铝、枸橼酸铋钾等。同时也应使用降低氧自由基、提升SOD活性的药物。自噬是维持抗微生物防御,上皮屏障完整性和黏膜免疫的重要作用机制[29],许多自噬调节剂正被研究作为治疗肠道炎症的潜在药物。如表1所示。
-
急进高原后导致肠道菌群发生改变,影响SCFAs对肠道的保护作用,因此调节肠道菌群种类,进而调节SCFAs的生成,能促进宿主整体的健康状态,具体药物如表1所示。益生菌是一类可对机体产生有益作用的微生物,具有改善胃肠道内微生物平衡、胃肠道内激素释放以及细胞因子水平的作用,植入胃肠道益生菌能通过抑制致病菌达到治疗胃肠道疾病、保护胃肠道的目的,因此急进高原人群可以通过益生菌制剂达到改善胃肠道损伤的作用,除益生菌外,使用针刺及服用中医药制剂等均被证明有一定调节肠道菌群、保护胃肠道的作用,可用于肠道菌群失调导致的胃肠道损伤保护。除此之外,将菌群从健康供体的粪便转移至接受患者的肠道,即粪菌移植,也能够重编肠道微生物群,该方法被认为是在胃肠道的炎症性疾病中使肠道菌群正常化的有效方法,在治疗或预防腹泻等胃肠道疾病[30]有发展前景,但当前此方法并未用于高原致胃肠道损伤,未来可能成为一个新的治疗手段。
-
除以上保护方法外,同时应该注重饮食[48],高原喜食生冷食品者胃肠道损伤程度更大,表明急进高原后应减少食用生冷食品,减轻胃肠道损伤。同时运动会增加缺氧程度,进而增加胃肠道黏膜损伤程度,因此应注意休息,减少运动。急进高原后会引起炎症因子上调,应合并使用抗炎药物,减轻炎症因子对胃肠道的进一步损伤。
-
急进高原导致的胃肠道损伤如不及时治疗,会引发严重的胃出血甚至器质性损伤,对合适的治疗药物选择问题以及对高原低氧导致的胃肠功能改变的机制问题等进行深入探讨十分必要,这对我们深入了解高原低氧导致胃肠功能改变的根本原因有重要意义,也对保护急进高原人群胃肠道损伤具有重要的研究意义。此外, 利用中药复方改善胃肠道运动已有很多研究,但中药复方制备成适宜推广的剂型需要进一步探讨。相信随着对高原低氧导致的胃肠功能改变的研究和探讨的深入,必将为高原消化系统疾病的预防和治疗提供更有效的治疗手段。
Progress on factors affecting gastrointestinal function and drug protection in high altitude hypoxia environment
-
摘要: 由于高原环境具有低压、低氧和寒冷等因素,急进高原人群易患消化系统疾病,如上腹疼痛、食欲减退及恶心呕吐等胃肠道功能障碍,严重影响了急进高原人群的身体健康及高原作业能力。急进高原引起的胃肠道功能障碍主要体现在胃肠道运动功能障碍、黏膜屏障功能受损及肠道菌群失调3个方面。目前胃肠道功能障碍发病机制仍不十分明确,针对性预防和治疗的药物较少。笔者对近年来胃肠道激素、氧自由基与炎症因子和肠道菌群等影响因素及药物保护作用等方面的研究做出归纳总结,以期为防治急进高原引起的胃肠道应急反应提供治疗方案和理论依据。Abstract: Due to factors such as low pressure, low oxygen and cold in the plateau environment, people who enter the plateau rapidly are susceptible to digestive system diseases, such as upper abdominal pain, loss of appetite, nausea and vomiting and other gastrointestinal dysfunction, which seriously affect the health and work ability of people who enter the plateau rapidly. The gastrointestinal dysfunction caused by the rapid advance to the plateau is mainly reflected in three aspects: gastrointestinal motility dysfunction, impaired mucosal barrier function, and intestinal flora imbalance. At present, the pathogenesis of gastrointestinal dysfunction is still not very clear, and there are fewer drugs for targeted prevention and treatment. Gastrointestinal hormones, oxygen free radicals, inflammatory factors, intestinal flora and other factors, as well as the protective effects of related drugs were reviewed in this paper to provide treatment options and theoretical basis for the prevention and treatment of the gastrointestinal emergency response caused by entering the plateau.
-
烟草流行是世界有史以来面临的最大公共卫生威胁之一,全球每年有800多万人由于烟草而死亡[1],吸烟不仅是各种非传染性疾病常见的主要风险因素,尤其是慢性呼吸道疾病、心血管疾病、癌症和糖尿病,同时会影响周围人的健康,而且对个人和国家的经济及社会形象产生负面影响[2]。据估计,每年全球消耗治疗烟草相关疾病的费用约1.4万亿美元[1]。
戒烟是降低非传染性疾病风险的最重要有效的干预措施之一。随着公共卫生工作的防范与发展,60%的烟草使用者希望戒烟[3],但只有约35%能够获得全面的戒烟服务,患者的戒烟意愿突显了在医疗系统内扩大戒烟可及服务及优先开展戒烟治疗的重要性[4-5]。
1. 药师参与戒烟的价值及其发展进程
1.1 药师参与戒烟的价值
由于尼古丁的成瘾性,依靠吸烟者以自我管理的方式戒烟实施困难。事实证明,医疗保健专业人员提供的戒烟干预措施比自助式戒烟更有效[6]。药师的工作职责是为公众调配处方、提供用药指导与建议、解答用药咨询等,被认为是为公众提供戒烟服务的最佳专业人员,不仅能够指导其正确使用戒烟替代药品及提供相关建议,同时也可以给予戒烟行为上的专业支持[6-7]。
药师及其药房团队提供的戒烟服务有助于帮助吸烟者戒烟 [8]。葡萄牙进行的一项研究发现,接受药师服务的患者相较于对照组会参加更多社区药房主导的用药咨询(χ2=59.994,P<0.001)、更多电话会议(χ2=17.845,P<
0.0013 ),因此戒烟成功率更高[9]。新加坡一家三级转诊皮肤病中心进行的一项单中心回顾性研究评估了由药师领导的结构化戒烟诊所的疗效,表明药师及其药房团队主导的患者咨询服务能有效为戒烟者提供行为支持[10]。1.2 药师参与戒烟政策支持的发展进程
1.2.1 世界卫生组织的号召与行动
1998年,世界卫生组织(WHO)首次认识到药师在帮助个人戒烟和防止潜在使用者方面的关键作用[11]。2003年为应对全球烟草流行,WHO成员国通过了《世界卫生组织烟草控制框架公约》(WHO FCTC)[12-13],要求缔约方采取有效措施促进戒烟。WHO FCTC是促进公众健康的一个里程碑,自2005年生效以来,WHO FCTC已有183个缔约方,涵盖90%以上的世界人口[14]。
为了扩大实施WHO FCTC中关于减少烟草需求的条款,WHO在2007年还启动了一项具有成本效益的实用行动MPOWER系列措施[15]。MPOWER措施中的策略与WHO FCTC相一致,已证明在挽救生命和降低医疗卫生费用方面卓有成效[1]。然而随着WHO FCTC的成功实施,一些中低收入国家也面临着来自烟草产业对其干扰的重大障碍[16-17]。药师可以在克服这些问题及现有制度和行业体系结构进行重大变革中发挥一定作用,为促进烟草控制和戒烟工作做出应有的贡献[18]。2019年WHO发布的全球烟草流行报告中,强调了药师为吸烟者戒烟提供帮助,并高度鼓励成员国就此采取行动[19]。
目前,151个国家至少实施了WHO FCTC及MPOWER措施中的一项,150个国家的烟草使用率正在下降。2000年,全世界大约1/3的成年人吸烟,然而,到2022年这一数字已大幅下降约1/5,这反映出各国在减少全球烟草消费方面取得了相当大的进展[20]。
1.2.2 国际药学会的响应与行动
2003年,国际药学会(FIP)发布了关于药师在促进无烟未来中的作用的政策声明。2007年出版的《遏制烟草流行病:药学的全球作用》和2015年出版的《建立无烟社区:药师实用指南》均强调了药师在戒烟服务方面的重要贡献。
2023年,FIP出版《支持戒烟和治疗烟草依赖:药师手册》强调药师在为寻求戒烟患者提供系统服务方面的关键作用,是药师支持个人戒烟过程中可参考的综合性实用资源。其涵盖了最新的循证实践、技术和策略,以帮助患者戒烟并减少复吸。该手册详细介绍了以药师为主导的支持戒烟所需的专业知识和实践技能,以及药师可干预的因素(包括非传染性疾病风险因素,如运动不足、不健康饮食习惯和过量饮酒等)及相关措施。随着近年来替代品电子烟使用的增多趋势,出于对电子烟安全性的担忧,同年FIP又发布了《关于电子烟使用对公众健康和经济的影响以及药房工作人员对消除电子烟贡献的声明》[21]。
2024年,WHO和FIP就药师在戒烟中的作用发表了一份新的联合声明,重申了药师在帮助吸烟者戒烟中发挥的关键作用。该声明中,WHO和FIP敦促各个国家烟草控制组织和国家药学协会制定并实施戒烟计划,同时在该计划和各国卫生系统服务的背景下,让药师参与到与烟草的斗争工作中[22]。
2. 药师提供戒烟服务的可行性
2.1 患者的偏好
有研究表明患者更愿意社区药师参与戒烟服务[23],同时社区药师也有能力开展戒烟服务[24]。美国一家三级护理医院进行的一项研究表明,药师无论是在患者入院还是出院时,都可以对患者开展戒烟宣教与指导,在了解患者疾病与用药史、药物核对和出院咨询工作流程中与患者讨论吸烟问题,通过患者住院期间开展戒烟治疗并不断完善方案,达到有效戒烟的目的[25]。
2.2 赋予药师戒烟药物处方权
英国在新型冠状病毒流行期间进行的一项研究表明,药师可以通过远程咨询为戒烟患者开具处方,提供有效的戒烟服务。目前,英国国家医疗服务体系(NHS)正在支持现有药师(包括社区药房药师)获得处方资格,根据患者需要开具戒烟药物从而促进戒烟服务开展。计划到2026年,在英国完成药学学位的毕业生将在监管机构注册为独立处方权药师, 进而扩大了可以提供戒烟服务药师的范围[26]。
美国药师有权根据合作处方协议或通过州范围的协议拥有自主处方权或授权开具处方。处方医生将开启、修改和停止药物治疗以及开具实验室检查的权利委托给药师。药师在完成继续教育课程后,可以根据国家法律法规授予的权限开具某些药物[27]。
2.3 开展药师戒烟服务培训
药师的戒烟培训应包括基于行为支持的社区药师培训课程,通过戒烟服务个体化随访识别障碍并提供积极的强化措施,可以有效提高患者戒烟率,进而提高其生活质量[28]。El Hajj等[29]在卡塔尔进行的一项随机对照试验评估了戒烟培训计划对药师技能和能力的影响,共有86名社区药师(干预组54名,对照组32名)完成了6个目标结构化临床检查病例。研究结果表明,强化戒烟培训显著提高了社区药师提供戒烟服务的技能和能力。
在一项评估埃塞俄比亚药师和药学学生对吸烟/戒烟的知识和态度的横断面调查中,与未接受过戒烟培训的人相比,接受过培训人员的平均知识和态度得分明显更高[30]。Greenhalgh等[31]通过定性和混合方法进行的描述性综合和真实世界调查表明,精心设计的戒烟培训课程将药师从生物医学和产品导向的角度,转变为以公共卫生和患者为中心的角度方面发挥至关重要的作用。
2.4 跨专业合作对于加强药师在戒烟中角色的影响
促进戒烟的跨专业合作可以提高患者的戒烟率。一项探索医疗卫生保健专业人员与社区药师之间跨专业合作的研究表明,将社区药师为患者提供戒烟服务纳入患者护理项目是很有价值的,社区药房开展戒烟支持服务可以填补现有医院戒烟与家庭戒烟之间的空白。跨专业合作不仅为患者和医疗保健专业人员之间的有效沟通提供了途径,同时通过医疗保健专业人员汇总的患者电子健康记录,可以提高患者用药治疗的安全性[32]。
根据Greenhalgh等[31]的说法,增加药师和其他医疗从业者之间的跨专业互动是社区药房提供有效戒烟服务的先决条件。药师专业的能力增强了临床医生对药师的信任,因此,明确且精准的转诊途径,特别是当地全科医生将戒烟患者转诊给药师,对于跨专业开展戒烟服务是必要的。
Bouchet-Benezech等[33]在法国进行的一项研究表明,与其他医疗保健专业人员的合作是发挥药师在戒烟服务中作用的关键之一。药师为戒烟者提供的尼古丁替代治疗处方没有得到社会医疗保险体系的支持,因此建议药师与具有尼古丁替代治疗处方权的其他医疗保健专业人员合作。
3. 药师开展戒烟服务的效益
3.1 健康相关的获益
吸烟是非传染性疾病的主要可变风险因素之一。药师主导的戒烟干预措施可以显著影响吸烟者的戒烟率,并在改善其健康状况方面发挥关键作用[34]。
Peletidi等[35]的调查研究表明,以社区药师主导的戒烟服务可以降低与吸烟相关慢病的发病率和病死率。Bouchet-Benezech等[33]为评估法国社区药房药师提供戒烟服务的可行性而进行的一项研究显示,在第6个月,23.3%的参与者参加了随访,其中75%的参与随访者自第一次随访以来一直保持戒烟状态,超过一半的参与者持续了90 d,从第二次随访开始,所有参与者的身心健康综合得分与基线相比都有所提高。
药师作为一线医疗保健提供者,在戒烟工作中发挥着关键作用,可以在更大范围内对个体和公共健康产生重大影响。社区药房的戒烟服务应该被纳入国家公共卫生保健政策,这对于促进社区服务的健康有积极的促进作用[36]。
3.2 经济相关的获益
Peletidi等[35]在英国进行的一项系统综述强调了将药房主导的戒烟服务与对照组进行比较的研究,提供了强有力的证据证明药房主导的服务具有很高的成本效益。药房主导的服务要求每位戒烟者在为期4周的方案中支付772英镑的补充成本,而对照组基于集体小组的服务需要1 612英镑的戒烟补充成本。同时接受药房主导的戒烟服务,每周一对一的支持结合尼古丁替代疗法的治疗,与对照组接受集体戒烟治疗药物相比具有更高的有效戒烟率。此外,药房主导的服务每生命质量调整年的增量成本为2 600英镑,而对照组为4 800英镑。
社区药师是提供戒烟服务的一种可获得的、未充分利用的但具有成本效益的资源[24,28,35]。一项随机试验旨在比较两个药师主导的戒烟计划(强化版与简化版)之间的戒烟率以及这些计划与基于文献的对照组之间的成本效益,揭示了强化版药师主导的戒烟计划是3种策略中最具成本效益的干预措施。强化版比简化版多花费了14 000美元(每100名参与者),但14人戒烟成功,取得10.8个生命年的获益额;强化版比对照组多花费35 300美元(每100名参与者),但29名戒烟者取得22.4个生命年的获益,每增加一名戒烟者多花费1 217美元,戒烟的增量成本效果比为1 576美元 [32]。
2000年,一项在英格兰进行的研究从提供者和NHS的角度比较了普通牙科诊所、普通医疗诊所(GMP)、社会药房和NHS戒烟服务(NHS SSS)中戒烟服务的成本效益,研究结果表明“成本效益高”的服务是在社区药房开展戒烟服务[37]。
由此可见,药师主导的戒烟服务不仅有效且极具成本效益,医疗卫生管理者及政策制定者可以基于此就最佳资源分配做出合理决策[24]。
4. 药师在提供戒烟服务方面发挥作用的障碍
然而,有证据表明,药师在承担戒烟服务提供者这一角色存在障碍,这影响了将全面戒烟服务纳入实践的可行性。障碍包括缺乏充分的培训、缺乏适当的转诊结构、社区药房环境中的时间限制、公众对药剂师提供戒烟服务缺乏认识、药房缺乏私人咨询区以及缺乏提供服务的报销[33]。
4.1 缺乏专业临床戒烟知识与技能
在许多国家,药师缺乏戒烟知识和技能以及缺乏培训被认为是药师在提供戒烟服务方面发挥作用的常见障碍[6,30,32,35,38-39]。Erku等[30]在埃塞俄比亚进行的一项由410名参与者(213名药学学生和197名药师)的横断面调查,提出药师在戒烟服务方面存在临床知识不足和实践技能差距。澳大利亚进行的另一项研究分析了250名大四药学专业学生、51名药师和20名戒烟教育工作者在当前基于证据的药房戒烟干预实践中的表现,得出了药学学生及药师与戒烟教育工作者之间存在较大的临床或药物治疗服务方面的差距[34]。药师由于缺乏戒烟相关教育与培训导致在戒烟服务中缺乏自信,从而阻碍了与患者的有效沟通,降低了提供的戒烟服务的质量[35,39]。在约旦,大多数药师认为,由于培训不到位导致对戒烟治疗的了解不足,致使药师无法提供足够的戒烟干预措施[40]。
4.2 缺乏劳务报酬与戒烟药物处方权
缺乏戒烟计划或劳务报酬也是许多有意愿药师提供戒烟服务的一个障碍[31-33,39-40]。美国的一篇研究论文探讨了药师在护理过渡期间(住院到出院回家期间)如何衔接戒烟服务,得出支付报酬对维持任何医疗服务(包括药师提供的戒烟服务)至关重要。由于药师不被视为戒烟服务的提供者,因此美国大多数州的药师没有资格通过医疗补助获得提供戒烟服务的劳务报酬,通过商业保险获得报销的也很少见。缺乏鼓励药师向烟草使用者提供戒烟干预措施的计划和政策,药师没有戒烟药物处方权也大大阻碍了戒烟服务的开展[35]。研究表明,授予药师戒烟服务提供者身份或药师拥有戒烟药物处方权,并在医保政策中明确劳务报酬的支付标准,可能是解决该问题的最佳方式[40]。
4.3 缺乏戒烟环境及服务时间上的保障
社会药店缺乏相对私人空间为患者进行戒烟咨询服务也是障碍之一[6,33]。药店是否设有专门的可以为患者提供面对面戒烟服务咨询的区域,为患者咨询营造一个轻松舒适的环境,对于提高患者戒烟依从性是非常重要的影响因素[33]。药师实施戒烟服务与履行其他职责在时间上的矛盾也是限制戒烟服务工作开展的障碍之一[34-35]。根据Peletidi等[35]的系统调查结果显示,缺乏时间是所有参与戒烟服务者,包括患者在内的共性问题。日本对11家社区药房进行的一项随机研究显示,由于时间和精力有限,许多药房没有将戒烟服务纳入其日常运营范围[32]。
4.4 缺乏戒烟需求与服务
在法国、约旦和尼日利亚等一些国家,对戒烟服务的需求不足被视为药师开展戒烟服务的障碍[9,33,40]。由于缺乏戒烟服务,泰国的戒烟率很低,因此需要在药店开展戒烟服务,为药师提供机会[36]。为了解决这一问题,Bouchet等[33]评估了法国社区药房实施药师提供的戒烟方案的可行性,并建议向社区药房顾客有效推广戒烟服务,以解决需求不足的问题。
4.5 社区药房开展戒烟服务的问题
社会药房在烟草控制政策中的参与度较低[9],原因是医疗机构与社会药房缺乏统一的转诊系统来保障提供安全、有效的戒烟服务[23,28]。社会药房药师在无法全面、详细获得患者医疗护理、处方记录的前提下,也就意味着无法了解到患者准确的疾病史与用药史,提供戒烟药物及相关指导可能会增加用药错误的可能性[26]。其他阻碍戒烟服务工作开展的因素还包括性别、年龄、民族、文化等不同所带来的戒烟者个性化差异及沟通交流障碍[23]。
5. 展望
全面了解药师主导的戒烟服务及其在不同地区和医疗保健环境中的影响,对于世界各国药师参与戒烟服务至关重要。基于药师缺乏戒烟知识、技能和培训有关的问题,政策制定者和教育工作者需要做更多的工作,以确保戒烟服务对患者的最大益处。有必要针对不同地区和国家的具体需求采取全面的能力建设措施,包括制定标准化的培训计划,采用线下结合远程学习方式助力药师实践技能发展,促进全球药师专业的持续深入发展。
医药卫生政策制定应适时考虑将药师主导的戒烟服务纳入国家和地区医疗卫生服务指南,并开展宣传工作,提高人们对药师在戒烟方面发挥作用的认识。立法明确和药师薪酬补偿将有利于公众获得经许可的戒烟服务的机会,扩大药师在提供戒烟服务中的作用也有利于增强公众戒烟信心,同时在不同的医疗保健环境中实施和扩大这些服务争取足够的资源与支持。未来应促进药师、医师、护师、公共卫生专业人员及其他参与烟草控制工作的利益相关者之间更紧密的合作,激发出药师主导戒烟干预措施的全部潜力,提高戒烟的有效性和可持续性。
随着医药卫生体制的改革及药师进一步以患者为中心的角色转变,药师的可及性被视为开展戒烟服务的最重要驱动因素之一。药师和社会药房团队能够通过结合药理学和行为学方法持续提供成本效益高的个体化戒烟服务,提高戒烟率,最终达到减轻烟草和尼古丁依赖以及烟草相关疾病的负担,促进医疗卫生系统的发展、改善全球卫生状况。
-
表 1 保护胃肠道功能的药物及相关机制
改善胃肠道功能的
药物类型复方名(药物名称) 作用效果及机理 改善胃肠道运动
功能的药物丹皮-蒲公英配伍[31] 提升小肠推进率,降低胃残留率,改善胃肠动力障碍。 大承气汤改良方[32] 促进MTL释放,改善肠梗阻小鼠的胃肠道运动功能,减轻炎症反应,调节肠道菌群。 胃理气方[33] 升高C-kit、SCF的mRNA及蛋白的表达水平,上调SCF/C-kit信号通路相关蛋白表达。 白术内酯I(Atractylenolide-1)[34] 激活SCF/C-kit信号通路,调节氧化应激反应,抑制Cajal间质细胞的凋亡,改善胃运动功能。 阿奇霉素[35] 激动胃动素受体,诱发大幅度的胃推进型收缩,且药物相互作用及副作用少。 普鲁卡必利[36] 高选择性 5-羟色胺4 (5-HT4) 受体激动剂,与受体结合后,抑制环状平滑肌松弛和胆碱能传递,增强乙酰胆碱的释放,促进胃肠蠕动和黏液分泌。 改善胃肠道黏膜
屏障功能的药物肠黏膜抗氧化活性肽[37] 清除自由基,提升超氧化物歧化酶(SOD)活性,降低丙二醛(MDA)活性,保护肠黏膜。 香连丸[38] 促进DSS诱导的溃疡性结肠炎小鼠的自噬作用,抑制炎症反应,保护肠上皮屏障。 阿菠萝素[39] 调节自噬途径,抑制肠上皮细胞凋亡,改善肠上皮屏障及屏障稳态。 微囊化阿霉素(NLC-DOX)[40] 改善绒毛高度和隐窝深度,降低炎症因子表达,保持肠道通透性,增加紧密连接蛋白跨膜蛋白(ZO-1)和胞浆附着蛋白(Occludin)的表达。 Emu Oil Combined with Lyprinol™[41] 小肠中部的隐窝深度标准化,降低了肠 髓过氧化物酶(MPO)水平,减轻肠道炎症,保护肠黏膜。 Dissotis rotundifolia[42] 减少出血、水肿和白细胞浸润以及提升谷胱甘肽(GSH)水平,降低MDA 水平,增强过氧化氢酶 (CAT) 和SOD 酶水平,保护胃黏膜。 Rosmarinic Acid[43] 降低溃疡指数、减少胃液分泌量和降低酸度,通过抗炎和抗凋亡机制保护胃黏膜。 维持肠道菌群稳定
的药物多酚(绿茶多酚、姜黄素、白藜芦醇和槲皮素)[44] 促进有益细菌种的产生和生长,对抗胃肠道损伤。 益生菌[45] 防止胃肠道应激反应和肠道菌群失调的发生,减轻胃肠道反应的症状。 粪便菌群移植[46] 调节肠道菌群的组成与稳定及SCFAs的生成。 rhein[47] 调节肠道微生物群,间接改变肠道中的嘌呤代谢,从而缓解肠道炎症,保护肠道。 -
[1] 廉国锋, 徐森鹏, 白维超, 等. 驻高原官兵消化系统疾病发病特点及预防[J]. 人民军医, 2019, 62(12):1162-1165. [2] 赫玉宝, 张方信, 杜倩楠, 等. 高原缺氧与肠黏膜屏障损伤研究[J]. 中国微生态学杂志, 2018, 30(12):1470-1474. doi: 10.13381/j.cnki.cjm.201812024 [3] 施铁英, 冯丽. 厚朴排气合剂对老年2型糖尿病胃轻瘫患者胃肠激素、胃动力和氧化应激的影响[J]. 中国现代医学杂志, 2021, 31(8):7-11. doi: 10.3969/j.issn.1005-8982.2021.08.002 [4] 李红, 郑必海, 郑建保, 等. 高原缺氧对急进高原个体胃肠动力激素及其黏膜屏障的影响[J]. 激光杂志, 2010, 31(3):78-79. doi: 10.3969/j.issn.0253-2743.2010.03.044 [5] JOUNG J Y, CHOI S H, SON C G. Interstitial cells of Cajal: potential targets for functional dyspepsia treatment using medicinal natural products[J]. Evid Based Complement Alternat Med, 2021, 2021:9952691. [6] NAM J H, KIM W K, KIM B J. Sphingosine and FTY720 modulate pacemaking activity in interstitial cells of Cajal from mouse small intestine[J]. Mol Cells, 2013, 36(3):235-244. doi: 10.1007/s10059-013-0091-0 [7] 陈嘉屿, 刘德科, 马强, 等. 急进高原对Wistar大鼠胃肠运动功能的影响及其机制研究[J]. 西北国防医学杂志, 2015, 36(5):307-310. doi: 10.16021/j.cnki.1007-8622.2015.05.009 [8] 刘德科, 吴红梅, 马强, 等. 生白术对急进高原大鼠小肠推进率以及C-kit和SCF mRNA表达的影响[J]. 兰州大学学报(医学版), 2015, 41(2):32-36. [9] 朱琳, 贺巍, 范兴爱, 等. 快速进入高海拔地区对大鼠小肠Cajal间质细胞和缝隙连接蛋白43的表达影响[J]. 胃肠病学和肝病学杂志, 2017, 26(9):1048-1051. doi: 10.3969/j.issn.1006-5709.2017.09.021 [10] HILL G W, GILLUM T L, LEE B J, et al. Prolonged treadmill running in normobaric hypoxia causes gastrointestinal barrier permeability and elevates circulating levels of pro- and anti-inflammatory cytokines[J]. Appl Physiol Nutr Metab, 2020, 45(4):376-386. doi: 10.1139/apnm-2019-0378 [11] 金其贯, 佘奇, 金爱娜, 等. 模拟高原训练对大鼠小肠黏膜屏障的影响及其小麦肽的干预作用[J]. 西安体育学院学报, 2014, 31(2):225-230. [12] LI K, HE C H. Gastric mucosal lesions in tibetans with high-altitude polycythemia show increased HIF-1A expression and ROS production[J]. Biomed Res Int, 2019, 2019:6317015. [13] WANG Y P, HUO L L. Role of TLR4/NF-κB pathway in the damage of acute hypobaric hypoxia to small intestinal mucosa in rats[J]. Gen Physiol Biophys, 2021, 40(1):79-88. doi: 10.4149/gpb_2020042 [14] FOERSTER E G, MUKHERJEE T, CABRAL-FERNANDES L, et al. How autophagy controls the intestinal epithelial barrier[J]. Autophagy, 2022, 18(1):86-103. doi: 10.1080/15548627.2021.1909406 [15] POTT J, KABAT A M, MALOY K J. Intestinal epithelial cell autophagy is required to protect against TNF-induced apoptosis during chronic colitis in mice[J]. Cell Host Microbe, 2018, 23(2): 191-202. [16] 郑晓凤, 张久聪, 邓尚新, 等. 3-甲基腺嘌呤对急进高原缺氧大鼠肠上皮细胞损伤的自噬影响研究[J]. 实用药物与临床, 2016, 19(7):797-802. doi: 10.14053/j.cnki.ppcr.201607002 [17] ZHANG F X, DENG Z Y, LI W X, et al. Activation of autophagy in rats with plateau stress-induced intestinal failure[J]. Int J Clin Exp Pathol, 2015, 8(2):1816-1821. [18] FABISIAK A, BARTOSZEK A, KARDAS G, et al. Possible application of trefoil factor family peptides in gastroesophageal reflux and Barrett's esophagus[J]. Peptides, 2019, 115:27-31. doi: 10.1016/j.peptides.2019.02.007 [19] GE H F, GARDNER J, WU X S, et al. Trefoil factor 3 (TFF3) is regulated by food intake, improves glucose tolerance and induces mucinous Metaplasia[J]. PLoS One, 2015, 10(6):e0126924. doi: 10.1371/journal.pone.0126924 [20] 李康, 李启杰, 付祥胜. 高原缺氧对肠黏膜屏障的影响及TFF1表达变化的研究[J]. 西藏科技, 2020(2):60-62. doi: 10.3969/j.issn.1004-3403.2020.02.019 [21] CHEN Q C, WANG H Y, DONG A Y, et al. Effects of intermittent hypoxia intestinal bacterial translocation on mesenteric lymph node injury[J]. Zhonghua Jie He He Hu Xi Za Zhi, 2021, 44(1):32-37. [22] SUN Y M, ZHANG J H, ZHAO A P, et al. Effects of intestinal flora on the pharmacokinetics and pharmacodynamics of aspirin in high-altitude hypoxia[J]. PLoS One, 2020, 15(3):e0230197. doi: 10.1371/journal.pone.0230197 [23] HAN N, PAN Z Y, HUANG Z Y, et al. Effects of myeloid hif-1β deletion on the intestinal microbiota in mice under environmental hypoxia[J]. Infect Immun, 2020, 89(1):e00474-e00420. [24] NAGPAL R, YADAV H. Bacterial translocation from the gut to the distant organs: an overview[J]. Ann Nutr Metab, 2017, 71(Suppl 1):11-16. [25] DENGLER F, KRAETZIG A, GÄBEL G. Butyrate protects porcine colon epithelium from hypoxia-induced damage on a functional level[J]. Nutrients, 2021, 13(2):305. doi: 10.3390/nu13020305 [26] YEHUALASHET A S, YIKNA B B. Microbial ecosystem in diabetes mellitus: consideration of the gastrointestinal system[J]. Diabetes Metab Syndr Obes, 2021, 14:1841-1854. doi: 10.2147/DMSO.S304497 [27] DURAZZO M, FERRO A, GRUDEN G. Gastrointestinal microbiota and type 1 diabetes mellitus: the state of art[J]. J Clin Med, 2019, 8(11):1843. doi: 10.3390/jcm8111843 [28] RAMOS-ROMERO S, SANTOCILDES G, PIÑOL-PIÑOL D, et al. Implication of gut microbiota in the physiology of rats intermittently exposed to cold and hypobaric hypoxia[J]. PLoS One, 2020, 15(11):e0240686. doi: 10.1371/journal.pone.0240686 [29] HAQ S, GRONDIN J, BANSKOTA S, et al. Autophagy: roles in intestinal mucosal homeostasis and inflammation[J]. J Biomed Sci, 2019, 26(1):19. doi: 10.1186/s12929-019-0512-2 [30] LI Y X, XIA S T, JIANG X H, et al. Gut microbiota and diarrhea: an updated review[J]. Front Cell Infect Microbiol, 2021, 11:625210. doi: 10.3389/fcimb.2021.625210 [31] 李晓潇, 黎璇, 黄继杰, 等. 丹皮-蒲公英及其配伍对慢性应激小鼠胃肠动力的影响[J]. 右江医学, 2021, 49(4):246-249. doi: 10.3969/j.issn.1003-1383.2021.04.002 [32] 李敏, 林思思, 刘胜远, 等. 中药大承气汤改良方对术后肠梗阻小鼠胃肠功能的影响及机制研究[J]. 中国病理生理杂志, 2021, 37(3):466-474. doi: 10.3969/j.issn.1000-4718.2021.03.011 [33] 姜巍, 周剑杰, 程寒, 等. 基于干细胞因子(SCF)/C-kit信号通路探讨和胃理气方治疗功能性消化不良胃肠运动功能障碍的作用机制[J]. 广州中医药大学学报, 2021, 38(4):766-773. doi: 10.13359/j.cnki.gzxbtcm.2021.04.021 [34] LI H, CAO W, ZHANG X B, et al. Atractylenolide-1 alleviates gastroparesis in diabetic rats by activating the stem cell factor/c-kit signaling pathway[J]. Mol Med Rep, 2021, 24(4):691. doi: 10.3892/mmr.2021.12331 [35] MOUGEY E B, SAUNDERS M, FRANCIOSI J P, et al. Comparative effectiveness of intravenous azithromycin versus erythromycin stimulating antroduodenal motility in children[J]. J Pedi Gast Nutr, 2021, 74(1):25-32. [36] HONG J T. Current opinion on prucalopride in gastroparesis and chronic constipation treatment: a focus on patient selection and safety[J]. Ther Clin Risk Manag, 2021, 17:601-615. doi: 10.2147/TCRM.S269330 [37] 丁琪琪. 肠黏膜抗氧化活性肽的制备、分离纯化及鉴定[D]. 扬州: 扬州大学, 2017. [38] WANG B Y, GONG Z Q, ZHAN J Y, et al. Xianglian pill suppresses inflammation and protects intestinal epithelial barrier by promoting autophagy in DSS induced ulcerative colitis mice[J]. Front Pharmacol, 2021, 11:594847. doi: 10.3389/fphar.2020.594847 [39] MIAO Y M, LV Q, QIAO S M, et al. Alpinetin improves intestinal barrier homeostasis via regulating AhR/suv39h1/TSC2/mTORC1/autophagy pathway[J]. Toxicol Appl Pharmacol, 2019, 384:114772. doi: 10.1016/j.taap.2019.114772 [40] PINTO C M, HORTA L S, SOARES A P, et al. Nanoencapsulated doxorubicin prevents mucositis development in mice[J]. Pharmaceutics, 2021, 13(7):1021. doi: 10.3390/pharmaceutics13071021 [41] MASHTOUB S, LAMPTON L S, EDEN G L, et al. Emu oil combined with lyprinol™ reduces small intestinal damage in a rat model of chemotherapy-induced mucositis[J]. Nutr Cancer, 2016, 68(7):1171-1180. doi: 10.1080/01635581.2016.1208829 [42] ADINORTEY M B, ANSAH C, ABOAGYE B, et al. Flavonoid-rich extract of Dissotis rotundifolia whole plant protects against ethanol-induced gastric mucosal damage[J]. Biochem Res Int, 2020, 2020:7656127. [43] KANGWAN N, PINTHA K, LEKAWANVIJIT S, et al. Rosmarinic acid enriched fraction from Perilla frutescens leaves strongly protects indomethacin-induced gastric ulcer in rats[J]. Biomed Res Int, 2019, 2019:9514703. [44] CHIU H F, VENKATAKRISHNAN K, GOLOVINSKAIA O, et al. Gastroprotective effects of polyphenols against various gastro-intestinal disorders: a mini-review with special focus on clinical evidence[J]. Molecules, 2021, 26(7):2090. doi: 10.3390/molecules26072090 [45] SIMON E, C\U0103LINOIU L F, MITREA L, et al. Probiotics, prebiotics, and synbiotics: implications and beneficial effects against irritable bowel syndrome[J]. Nutrients, 2021, 13(6):2112. doi: 10.3390/nu13062112 [46] EL-SALHY M, PATCHARATRAKUL T, GONLACHANVIT S. Fecal microbiota transplantation for irritable bowel syndrome: an intervention for the 21 st century[J]. World J Gastroenterol, 2021, 27(22):2921-2943. doi: 10.3748/wjg.v27.i22.2921 [47] WU J W, WEI Z H, CHENG P, et al. Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis[J]. Theranostics, 2020, 10(23):10665-10679. doi: 10.7150/thno.43528 [48] RUEDA-ROBLES A, RUBIO-TOMÁS T, PLAZA-DIAZ J, et al. Impact of dietary patterns on H. pylori infection and the modulation of microbiota to counteract its effect. A narrative review[J]. Pathogens, 2021, 10(7):875. doi: 10.3390/pathogens10070875 -