留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

升陷汤及单味药材水提物对缺氧/复氧致心肌损伤的保护作用

金晓玲 陈岚 张凤 黄豆豆 廖丽娜 陈万生

王璐暖, 吴建辉, 何贝轩, 张彦洁, 郭美丽. 羟基红花黄色素A生物合成途径短链还原酶基因的特征及功能研究[J]. 药学实践与服务, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
引用本文: 金晓玲, 陈岚, 张凤, 黄豆豆, 廖丽娜, 陈万生. 升陷汤及单味药材水提物对缺氧/复氧致心肌损伤的保护作用[J]. 药学实践与服务, 2021, 39(3): 240-244. doi: 10.12206/j.issn.1006-0111.202006080
WANG Lunuan, WU Jianhui, HE Beixuan, ZHANG Yanjie, GUO Meili. Characterization and function of short-chain dehydrogenases/reductases in hydroxysafflower yellow A biosynthesis pathway[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
Citation: JIN Xiaoling, CHEN Lan, ZHANG Feng, HUANG Doudou, LIAO Lina, CHEN Wansheng. Protective effect of Shengxian decoction and the decoction of single herb component against myocardial injury induced by hypoxia/reoxygenation[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(3): 240-244. doi: 10.12206/j.issn.1006-0111.202006080

升陷汤及单味药材水提物对缺氧/复氧致心肌损伤的保护作用

doi: 10.12206/j.issn.1006-0111.202006080
基金项目: 上海市科委(18401931600);上海市卫健委(ZYCC2019018);金字塔人才工程(1016)
详细信息
    作者简介:

    金晓玲,主管药师,研究方向:医院药学,Tel:(021)81886183,Email:xiao.lingjin@163.com

    通讯作者: 陈万生,教授,主任药师,博士生导师,研究方向:临床药学、生药学,Tel:(021)81886181,Email:chenwansheng@smmu.edu.cn
  • 中图分类号: R285.5

Protective effect of Shengxian decoction and the decoction of single herb component against myocardial injury induced by hypoxia/reoxygenation

  • 摘要:   目的  通过观察升陷汤及单味药材水提物对离体培养的大鼠心肌细胞缺氧/复氧损伤的影响,并对其作用机制进行初步探讨。  方法  培养H9C2大鼠心肌细胞,共分成8组:空白对照组,缺氧/复氧组(模型组),缺氧复氧损伤后药物干预组(升陷汤全方及5个单味药材水提物组)。分别对心肌细胞凋亡率、心肌细胞的活力、细胞内活性氧(ROS)活性、细胞内钙离子浓度(Ca2+)等指标进行检测。  结果  升陷汤全方及黄芪、知母等药材干预能明显降低细胞凋亡率、细胞内ROS活性和Ca2+浓度(P<0.05),其中,全方的作用最强。与缺氧/复氧组细胞内ROS活性和Ca2+浓度增加至空白对照组的2.49倍及1.71倍相比,全方能使细胞内ROS活性和Ca2+浓度增加率降至缺氧/复氧组的41.37%和15.20%。  结论  升陷汤及单味药材对缺氧/复氧致心肌损伤具有保护作用,该作用的机制可能通过抑制细胞凋亡、降低细胞内ROS以及Ca2+的浓度所致。
  • 中药红花(Carthami Flos)是菊科植物红花(Carthamus tinctorius L.)的干燥花,传统本草学著作《本草纲目》记载,红花具有活血散瘀,通经止痛的功效[1],其药材和制剂在临床上被广泛用于心脑血管疾病的预防和治疗。现代药理研究表明,其主要药效物质是以羟基红花黄色素A(hydroxysafflower yellow A,HSYA)为代表的查尔酮类化合物和以菸花苷为代表的黄酮醇类化合物,这些化合物均具有良好的心脑血管损伤保护活性[2-3]。红花药材的产量偏低,每平方千米产量仅为18.0~22.5 t[4],其中特有的HSYA[5]、红花红色素等查尔酮类成分在不同品种间差异较大[6]。由于红花中的查尔酮类成分仅特异性地存在于花冠中[7],加之体外组织培养再生率低[8]等原因,对其功能基因的研究工作一直进展缓慢。特别是对于HSYA等红花特有的有效成分,其生物合成相关的功能基因尚不完全清楚,合成通路也未被完全解析[9]。因此,用现代分子生物学技术手段以提高药效物质的含量,是提高红花品质,节约土地资源、降低制药成本的一条新途径。

    短链脱氢酶/还原酶(short-chain dehydrogenases/reductases,SDR)在植物次生代谢物的生物合成中广泛参与各类碳-氧双键,碳-碳双键以及烯酮键的氧化还原催化反应。根据SDRs基因序列的特征结构,SDRs超家族可以被分为5个亚家族[10-14]。最早发现并且进行鉴定的两类主要短链还原酶命名为classical和extend,classical类的SDRs基因拥有长度约为250个氨基酸残基,被称为Extended类的SDRs基因在碳基末端因其含有多余的约100个氨基酸残基而得名。另外3种类型SDRs基因分别被命名为intermediate、complex和divergent。这些类型的SDRs基因基于其结合辅酶类型和结合催化位点的不同进行命名分类。此外,SDRs存在与传统类型不同的含有“rossmann-fold”保守结构域的氧化还原酶结构[15-18]

    黄酮类化合物起源于莽草酸途径和苯丙素生物合成途径,1个香豆酰辅酶A(coumaroyl CoA)和3个丙二酰辅酶A(malonyl CoA)在查尔酮合酶的作用下生成二氢查尔酮,然后经查尔酮异构酶催化为二氢黄酮,进一步在各类还原酶,聚合酶和糖基转移酶的作用下,生成终端次生代谢产物组合[19-21]。红花中所含的主要有效成分HSYA具有查尔酮式结构,本课题组前期研究认为:HSYA从前体物质到合成,中间存在必不可少的氧化还原过程。短链脱氢还原酶家族广泛参与植物体内次生代谢,这一类还原酶都带有相似的折叠结构以及催化位点,已有研究表明,其对苯丙烷代谢途径起重要作用[22-23],但有关红花中还原酶基因相关报道较少[24]。故笔者通过对红花转录组数据库、基因表达谱数据库以及代谢组数据库进行分析,筛选在HSYA生物合成途径的关键还原酶基因,并进行功能验证,以期揭示红花次生代谢成分生物合成途径,为定向调控红花的品质提供科学依据。

    云南巍山红花品系(ZHH0119),采自海军军医大学药学系温室,经海军军医大学郭美丽教授鉴定为菊科植物红花(Carthamus tinctorius L.)。红花种植条件:温度恒定25 ℃,16 h光照,8 h黑暗。采集相关花与组织后迅速存放于液氮或者−80 ℃冰箱中冷冻。

    按照Trans ZOL Plant植物总RNA提取试剂盒(北京全式金公司,中国)说明书方法提取红花花冠总RNA,按照Transtart One-Step gDNA Removal and cDNA Synthesis Super Mix逆转录试剂盒(北京全式金公司,中国)说明书方法进行cDNA第一链的合成。cDNA于−20 ℃保存。

    基于数据库中的基因注释以“黄酮还原酶”和“黄酮类化合物生物合成”作为关键词进行检索,筛选出其中可能与HSYA生物合成相关的还原酶基因,将筛选基因不同花期时间的表达量,将其与红花代谢组数据库中同花期的芦丁(rutin)、山柰酚(kaempferol)、槲皮素(quercetin)、HSYA、柚皮素(naringenin)、山柰酚-3-O-芸香糖苷(kaempferol-3-O-rutinoside)、山柰酚-3-O-葡萄糖苷(kaempferol-3-O-gluciside)、Carthamin、芹菜素(apigenin)、黄芩素(scutellarein)、木犀草素(luteolin)、苯丙氨酸(D-phenylalanine) 12个主要成分的含量[12,25]进行皮尔森相关性分析。

    基于红花花冠EST转录组文库,结合第三代测序技术[26-29]红花花冠全长转录组数据库筛选得到目的基因序列。在其5'端、3'端分别设计特异性引物。按照2× Phanta Flash Master Mix(Dye Plus)高保真酶(南京诺唯赞公司,中国)说明书进行PCR扩增,扩增片段经EasyPure Quick Gel Extraction Kit胶回收试剂盒(北京全式金公司,中国)说明书操作回收后,连接于pEASY-Blunt Zero Cloning Kit(北京全式金公司,中国)载体上,转化至大肠杆菌T1感受态细胞(北京全式金公司,中国)后,涂布在LBA平板上,恒温培养37 ℃过夜,挑取阳性单克隆菌落[30-31],送至上海生工生物有限公司进行菌液测序。

    用ExPASyProtParam工具(http://web.expasy.org/compute/)对目的基因的理论等电点(pI),蛋白分子量(MW)和蛋白分子式进行预测。通过Simple Molecule Architecture Research Tool工具(http://smart.embl-heidelberg.de/)对目的基因编码的蛋白质结构功能域进行分析。使用ProtScale(http://us.Expasy.org/cgi-bin/protscale.pl)以及TMHMM(http://www.cbs.dtu.dk/services/TMHMM/)对蛋白质的亲/疏水性和跨膜区域做出预测。使用SignaIP 4.0(http://www.cbs.dtu.dk/services/SignalP/)预测目的蛋白是否含有信号肽。使用NCBI BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi)对筛选出的SDRs基因进行BLAST序列比对。通过Neighbor-Joining相邻节点法构建系统发育进化树,自展分析法进行1000次重复[32-34]。使用PBILYON-GRLAND数据库预测构建蛋白质二级结构模型。蛋白三级结构由Protein Homology/analogy Recognition Engine预测。用WOLFPSORT软件(https://wolfpsort.hgc.jp/)进行亚细胞定位预测。

    取盛花期新鲜红花根、茎、叶、花冠4个部位的新鲜组织和花期Ⅰ(开花前3 d)、花期Ⅱ(开花当天)、花期Ⅲ(开花后1 d)、花期Ⅳ(开花后3 d)4个花期的新鲜花冠,提取总RNA,合成cDNA第一链后,在靠近5'端处对各个基因设计引物,依据Transtart Top Green qPCR super Mix(北京全式金公司,中国)试剂盒推荐体系,以Ct60s(KJ634810)作为内参标记基因,进行qRT-PCR实验,结果使用2−ΔΔCt的方法进行计算分析[35]

    根据CtSDR3的开放阅读框和植物真核表达载体pMT-39序列信息,设计无缝克隆引物。以红花cDNA做模板,使用高保真酶进行PCR反应。产物经胶回收后依无缝克隆试剂盒说明书与经NcoI酶切线性化的pMT-39载体进行重组连接。重组载体转化大肠杆菌T1感受态细胞,挑取阳性克隆菌株扩大培养后抽提质粒,提取的pMT39-CtSDR3质粒用冷冻法转至农杆菌GV3101中。LBK+Rif平板筛选阳性克隆后,取1ml OD600 = 0.8的菌液经6 000 r/min,离心3 min后用1 ml 5%蔗糖溶液重悬,加入Silwet-L 1μl,用注射器注射于红花花柱,套袋避光[35]

    在pMT-39的35 s启动子区域设计5'端特异性引物,在目的基因CtSDR3中设计3'端引物。取T2代新鲜叶cDNA第一链作为模板,2× Easy Taq PCR Mix(北京全式金,中国)推荐体系进行PCR反应,确定是否存在目的条带。采集CtSDR3阳性植株花冠以及pMT-39空载体对照植株的花冠,按照上述的qRT-PCR反应体系评价CtSDR3基因的过表达水平,使用UPLC-Q-TOF/MS 检测CtSDR3过表达组和空载体对照组的黄酮代谢物含量,选择以HSYA为代表性成分的8个黄酮类化合物作为检测对象。

    根据CtSDR3的开放阅读框及蛋白表达载体pGEX-6p-1以及pET-28a序列信息,设计同源重组克隆引物[34]。以红花花冠cDNA为模板,使用高保真酶进行PCR反应。PCR产物经胶回收后依无缝克隆试剂盒说明书与经XhoI、BamHI酶切线性化的载体pGEX-6p-1以及pET-28a进行重组连接。重组载体转化大肠杆菌T1感受态细胞,挑取阳性菌株克隆扩大培养后抽提质粒,提取的重组质粒用热激法转至大肠杆菌Rosseta(DE3)(上海唯地生物,中国)中。

    在20 ml LBA液体培养基中培养至OD600为0.6左右,分2份10 ml菌液各加入终浓度为0.3 mmol/L的IPTG和生理盐水。恒温培养箱中16 ℃,100 r/min继续培养16 h[35-36]。菌液离心弃上清液,用1×PBS缓冲液洗涤两次后重悬。超声破碎仪中40 kW,工作时间5 s,循环间隔时间25 s,共15个循环进行破碎[16],裂解完成后取上清与沉淀15 μl,上样检测。

    通过分析,得到contig325、contig483、contig2863共3个与HSYA具有强相关性的基因(r>0.85),见图1

    图  1  不同花期红花还原酶基因表达量与黄酮类化合物积累量相关性分析热图

    3个目的基因序列信息经测序验证结果如下:contig325全长共1523 bp,开放阅读框1341bp,编码446个氨基酸;contig483全长1393 bp,开放阅读框792 bp,编码263个氨基酸;contig2863全长序列1527 bp,开放阅读框1023 bp,编码340个氨基酸。PCR产物电泳结果如图2所示。

    图  2  PCR产物电泳图

    contig325基因编码446个氨基酸,命名为CtSDR1(GenBank登录号:MW792035);Contig483基因编码263个氨基酸,命名为CtSDR2(GenBank登录号:MW792036);Contig2863基因编码339个氨基酸,命名为CtSDR3(GenBank登录号:MW792037)。系统进化树表明CtSDR1与蓟Cirsium japonicum (QQH14901.1)同源性最高;CtSDR2与小蓬草Erigeron canadensis (XP_043636506.1)同源性最高;CtSDR3与小豆蔻Cynara cardunculus var. scolymus (KVI09206.1)同源性最高。Prot-param分析CtSDR1基因所编码的蛋白质分子式C2230H3346N606O639S7,相对分子量为49.2×103,理论等电点pI=9.61;CtSDR2基因所编码的蛋白质分子式C1289H2072N360O379S13,相对分子量为29×103,理论等电点pI=8.63;CtSDR1基因所编码的蛋白质分子式C1691H2614N442O481S9,相对分子量为37.1×103,理论等电点pI=6.80。Prot Scale分析预测CtSDR1CtSDR2和CtSDR3蛋白为亲水性蛋白,无信号肽属非分泌蛋白。蛋白跨膜性分析显示CtSDR1、CtSDR2和CtSDR3不含有跨膜区域,为非跨膜蛋白。对CtSDR1、CtSDR2和CtSDR3蛋白二级结构的预测显示均属于不规则结构。对CtSDR1、CtSDR2、CtSDR3蛋白质三维结构预测如图3所示。系统进化树如图4所示。亚细胞定位预测显示,CtSDR1CtSDR2CtSDR3均可能定位于细胞质。

    图  3  CtSDR1、CtSDR2、CtSDR3蛋白三级结构预测
    图  4  CtSDR系统发育进化树

    取红花花期的Ⅳ期的红花各个部位进行分析,发现红花花冠内的CtSDR1CtSDR2CtSDR3基因表达量从高到低依次均为花冠>叶>茎>根。其中CtSDR1在花冠中的相对表达量约为根中的3倍、而CtSDR2CtSDR3在花冠中的相对表达量约为根中的4倍。将4个花期的红花花冠进行qRT-PCR分析表明,CtSDR1CtSDR2CtSDR3花冠中表达量均随着花冠发育逐渐升高,特别是CtSDR1CtSDR2CtSDR3的Ⅳ期花冠对比Ⅲ期花冠的表达量分别提高了7.2倍、2.7倍、2.3倍(图5)。

    图  5  目的基因在不同部位(A)和不同花期(B)的表达水平

    构建真和表达载体并通过PCR鉴定后,我们从19株农杆菌浸染的子代植株中得到5株pMT39-CtSDR3阳性红花植株(图6)。通过qPCR对其CtSDR3基因转录水平进行测定,结果发现阳性红花植株中CtSDR3基因的转录水平得到显著增加,约为空白组株系的2~3倍,CtSDR3的在花冠部位的高表达也证明了研究成功获取CtSDR3过表达红花植株(图7)。通过UPLC-QTOF/MS技术测定阳性转基因红花株系组和空白对照组的目标化合物含量,包括7个红花花冠主要黄酮类化合物及苯丙烷类代谢途径上游关键物质苯丙氨酸(图8),分别为:野黄芩素(scutellarein)、Carthamin、HSYA、山柰酚(kaempferol)、山柰酚-3-O-β-D-葡萄糖苷(kaempferol-3-O-β-D-glucoside)、山柰酚-3-O-β-D-芸香糖苷(kaempferol-3-O-β-rutinoside)、芦丁(rutin)和苯丙氨酸(D-Phenylalanine)。由图8可知,与空白组相比,CtSDR3过表达株系相较于空白组野黄芩素提高了3.6%~9.8%,HSYA提高了7.1%~16.6%,以及苯丙氨酸含量提高了5.5%~15.7%,具有显著性升高。其他化合物含量则有无显著性变化趋势。通过对过表达株系与空白组的含量分析,我们认为CtSDR3基因过表达会引起红花中黄酮类物质的变化,尤其是HSYA含量升高显著。同时,苯丙氨酸代谢途径属于植物重要的次生代谢途径,过表达组引起苯丙氨酸含量的显著上升,上述指标性成分的变化也进一步说明CtSDR3对红花黄酮类化合物次生代谢途径具有一定的影响,但目前我们尚难以判断CtSDR3红花中影响次生代谢产物积累的明确途径。

    图  6  真核表达载体构建及阳性鉴定电泳图
    注:1. CtSDR3基因开放阅读框(ORF)区扩增产物电泳图,a、b泳道均为CtSDR3基因ORF区克隆PCR产物;2. 真核表达载体pMT-39载体酶切产物电泳图,a、b泳道为CtSDR3 PCR产物,c泳道为pMT-39载体,d、e泳道为pMT-39线性化载体;3. pMT39-CtSDR3重组载体阳性转化子鉴定电泳图,a、b泳道为阳性转化子菌液PCR产物;4. pMT39-CtSDR3质粒转化农杆菌GV3101,a、c和e泳道为空白对照组,b、d和f泳道为阳性克隆菌液PCR产物;5. 红花pMT39-CtSDR3阳性转化植株鉴定PCR产物电泳图,1~19为待鉴定植株,p为pMT39-CtSDR3质粒,k为空白组,WT为野生型红花植株
    图  7  过表达植株CtSDR3的相对表达量
    **P<0.01,与CK组比较
    图  8  阳性植株黄酮类化合物含量测定
    注:A.黄芩素;B.Carthamin;C.HSYA;D.山柰酚;E.山柰酚-3-O-葡萄糖苷;F.山柰酚-3-O-芸香糖苷;G.芦丁;H.苯丙氨酸;CK.空白组株系;OVX.阳性过表达株系

    目的片段成功扩增,将目的条带进行胶回收、纯化。CtSDR1CtSDR1CtSDR1构建的pGEX-6p-1、pET-28a原核表达载体均有在大肠杆菌内表达,但是CtSDR1-pGEX-6p-1、 CtSDR2-pGEX-6p-1、CtSDR3-pGEX-6p-1、CtSDR1-pET-28、CtSDR2-pET-28a、CtSDR3-pET-28a表达的目的蛋白均形成包涵体,存在于沉淀中。无法进行下一步大量纯化实验,唯有CtSDR2-pGEX-6p-1诱导表达了存在于上清液的目的蛋白,明显可以在上清液中观察到分子量约为50 000的蛋白条带(图9)。

    图  9  目的片段PCR产物电泳及表达蛋白电泳分析
    注:A.目的片段PCR产物电泳:1~5为CtSDR1,6~10为CtSDR2,11~15为CtSDR3(其对应的PCR反应Tm值分别为67 ℃、65 ℃、63 ℃、59 ℃、57 ℃);B.pGEX-6p-1蛋白表达电泳分析;C.pET-28a蛋白表达电泳分析

    越来越多的红花药理学相关研究表明,红花的主要药效物质包括查尔酮类、黄酮醇类等多种黄酮类化合物,其中,查尔酮类HSYA对脑缺血具有保护作用,并且还能抗脑血栓形成以及抗氧化等。研究HSYA的生物合成分途径,对于HSYA的工业化生产具有重要意义。

    本研究借助生物学分子技术、结合代谢组分析测定,筛选出3个参与HSYA生物合成途径的关键短链脱氢还原酶基因CtSDR1CtSDR2CtSDR3,这3个基因序列具有高度保守性,在不同器官的表达模式均呈现出花冠>叶>茎>根的特点,而且在花冠中的表达量随花冠发育逐渐升高,表明其很有可能参与红花中HSYA等主要药用成分的积累。进一步研究发现,转CtSDR3过表达T2代阳性植株花冠中CtSDR3基因的转录水平增加了2~3倍,次生代谢物HSYA的含量提高了7.1%~16.6%(P<0.05),验证了我们对CtSDR3在红花体内参与黄酮类化合物生物合成功能的推测。本研究中,体外表达CtSDR3蛋白,得到目的蛋白条带,但由于包涵体等原因,蛋白表达和纯化条件仍需要进一步摸索。下一步,我们将对可能起黄酮类生物合成途径的关键SDRs进行深入的生物学特性特别是酶结合位点的研究,为更好地阐释SDRs的生物学功能、利用分子生物育种技术培育高HSYA含量的红花新品种奠定基础。

  • 图  1  药物对心肌缺氧/复氧细胞凋亡的影响

    A. 流式细胞术检测图;B.计数统计图*P<0.05,与缺氧/复氧组比较;##P<0.01,与对照组比较。

    图  2  药物对心肌缺氧/复氧细胞内ROS含量的影响

    **P<0.01,与缺氧/复氧组比较;##P<0.01,与对照组比较。

    图  3  药物对心肌缺氧/复氧细胞内钙离子浓度的影响

    *P<0.05,**P<0.01,与缺氧/复氧组比较;##P<0.01,与对照组比较。

    表  1  升陷汤各单味药对缺氧/复氧造成的心肌细胞活力的影响

    组别终浓度(μg/ml)MTT增殖率(%)
    全方2018.745
    黄芪2014.300
    知母2011.199
    桔梗20 9.244
    升麻2010.977
    柴胡0.326.512
    下载: 导出CSV
  • [1] SEWELL W H, KOTH D R, HUGGINS C E. Ventricular fibrillation in dogs after sudden return of flow to the coronary artery[J]. Surgery,1955,38(6):1050-1053.
    [2] RANA A, GOYAL N, AHLAWAT A, et al. Mechanisms involved in attenuated cardio-protective role of ischemic preconditioning in metabolic disorders[J]. Perfusion,2015,30(2):94-105. doi:  10.1177/0267659114536760
    [3] 陈福晖, 刘达兴, 容松. 心肌缺血再灌注损伤发生机制的研究进展[J]. 安徽医药, 2017, 21(12):2145-2148. doi:  10.3969/j.issn.1009-6469.2017.12.003
    [4] CHANG G L, ZHANG D Y, YU H, et al. Cardioprotective effects of exenatide against oxidative stress-induced injury[J]. Int J Mol Med,2013,32(5):1011-1020. doi:  10.3892/ijmm.2013.1475
    [5] 宋旭辉. Decorin在脑缺血防治中的功能及机制研究[D]. 上海: 第二军医大学, 2010.
    [6] 吴立玲, 张幼怡. 心血管病理生理学[M]. 北京: 北京大学医学出版社, 2009: 8.
    [7] 康红钰, 张福华, 刘喜民, 等. 升陷汤对大鼠急性心肌缺血作用机制的探讨[J]. 中国医院药学杂志, 2007, 27(5):617-619. doi:  10.3321/j.issn:1001-5213.2007.05.018
    [8] 张万义, 邱云卿, 张万芬. 升补宗气法治疗老年慢性充血性心力衰竭疗效观察[J]. 中国中西医结合杂志, 2004, 24(1):43. doi:  10.3321/j.issn:1003-5370.2004.01.035
    [9] 裴天仙, 徐长庆, 李滨, 等. 槲皮素对阿霉素致小鼠心肌损伤的保护作用及其机制[J]. 药学学报, 2007, 42(10):1029-1033. doi:  10.3321/j.issn:0513-4870.2007.10.004
    [10] 曹洪欣, 朱海燕. 大气下陷证与病毒性心肌炎相关性机理的理论探讨[J]. 陕西中医, 2002, 23(2):141. doi:  10.3969/j.issn.1000-7369.2002.02.035
    [11] 曹洪欣, 朱海燕. 益气升陷法治疗病毒性心肌炎的辨治要点[J]. 中医药学报, 2002, 30(5):18-19. doi:  10.3969/j.issn.1002-2392.2002.05.010
    [12] 满缓, 张凤, 黄豆豆, 等. 升陷汤及各单味药对阿霉素致心肌细胞损伤的保护作用[J]. 药学实践杂志, 2019, 37(4):304-308. doi:  10.3969/j.issn.1006-0111.2019.04.004
    [13] THANDROYEN F T, BELLOTTO D, KATAYAMA A, et al. Subcellular electrolyte alterations during progressive hypoxia and following reoxygenation in isolated neonatal rat ventricular myocytes[J]. Circ Res,1992,71(1):106-119. doi:  10.1161/01.RES.71.1.106
    [14] MIMURO S, KATOH T, SUZUKI A, et al. Deterioration of myocardial injury due to dexmedetomidine administration after myocardial ischaemia[J]. Resuscitation,2010,81(12):1714-1717. doi:  10.1016/j.resuscitation.2010.07.021
    [15] MIYAMAE M, CAMACHO S A, WEINER M W, et al. Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts[J]. Am J Physiol,1996,271(5 Pt 2):H2145-H2153.
    [16] HAUSENLOY D J, YELLON D M. Myocardial ischemia-reperfusion injury: a neglected therapeutic target[J]. J Clin Invest,2013,123(1):92-100. doi:  10.1172/JCI62874
    [17] JIANG J T, YUAN X, WANG T, et al. Antioxidative and cardioprotective effects of total flavonoids extracted from Dracocephalum moldavica L. against acute ischemia/reperfusion-induced myocardial injury in isolated rat heart[J]. Cardiovasc Toxicol,2014,14(1):74-82. doi:  10.1007/s12012-013-9221-3
    [18] ZHOU M J, REN H H, HAN J C, et al. Protective effects of kaempferol against myocardial ischemia/reperfusion injury in isolated rat heart via antioxidant activity and inhibition of glycogen synthase kinase-3β[J]. Oxid Med Cell Longev,2015,2015:481405.
    [19] MOENS A L, CLAEYS M J, TIMMERMANS J P, et al. Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process[J]. Int J Cardiol,2005,100(2):179-190. doi:  10.1016/j.ijcard.2004.04.013
    [20] MOZAFFARI M S, LIU J Y, ABEBE W, et al. Mechanisms of load dependency of myocardial ischemia reperfusion injury[J]. Am J Cardiovasc Dis,2013,3(4):180-196.
    [21] NEUHOF C, NEUHOF H. Calpain system and its involvement in myocardial ischemia and reperfusion injury[J]. World J Cardiol,2014,6(7):638-652. doi:  10.4330/wjc.v6.i7.638
    [22] ZHANG F, ZHAN Q, DONG X, et al. Shengxian decoction in chronic heart failure treatment and synergistic property of Platycodonis Radix: a metabolomic approach and its application[J]. Mol Biosyst,2014,10(8):2055-2063. doi:  10.1039/C4MB00055B
    [23] ZHANG F, ZHAN Q, GAO S H, et al. Chemical profile- and pharmacokinetics-based investigation of the synergistic property of platycodonis Radix in traditional Chinese medicine For Mula Shengxian decoction[J]. J Ethnopharmacol,2014,152(3):497-507. doi:  10.1016/j.jep.2014.01.033
    [24] 杨承芝, 朱爱华. 浅析张锡纯大气下陷证与升陷汤[J]. 中国中医药现代远程教育, 2014, 12(14):116-117. doi:  10.3969/j.issn.1672-2779.2014.14.072
  • [1] 冯一帆, 严啸东, 张文彬, 李炳锋, 郭美丽.  菸花苷长期给药对脑缺血再灌注损伤大鼠神经功能的影响 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202407038
    [2] 李想, 陆鸿远, 张明玉, 高欢, 姚东, 许子华.  米格列醇激活UCP1介导棕色脂肪改善冷暴露小鼠损伤的研究 . 药学实践与服务, 2025, 43(1): 1-5, 16. doi: 10.12206/j.issn.2097-2024.202404005
    [3] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 163-168, 194. doi: 10.12206/j.issn.2097-2024.202406035
    [4] 周丽城, 欧已铭, 王园.  玉米须黄酮化学成分与药理作用研究进展 . 药学实践与服务, 2025, 43(2): 51-58. doi: 10.12206/j.issn.2097-2024.202309037
    [5] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [6] 关梦瑶, 夏天爽, 何旭辉, 史策, 蒋益萍, 辛海量.  黑蒜多糖抗便秘作用研究 . 药学实践与服务, 2025, 43(4): 190-194. doi: 10.12206/j.issn.2097-2024.202403059
    [7] 王新霞, 刘祉君, 吕磊, 张爽, 高守红.  鬼针草降压作用研究及展望 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202408021
    [8] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架治疗创伤性脑损伤的研究 . 药学实践与服务, 2025, 43(2): 67-74. doi: 10.12206/j.issn.2097-2024.202406034
    [9] 杨金润, 黎翔, 孙旸.  ORM1促肝细胞增殖的作用及其机制探索 . 药学实践与服务, 2025, 43(5): 1-6. doi: 10.12206/j.issn.2097-2024.202410014
    [10] 张紫璇, 高苑, 张利, 李佳莉, 徐希科, 祖先鹏.  中药防治急性肺损伤的活性成分及其作用机制研究进展 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202404079
    [11] 温瑞睿, 许龙, 朱文静, 杨建伟.  浅谈国外药师主导开展戒烟服务的作用与挑战 . 药学实践与服务, 2024, 42(12): 537-541, 548. doi: 10.12206/j.issn.2097-2024.202408054
    [12] 张修平, 田家盛, 王道鑫, 李佳鑫, 王品, 缪朝玉.  MT-1207对小鼠血糖、血脂和动脉粥样硬化的作用 . 药学实践与服务, 2024, 42(11): 487-494. doi: 10.12206/j.issn.2097-2024.202306011
    [13] 李清, 郭宜银, 陈颖, 瞿发林, 董文燊, 戈煜.  夜宁胶囊对小鼠镇静催眠作用及其机制的研究 . 药学实践与服务, 2024, 42(8): 346-349. doi: 10.12206/j.issn.2097-2024.202211047
    [14] 张林晨, 张小琴, 张俊平.  山楂酸药理作用的研究进展 . 药学实践与服务, 2024, 42(5): 185-189. doi: 10.12206/j.issn.2097-2024.202307052
    [15] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [16] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [17] 岳春华, 贲永光, 王海桥.  基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制 . 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
    [18] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [19] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
    [20] 杨念, 张博乐, 张俊霞, 张振强.  一种中药组合物对ANIT诱导的小鼠胆汁淤积肝损伤的保护作用研究 . 药学实践与服务, 2024, 42(12): 508-511, 519. doi: 10.12206/j.issn.2097-2024.202305008
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  4095
  • HTML全文浏览量:  2033
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-21
  • 修回日期:  2021-01-27
  • 网络出版日期:  2021-05-25
  • 刊出日期:  2021-05-25

升陷汤及单味药材水提物对缺氧/复氧致心肌损伤的保护作用

doi: 10.12206/j.issn.1006-0111.202006080
    基金项目:  上海市科委(18401931600);上海市卫健委(ZYCC2019018);金字塔人才工程(1016)
    作者简介:

    金晓玲,主管药师,研究方向:医院药学,Tel:(021)81886183,Email:xiao.lingjin@163.com

    通讯作者: 陈万生,教授,主任药师,博士生导师,研究方向:临床药学、生药学,Tel:(021)81886181,Email:chenwansheng@smmu.edu.cn
  • 中图分类号: R285.5

摘要:   目的  通过观察升陷汤及单味药材水提物对离体培养的大鼠心肌细胞缺氧/复氧损伤的影响,并对其作用机制进行初步探讨。  方法  培养H9C2大鼠心肌细胞,共分成8组:空白对照组,缺氧/复氧组(模型组),缺氧复氧损伤后药物干预组(升陷汤全方及5个单味药材水提物组)。分别对心肌细胞凋亡率、心肌细胞的活力、细胞内活性氧(ROS)活性、细胞内钙离子浓度(Ca2+)等指标进行检测。  结果  升陷汤全方及黄芪、知母等药材干预能明显降低细胞凋亡率、细胞内ROS活性和Ca2+浓度(P<0.05),其中,全方的作用最强。与缺氧/复氧组细胞内ROS活性和Ca2+浓度增加至空白对照组的2.49倍及1.71倍相比,全方能使细胞内ROS活性和Ca2+浓度增加率降至缺氧/复氧组的41.37%和15.20%。  结论  升陷汤及单味药材对缺氧/复氧致心肌损伤具有保护作用,该作用的机制可能通过抑制细胞凋亡、降低细胞内ROS以及Ca2+的浓度所致。

English Abstract

王璐暖, 吴建辉, 何贝轩, 张彦洁, 郭美丽. 羟基红花黄色素A生物合成途径短链还原酶基因的特征及功能研究[J]. 药学实践与服务, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
引用本文: 金晓玲, 陈岚, 张凤, 黄豆豆, 廖丽娜, 陈万生. 升陷汤及单味药材水提物对缺氧/复氧致心肌损伤的保护作用[J]. 药学实践与服务, 2021, 39(3): 240-244. doi: 10.12206/j.issn.1006-0111.202006080
WANG Lunuan, WU Jianhui, HE Beixuan, ZHANG Yanjie, GUO Meili. Characterization and function of short-chain dehydrogenases/reductases in hydroxysafflower yellow A biosynthesis pathway[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 218-225. doi: 10.12206/j.issn.1006-0111.202201061
Citation: JIN Xiaoling, CHEN Lan, ZHANG Feng, HUANG Doudou, LIAO Lina, CHEN Wansheng. Protective effect of Shengxian decoction and the decoction of single herb component against myocardial injury induced by hypoxia/reoxygenation[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(3): 240-244. doi: 10.12206/j.issn.1006-0111.202006080
  • 1960年,Jenning首次提出了心肌再灌注损伤的概念[1]。心肌缺血/再灌注损伤的主要原因包括氧自由基增多、细胞内钙超载及微血管损伤等[2-3],缺血组织细胞恢复灌注后发生的再灌注损伤(MIRI)在恢复血流的过程中常会引起心肌细胞的氧化应激损伤[4-5],往往造成患者预后不佳 [6]

    升陷汤出自张锡纯《医学衷中参西录》,该方由黄芪、柴胡、升麻、桔梗、知母组成,主治大气下陷之证,临床广泛用来防治心肌缺血性疾病[7]、治疗老年慢性充血性心力衰竭[8]、治疗不稳定型心绞痛[9]、治疗青少年病毒性心肌炎[10-11]。课题组前期考察了升陷汤及各单味药对阿霉素致心肌细胞的保护作用[12],尚未见升陷汤对心肌细胞缺氧/复氧损伤模型保护作用的报道。本实验基于经典的心肌细胞缺氧/复氧损伤模型[13],从细胞凋亡的角度初步探讨升陷汤及单味药对心肌缺氧/复氧的作用机制。

    • 纯净水(美国Millipore公司)、Fura-3/AM(碧云天生物技术有限公司)、生理盐水(海军军医大学附属长征医院);0.25%胰蛋白酶溶液(Gibco公司);DMEM低糖培养基、培养液(美国Hyclone公司);MTT工作液(美国sigma公司);二甲基亚砜(德国GmbH公司);PBS缓冲液(南京滴纯生物科技有限公司);胎牛血清(美国Gibco公司);DCFH-DA(碧云天生物有限公司);Annexin V-FITC/PI 凋亡检测试剂盒(美国BD公司);16%甲醛(无甲醇,赛默飞世尔科技有限公司);其他试剂为分析纯。

      倒置荧光显微镜(重庆奥特光学仪器);流式细胞仪(美国BD公司);全自动酶标仪(美国Multiskan MK3公司);CO2细胞培养箱(德国Heraeus公司);低温高速离心机(德国Heraeus公司);台式高速离心机(德国Eppendorf公司);荧光显微镜(日本OLYMPUS公司);二氧化碳培养箱(美国Forma公司);79-1型磁力搅拌器(江苏周庄科研仪器厂);YJ-II型超声波细胞粉碎机(上海新芝生物技术研究所);海尔低温冰箱。

    • 升陷汤中五味药材饮片由长征医院药材科提供。将5 L水浸泡升陷汤全方提取物或各单味药材24 h后,再煎煮,重复3次,将浓缩水煎煮液合并至650 ml,干燥得提取物浸膏。其中,升陷汤组方饮片(简称药物SXT)包括黄芪600 g,知母300 g,柴胡150 g,桔梗150 g和升麻100 g。SXT、黄芪、知母、柴胡、桔梗和升麻水提液蒸干后的浸膏重量分别为431.2、187.5、89.5、45.2、43.5、28.1 g。将所有提取物分别研细,于−20°C冰箱中保存备用。

    • H9C2细胞培养在含10% FBS的高糖DMEM培养液、37 ℃、5% CO2、95% O2饱和湿度的恒温细胞培养箱,待细胞汇合度达到80%~90%进行传代培养。传代时,弃去培养液,用PBS缓冲液洗2~3次后用含0.25%胰蛋白酶消化液消化细胞,待细胞变圆时立刻停止消化,以1000 r/min离心5 min。弃上清液,用含10% FBS 的DMEM培养基重悬后,并按1∶3分瓶,隔天更换培养液。取对数生长期细胞进行试验。

    • 将心肌细胞随机分为以下8组:对照组:心肌细胞正常培养基培养;模型组:心肌细胞用低糖无血清培养基预孵育1 h后,在含95% N2和5%CO2的培养箱中缺氧6 h,再在5% CO2和95%空气饱和的培养箱复氧1 h造成心肌缺血损伤模型组;药物干预组:心肌细胞用低糖无血清培养基稀释的药物预孵育1 h后,经缺氧6 h-复氧1 h处理后即为药物干预组。其中,干预药物包括SXT、黄芪、知母、柴胡、桔梗和升麻水提液(共6组)。

    • 培养完成后,将对照组和模型组组以及药物干预组中取对数期生长的细胞接种于96孔板,调整细胞的浓度使每孔有5×105个细胞,然后向每孔中加入20 μl MTT(5 mg/ml)工作液,孵育一段时间,后向每孔中加入150 μl DMSO,室温条件先低速震荡让二者充分融合,然后参照MTT比色法试剂盒说明,在490 nm测定各孔下的吸光值,分别记录结果。模型组、各药物干预组与对照组的比值为细胞活力相对值。

    • 培养完成后,分别收集所有组中悬浮细胞,在各组细胞中加入150 μl DCFH-DA溶液,在37 ℃细胞培养箱内避光孵育30 min。每隔5 min震荡1次,使探针和细胞充分接触。用无血清细胞培养液将细胞洗几遍,最后用PBS重悬。采用多功能酶标仪检测细胞内ROS活性(激发波长488 nm,检测波长525 nm)。

    • 培养结束后,用0.25%胰酶消化离心,分别将所有组中细胞用缓冲液PBS冲洗,再与10 μmol/L钙离子荧光探针Fura-3/AM(10)共同孵育60 min,然后用缓冲液冲洗2次,最后用PBS重悬。将制成的标本置于倒置荧光显微镜下,用340 nm紫外光激发获得荧光图像,经过计算机图像处理后根据标准曲线算出细胞内钙浓度。

    • 培养完成的细胞用不含 EDTA 的胰酶消化,离心收集悬浮细胞,2 000 r/min离心5 min,弃培养基;用预冷的PBS洗涤细胞;加入100 μl结合缓冲液悬浮细胞,浓度约为 1 × 106/ml;然后在细胞悬浮液中加入5 μl Annexin V-FITC,轻轻混匀后于 4 ℃ 避光条件下孵育 15 min;再加入 5 μl PI 后轻轻混匀于 4 ℃ 避光条件下孵育5 min;添加PBS至500 μl并轻轻震摇均匀,于60 min内用流式细胞仪检测细胞凋亡率。

    • 使用GraphPad Prism v5.0统计软件进行统计学分析,实验数据以($\bar x \pm s$)表示,组内两两比较采用t-test,当P < 0.05时判定差异具有统计学意义。

    • 本实验根据临床给药剂量及预实验结果,在药物试验浓度分别为2.5、5.0、10.0、20.0、40.0、80.0、160.0和320.0 μg/ml的药物浸膏时,研究全方及各单味药对心肌细胞缺氧/复氧后细胞活力的影响。MTT结果显示:升陷汤、黄芪、知母、桔梗、升麻在20 μg/ml时,细胞活力最佳,因此确定上述提取物浓度组均为20 μg/ml;由于20 μg/ml柴胡提取物对心肌细胞有一定损伤,经试验最终确定药物浓度为0.3 μg/ml时对缺氧/复氧后细胞活力无明显影响(表1)。

      表 1  升陷汤各单味药对缺氧/复氧造成的心肌细胞活力的影响

      组别终浓度(μg/ml)MTT增殖率(%)
      全方2018.745
      黄芪2014.300
      知母2011.199
      桔梗20 9.244
      升麻2010.977
      柴胡0.326.512
    • 实验结果表明:心肌细胞在缺氧/复氧条件下,细胞内活性氧含量明显增加,升高至对照组的2.49倍(P<0.01,图1),表明缺氧/复氧引起细胞内自由基损伤;给药后,除柴胡外,升陷汤全方及各单味药均能明显降低心肌缺氧/复氧致心肌损伤模型的细胞内ROS的荧光强度,升陷汤全方、黄芪、知母、桔梗和升麻处理组分别为对照组的1.46、1.40、1.79、1.52和1.83倍(P<0.01,图1)。其中,升陷汤与黄芪作用最强,两者无明显统计学差异。

      图  1  药物对心肌缺氧/复氧细胞凋亡的影响

    • 实验结果表明:心肌细胞在常氧下(对照组),Ca2+荧光强度较低,缺氧/复氧后,Ca2+荧光强度增加(P<0.01,图2),表明心肌细胞低氧/复氧时存在Ca2+超载。升陷汤全方和黄芪、知母药物干预后,各组细胞内荧光强度与模型组相比,分别降低了15.20%、23.98%和15.79%(P<0.05,图2),表明其对低氧/复氧时心肌细胞内Ca2+ 超载有抑制作用。桔梗、升麻药物处理后,上述值虽然有降低,但差异不明显。

      图  2  药物对心肌缺氧/复氧细胞内ROS含量的影响

    • 采用Annexin V-FITC/Pl双染流式细胞术检测药物对缺氧/复氧损伤后心肌细胞凋亡情况。从检测结果发现,心肌细胞在常氧下(对照组),细胞凋亡较低;缺氧/复氧后,细胞凋亡增加;给药组中升陷汤全方、黄芪、桔梗可以降低细胞的凋亡率(P<0.05,图3)。

      图  3  药物对心肌缺氧/复氧细胞内钙离子浓度的影响

    • 心肌细胞缺氧/复氧损伤是模拟MIRI的病理生理过程的经典模型,心肌细胞短时间内缺血再灌注造成的组织细胞功能代谢发生障碍及结构功能破坏加重,甚至发生不可逆性损伤的现象[14]。Ca2+超载一直被认为是心肌缺血再灌注的主要机制。缺血缺氧时,心肌细胞内Ca2+超载,线粒体膜的通透性转换孔开放;再灌注恢复使得心肌细胞重新摄取O2,产生大量的线粒体内活性氧,进一步增加线粒体胞质内的Ca2+浓度,线粒体的氧化磷酸化进而受阻促使心肌细胞死亡[15-16]。另外,线粒体内活性氧触发氧化应激反应并加重心肌细胞的凋亡和坏死[17-19]。由此可见,细胞内ROS活性和Ca2+浓度是MIRI重要的检测指标[20-21]

      本课题组前期采用大鼠冠状动脉结扎急性心肌缺血致慢性心力衰竭模型,心肌组织病理学切片证实了升陷汤全方对心肌细胞损伤和炎症发展起到有效的控制作用,通过药理指标测定结合代谢组学研究证实了升陷汤对心衰具有显著的治疗作用。升陷汤通过改善心肌细胞损伤,减少炎症反应,增强左室射血功能,调节机体磷脂代谢和脂肪酸生物合成来发挥其保护心肌作用,从而治疗慢性心力衰竭[22-23]。本课题组通过体外细胞实验从缺氧/复氧致心肌细胞损伤角度,基于心肌细胞活力角度考察并证实了升陷汤的保护作用,可通过抑制细胞凋亡、降低细胞内ROS以及Ca2+的浓度实现。同时,发现各单味药也具有一定的保护作用,但弱于全方的保护功效,进一步证实了全方治疗“大气下陷”的合理性。升陷汤全方是以黄芪补气升陷为主药,知母凉润制主药之温燥,柴胡、升麻助黄芪升陷之力,桔梗载药力上达胸中,共奏升补大气之效[24]。药材柴胡提取液在本实验中尚未发现具有保护缺氧/复氧损伤心肌细胞的作用,在一定程度上证实了其他药味配伍的合理有效性。

参考文献 (24)

目录

/

返回文章
返回