留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

头孢拉定微透析体外回收率及影响因素的研究

仰先蜜 许小建 王学彬 王卓 王桐生

俞月, 路娟, 柴瑞平, 吕欣锴, 邓明慧, 陈曦. 基于抗氧化和抗炎生物效应的生脉注射液质量评价[J]. 药学实践与服务, 2020, 38(2): 143-147. doi: 10.3969/j.issn.1006-0111.201906029
引用本文: 仰先蜜, 许小建, 王学彬, 王卓, 王桐生. 头孢拉定微透析体外回收率及影响因素的研究[J]. 药学实践与服务, 2020, 38(2): 120-123, 128. doi: 10.3969/j.issn.1006-0111.201910044
YU Yue, LU Juan, CHAI Ruiping, LYU Xinkai, DENG Minghui, CHEN Xi. Quality control and evaluation of Shengmai injection based on anti-oxidant and anti-inflammatory biological effects[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(2): 143-147. doi: 10.3969/j.issn.1006-0111.201906029
Citation: YANG Xianmi, XU Xiaojian, WANG Xuebin, WANG Zhuo, Wang Tongsheng. Microdialysis recovery of cefradine in vitro[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(2): 120-123, 128. doi: 10.3969/j.issn.1006-0111.201910044

头孢拉定微透析体外回收率及影响因素的研究

doi: 10.3969/j.issn.1006-0111.201910044
基金项目: 国家自然科学基金(81870520)
详细信息
    作者简介:

    仰先蜜,硕士研究生,研究方向:临床药学,Tel:15755078132,Email:1474369123@qq.com

    通讯作者: 王 卓,博士生导师,主任药师,研究方向:临床药学、个体化给药、循证药学,Tel:13818390863,Email:wangzhuo088@163.com王桐生,硕士生导师,研究方向:方药的效应机制及中药的毒性机制研究,Tel:15155152892,Email:wtsyl@163.com
  • 中图分类号: R285.5

Microdialysis recovery of cefradine in vitro

  • 摘要:   目的  测定头孢拉定微透析体外回收率及影响因素。  方法  采用微透析浓度差法(减量法、增量法)和液质联用技术(LC-MS/MS)测定头孢拉定的体外回收率,并考察流速、浓度对回收率的影响,以探讨微透析技术用于头孢拉定体内药动学研究的可行性。  结果  所建立的方法在要求范围内线性关系良好,方法灵敏可靠。增、减量法测得的回收率无显著性差异。相同条件下,探针体外回收率随流速增大而减小,不受探针周围药物浓度的影响。  结论  微透析技术可用于头孢拉定药动学研究,减量法可用于头孢拉定微透析体内回收率和药动学参数的测定。
  • 生脉注射液临床上常用于辅助治疗心肌梗塞、心源性休克、脓毒症和感染性休克。心肌梗塞引起组织产生大量氧自由基,直接损伤心肌细胞并触发细胞凋亡,免疫介导的炎症损伤会加大心梗范围和心梗损伤[1]。心源性休克激活的炎症反应可诱导产生大量NO,促进细胞凋亡[2]。脓毒血症是由细菌引起的全身性炎症,大量致炎因子破坏机体的免疫平衡,从而导致机体代谢紊乱[3],严重者可能引起感染性休克。本研究特选择抗氧化及抗炎能力作为生物效应指标,考察生脉注射液质量与生物效应之间的相关性。

    课题组前期对生脉注射液中11种成分[4]进行了指认并进行了定量,均符合药典标准。药理学实验表明,生脉注射液中人参皂苷、木质素和麦冬皂苷等多种化学成分均在细胞及动物模型上表现出良好的抗炎效果[5-8],且临床研究表明其可以通过抗炎通路发挥对器官损伤的保护作用[9-10]。现今生物效应评价在中药材和中成药质量控制研究中有所应用[11-12],2015版《中国药典》收录了生物活性测定法作为质量控制标准,如洋地黄生物测定法和黄体生成素生物测定法,说明通过生物效应控制药品质量是可行的。

    抗炎和抗氧化损伤是生脉注射液产生药理作用的重要机制,但现今的质量标准仅对化学成分进行定性定量分析,不能全面体现其整体的药效活性,为此,本研究尝试通过评价其抗氧化能力以及抗炎活性,建立有效的生脉注射液生物学质量控制方法。

    二苯基苦基苯肼(DPPH,质量分数≥97%,含10%~20%苯,批号:PRPDE-JO,梯希爱(上海)化成工业发展有限公司);水溶性维生素E (Trolox)、DMEM培养基和磷酸盐缓冲液(PBS)均购自北京Solarbio公司;胎牛血清(FBS,德国PAN Seratech公司);N-硝基-L-精氨酸甲酯(L-NAME)、NO检测试剂盒(上海碧云天生物技术有限公司);无水乙醇(北京化工厂);水(屈臣氏)。

    9批次生脉注射液分别由5个不同厂家生产,样品详细情况见表1

    表  1  生脉注射液样品来源、批号及有效成分含量(μg/ml)[4]
    编号生产厂家批号规格人参皂苷Rb1人参皂苷Re人参皂苷Rg1五味子醇甲麦冬皂苷D
    S1A1612040100510 ml/支61.1651.3984.6951.431.48
    S2B16050210 ml/支101.6955.6188.9973.093.42
    S3C1707101410 ml/支56.9944.8780.4236.781.68
    S4C1704042320 ml/支63.1244.5181.5439.631.28
    S5D170425220 ml/支77.1562.1086.1129.053.62
    S6E1709130210 ml/支85.5257.7488.4533.551.40
    S7E1709290310 ml/支80.4341.5286.3637.301.33
    S8E1706110320 ml/支74.8861.0680.0035.181.72
    S9E1705300520 ml/支79.9748.5480.3444.831.59
    下载: 导出CSV 
    | 显示表格

    电子分析天平(AB265-S,梅托勒-托利多有限公司);超声波清洗仪(B25-12DT,宁波新芝生物科技股份有限公司);TS-2000A脱色摇床(海门市其林贝尔仪器制造有限公司);96孔板、多功能连续波长酶标仪(InfiniteM1000,TECAN公司);低速离心机(SC-3610,安徽中科中佳科学仪器有限公司);二氧化碳培养箱(MCO-15AC,三洋电机株式会社)。

    RAW264.7细胞为小鼠单核巨噬细胞,购于中国医学科学院基础医学研究所细胞中心。培养条件:完全培养基为含10%FBS的DMEM培养基,在37℃含5% CO2的培养箱中培养。每天换液,细胞生长达对数生长期时,传代(传代比例为1:6)并开展实验,实验用细胞控制在10代以内。

    2.1.1   实验过程

    取96孔板,每孔依次加入100 μl初浓度2.0%的受试液、100 μl 0.5 mmol/L DPPH溶液,震荡均匀后避光反应20 min。

    测定方法:每孔依次加入100 μl受试液和DPPH溶液,在摇床上振荡均匀,避光反应20 min后,用酶标仪测定波长在517 nm处的吸光度。

    2.1.2   方法学考察

    考察内容:①线性关系:分别吸取样品编号为S9的药液,用纯水定容得到浓度为8%的生脉注射液受试液。逐级稀释,测定其吸光度并计算该浓度下的平均吸光度。以终浓度为横坐标(X),平均吸光度为纵坐标(Y),绘制标准曲线,得到的线性关系方程为Y=-0.2081X+1.2209(r=0.9996)(图1-A),表明生脉注射液具有较强的DPPH自由基清除能力且具有浓度依赖性,体积浓度和平均吸光度具有良好的线性关系,在0%~2.0%范围内线性关系良好。②精密度:取样品S9,配制得到浓度2.0%的受试液,设置平行复孔,按照“2.1.1”项下操作测定吸光度,计算其吸光度的RSD值为2.25%(见表2),表明该方法满足方法学精密度要求。③重复性:取样品S9,配制得到浓度2.0%的受试液,设置平行复孔,按照"2.1.1“项下操作测定吸光度,计算其平均吸光度的RSD值为2.21%(见表2),表明该方法满足方法学重复性要求。④稳定性:取样品S9,分别于0、4、8、24、48和72 h,配制得到浓度2.0%的受试液,设置平行复孔,按照“2.1.1”项下操作测定吸光度,计算其平均吸光度的RSD值为2.47%(见表3),表明该方法在72 h内稳定性良好。

    图  1  生脉注射液抗氧化生物活性评价
    A. 生脉注射液对DPPH清除作用的标准曲线;B. Trolox对DPPH清除作用的标准曲线;C. 1.0%各批次生脉注射液相当于Trolox的量(mmol/L)
    表  2  1.0%生脉注射液对DPPH清除作用的精密度和重复性考察
    编号精密度试验重复性试验
    吸光度均值RSD(%)吸光度均值RSD(%)
    11.063 41.087 92.251.138 91.135 62.22
    21.115 61.175 6
    31.098 31.135 7
    41.114 31.096 7
    51.064 91.129 2
    61.070 91.137 7
    下载: 导出CSV 
    | 显示表格
    表  3  1.0%生脉注射液对DPPH的清除作用的稳定性
    时间吸光度均值RSD(%)
    01.038 51.078 82.47
    41.105 7
    81.072 2
    241.080 5
    481.065 7
    721.110 0
    下载: 导出CSV 
    | 显示表格
    2.1.3   生脉注射液抗氧化生物活性的质量评价

    精密称定Trolox,加入100 μl无水乙醇溶解,纯水定容,得到初浓度为15.46 mmol/L的Trolox溶液。将其逐级稀释,按照“2.1.1“项下操作测定并计算平均吸光度,以终浓度为横坐标(X),平均吸光度为纵坐标(Y),绘制标准曲线。得到的线性关系方程为Y=–0.0789X+1.1674(r=0.9951)(见图1-B),表明Trolox清除DPPH能力在作用浓度0.43~5.56 mmol/L范围内具有良好线性关系。

    将9批次生脉注射液清除DPPH自由基的结果与Trolox比较,折算得到各批次生脉注射液相当于水溶性Trolox的作用浓度(见图1-C)。结果表明,终浓度1.0%的各批次生脉注射液清除自由基能力相对于Trolox作用浓度范围为1.2~1.9 mmol/L,在清除自由基即抗氧化能力方各批次不存在较大差异。

    2.2.1   Griess试剂盒测定生脉注射液抑制NO释放能力

    使用完全培养基配制为1.2%的生脉注射液样品溶液,及初浓度100μg/ml的LPS样品溶液。

    取对数生长期的RAW264.7细胞,制备成2×106个/ml的细胞悬液,以每孔100 μl注入96孔板。培养24 h后,弃去培养基,每孔加入100 μl样品溶液和100 μl的LPS溶液,孵育24 h后吸取50 μl上清液,按照Griess试剂盒说明书操作,用酶标仪测定波长540 nm处的吸光度。

    2.2.2   方法学考察

    考察内容:①线性关系:精密吸取样品编号为S6的药液,用完全培养基制成浓度为4.0%的溶液。逐级稀释,测定吸光度并计算该浓度下的平均吸光度。以终浓度为横坐标(X),平均吸光度为纵坐标(Y),绘制标准曲线。得到线性方程为Y=–0.033ln(X)+0.243(r=0.9961)(见图2-A),表明生脉注射液具有良好的NO分泌抑制能力并具有浓度依赖性,终浓度和平均吸光度之间具有良好的线性关系,在0.2%~2.0%范围内线性关系良好。②精密度:取样品S6,配制得到浓度为1.2%的受试液,设置平行复孔,按照“2.1.1“项下操作测定吸光度,计算其吸光度的RSD值为1.71%(见表4),表明该法满足方法学精密度要求。③重复性:取样品S6,配制得到浓度为1.2%的受试液,设置平行复孔,按照“2.1.1“项下操作测定吸光度,计算其平均吸光度的RSD值为2.79%(见表4),表明该法满足方法学重复性要求。④稳定性:取样品S6,分别于0、4、8、24和48 h时,配制得到浓度1.2%的溶液,设置平行复孔,按照“2.1.1”项下操作测定吸光度,计算其平均吸光度的RSD值为2.66%(见表5),表明该方法在48 h内稳定性良好。

    图  2  生脉注射液抗炎活性评价
    A. 生脉注射液对RAW264.7细胞分泌NO的标准曲线;B. L-NAME对RAW 264.7细胞分泌NO的标准曲线;C. 0.60%各批次生脉注射液相当于L-NAME的量(mmol/L)
    表  4  1.2%生脉注射液对LPS刺激264.7细胞分泌NO的精密度和重复性考察
    编号精密度试验重复性试验
    吸光度均值RSD(%)吸光度均值RSD(%)
    10.276 00.272 91.710.272 90.285 02.79
    20.272 30.281 1
    30.265 00.289 0
    40.276 10.291 6
    50.275 00.290 6
    下载: 导出CSV 
    | 显示表格
    表  5  1.2%生脉注射液对LPS刺激264.7细胞分泌NO的稳定性考察
    时间吸光度均值RSD(%)
    00.264 50.262 32.66
    20.273 6
    40.257 4
    240.257 4
    480.258 6
    下载: 导出CSV 
    | 显示表格
    2.2.3   生脉注射液抗炎生物活性的质量评价

    精密称定eNOS抑制剂L-NAME,逐级稀释,按照“2.1.1“项下操作,测定并计算平均吸光度,以终浓度为横坐标(X),平均吸光度为纵坐标(Y),绘制标准曲线。得到线性关系方程为Y=–0.052ln(X)+0.152(r=0.9957)(见图2-B),表明L-NAME抑制NO分泌能力在0.05~0.55 mmol/L范围内具有良好线性关系。

    将9批次生脉注射液抑制NO分泌能力的结果与L-NAME比较,折算得到各批次生脉注射液相对于L-NAME的作用浓度(见图2-C)。

    结果显示,除S2和S8样品外,终浓度0.6%的各批次生脉注射液对应的L-NAME浓度范围均在0.06~0.16 mmol/L范围内,表明在抑制NO分泌能力即抗炎能力方面S2和S8与其他样品存在较大差异。其中S2对应的L-NAME浓度远高于其他样品,其抗炎活性远高于其他样品组,推测这可能与化学成分含量差异有关,需要后续的实验加以证实。

    测定抗氧化活性常用的方法有氧化自由基吸收能力(ORAC)、二苯基苦基苯肼(DPPH)法和总抗氧化能力检测(ABTS)法等,本实验首先采用DPPH法测定抗氧化能力,该方法操作简便,常用于体外评价化合物的抗氧化活性,其中Trolox和维生素C是常用的抗氧化剂对照药[13-14],但相较之下,Trolox可通过清除自由基产生抗氧化机制,且具有剂量依赖性[15],而维生素C稳定性较Trolox差,所以该方法选择了该药作为阳性对照。内皮型一氧化氮合酶(eNOS)诱导产生NO是NO产生的重要途径[16],L-NAME作为eNOS抑制剂,选择其作为对照药可以更加直观地评价药物对细胞产生NO的抑制能力。

    参考2015版药典生物测定方法,该试验通过测定生脉注射液的抗炎和抗氧化能力,初步建立了生脉注射液的生物效应质量控制方法,该方法不仅能满足方法学要求,而且可以克服现行质量控制方法的局限性,还可以有效的评价中药复方制剂在治疗过程中产生的效应强度,实现“质-量-效”的有效结合[17]

    中药复方是一个组分复杂,不仅化学成分复杂,未知组分众多,而且其可能通过不同成分的配伍产生作用机制,即其药理机制不是单一化学成分能够阐明的,因此,仅对中药复方的化学成分进行评价难以对其成分及作用进行全面阐述。生物效应质量控制方法能对中药复方的整体组分药效进行把控,从药理活性方面评价中药复方质量,弥补现有质控方法的不足。在生物效应质控方法建立过程中,应注意以下问题:①质控方法应根据药效及药理机制研究选择合适的生物效应指标,充分反映该药的药理活性特征;②选择的对照药应具有足够的专属性、关联性和可测性,能够充分准确地反映药物的生物效应[18-20]。参考已有的生物质量控制研究[1121]并对生脉注射液可能的药理活性进行筛选,对此进行考察。重点考察其方法学验证,结果显示该方法可行性高,方法学符合生物效应评价要求,可以反映生脉注射液的整体生物效应。但抗炎活性的测定实验要求较高的实验操作,且该方法对中药复方的整体生物活性进行测定,并未对可能产生药理活性的化学组分和含量进行探究和测定,可能产生药理活性的化学成分及作用机制尚不明确,值得后续的探讨。

  • 图  1  头孢拉定结构式

    图  2  头孢拉定全扫描质谱图

    图  3  头孢拉定碎片离子扫描质谱图

    图  4  头孢拉定的专属性考察

    A.空白林格溶液;B.微透析溶液对照品

    图  5  不同流速对探针回收率的影响($\bar{ x} \pm { s}$n=5)

    图  6  不同浓度对探针回收率的影响($\bar{ x} \pm { s}$n=5)

    表  1  头孢拉定的日内和日间精密度、准确度考察结果(n=6)

    标准浓度(ng/ml)日内日间
    检测浓度(ng/ml)精密度(%)准确度(%)检测浓度(ng/ml)精密度(%)准确度(%)
    2524.60±0.843.4098.3925.49±1.636.39101.94
    500494.87±3.670.8098.97493.23±4.490.9198.65
    10 00010 269.52±82.900.74102.6910 325.06±190.401.84103.25
    下载: 导出CSV

    表  2  头孢拉定不同温度稳定性考察结果($\bar{ x} \pm { s}$)

    标准浓度(ng/ml)检测浓度(%)
    室温(25 ℃)低温(4 ℃)
    低浓度(100)101.64±4.24103.73±6.30
    高浓度(10 000)104.29±2.51103.79±1.73
    下载: 导出CSV
  • [1] NANDI P, LUNTE S M. Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review[J]. Anal Chim Acta,2009,651(1):1-14. doi:  10.1016/j.aca.2009.07.064
    [2] HURTADO F K, WEBER B, DERENDORF H, et al. Population pharmacokinetic modeling of the unbound levofloxacin concentrations in rat plasma and prostate tissue measured by microdialysis[J]. Antimicrob Agents Chemother,2014,58(2):678-686. doi:  10.1128/AAC.01884-13
    [3] K HURTADO F, LAUREANO J V, DE A LOCK G, et al. Enhanced penetration of moxifloxacin into rat prostate tissue evidenced by microdialysis[J]. Int J Antimicrob Agents,2014,44(4):327-333. doi:  10.1016/j.ijantimicag.2014.06.011
    [4] 李奕, 周佳, 王卓, 等. 用微透析法研究肺炎大鼠灌胃左氧氟沙星的肺部药动学[J]. 药学服务与研究, 2013, 13(5):365-368.
    [5] MARCHAND S, CHAUZY A, DAHYOT-FIZELIER C, et al. Microdialysis as a way to measure antibiotics concentration in tissues[J]. Pharmacol Res,2016,111:201-207. doi:  10.1016/j.phrs.2016.06.001
    [6] CHAURASIA C S. In vivo microdialysis sampling: theory and applications[J]. Biomed Chromatogr,1999,13(5):317-332. doi:  10.1002/(SICI)1099-0801(199908)13:5<317::AID-BMC891>3.0.CO;2-I
    [7] 田红玉, 聂飞, 周凝. 头孢拉定结晶工艺研究[J]. 煤炭与化工, 2019, 42(4):141-143.
    [8] 唐晓萌. 基于两步释放的术连微丸口服结肠靶向胶囊的研制及体内外评价[D]. 上海: 海军军医大学, 2019.
    [9] 王丹. 微透析液相色谱联用的构建及在经皮药动学研究的应用[D]. 上海: 第二军医大学, 2009.
    [10] UNGERSTEDT U, PYCOCK C. Functional correlates of dopamine neurotransmission[J]. Bull Schweiz Akad Med Wiss,1974,30(1-3):44-55.
    [11] LÖNNROTH P, JANSSON P A, SMITH U. A microdialysis method allowing characterization of intercellular water space in humans[J]. Am J Physiol,1987,253(2 Pt 1):E228-E231.
    [12] MÜLLER M. Science, medicine, and the future: microdialysis[J]. BMJ,2002,324(7337):588-591. doi:  10.1136/bmj.324.7337.588
    [13] MÜLLER M. Monitoring tissue drug levels by clinical microdialysis[J]. Altern Lab Anim,2009,37(Suppl 1):57-59.
    [14] MULLER M. Microdialysis in clinical drug delivery studies[J]. Adv Drug Deliv Rev,2000,45(2-3):255-269. doi:  10.1016/S0169-409X(00)00113-7
    [15] STAHL M, BOUW R, JACKSON A, et al. Human microdialysis[J]. Curr Pharm Biotechnol,2002,3(2):165-178. doi:  10.2174/1389201023378373
    [16] SCHMIDT S, BANKS R, KUMAR V, et al. Clinical microdialysis in skin and soft tissues: an update[J]. J Clin Pharmacol,2008,48(3):351-364. doi:  10.1177/0091270007312152
    [17] HÖCHT C, OPEZZO J A, BRAMUGLIA G F, et al. Application of microdialysis in clinical pharmacology[J]. Curr Clin Pharmacol,2006,1(2):163-183. doi:  10.2174/157488406776872587
    [18] FULMER B R, TURNER T T. A blood-prostate barrier restricts cell and molecular movement across the rat ventral prostate epithelium[J]. J Urol,2000,163(5):1591-1594. doi:  10.1016/S0022-5347(05)67685-9
    [19] LIU Y L, YI S H, ZHANG J L, et al. Effect of microbubble-enhanced ultrasound on prostate permeability: a potential therapeutic method for prostate disease[J]. Urology,2013,81(4):921.e1-921.e7.
    [20] SHANG Y, CUI D, YI S. Opening tight junctions may be key to opening the blood-prostate barrier[J]. Med Sci Monit,2014,20:2504-2507. doi:  10.12659/MSM.890902
    [21] PERLETTI G, WAGENLEHNER F M, NABER K G, et al. Enhanced distribution of fourth-generation fluoroquinolones in prostatic tissue[J]. Int J Antimicrob Agents,2009,33(3):206-210. doi:  10.1016/j.ijantimicag.2008.09.009
    [22] LEIBOVITZ A, BAUMOEHL Y, SEGAL R. Increased incidence of pathological and clinical prostate cancer with age: age related alterations of local immune surveillance[J]. J Urol,2004,172(2):435-437. doi:  10.1097/01.ju.0000131908.19114.d3
    [23] LIU Y L, LIU Z, LI T, et al. Ultrasonic sonoporation can enhance the prostate permeability[J]. Med Hypotheses,2010,74(3):449-451. doi:  10.1016/j.mehy.2009.09.052
    [24] 唐红艳. 基于微透析技术研究雪上一枝蒿不同制剂经皮药动学[D]. 贵阳: 贵阳中医学院, 2017.
  • [1] 葛鹏程, 苏日古嘎, 任天舒, 党大胜.  硫酸黏菌素联合头孢哌酮舒巴坦治疗泛耐药鲍曼不动杆菌肺内感染的疗效分析 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202404093
    [2] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2025, 43(4): 185-189. doi: 10.12206/j.issn.2097-2024.202401072
    [3] 詹济华, 颜滢.  低蛋白血症对头孢哌酮血药浓度的影响 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202309040
    [4] 游飘雪, 陈兰, 施艺玮, 王辉, 晁亮, 洪战英.  脑胶质瘤微流控芯片模型的构建及中药半枝莲药效评价应用研究 . 药学实践与服务, 2025, 43(2): 59-66. doi: 10.12206/j.issn.2097-2024.202409034
    [5] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [6] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
    [7] 张莲卿, 骆岩, 杨提, 姚佳晨, 李文艳.  基于FAERS数据库的艾塞那肽微球不良事件信号挖掘与研究 . 药学实践与服务, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  5326
  • HTML全文浏览量:  2631
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-15
  • 修回日期:  2019-12-27
  • 网络出版日期:  2020-04-23
  • 刊出日期:  2020-03-01

头孢拉定微透析体外回收率及影响因素的研究

doi: 10.3969/j.issn.1006-0111.201910044
    基金项目:  国家自然科学基金(81870520)
    作者简介:

    仰先蜜,硕士研究生,研究方向:临床药学,Tel:15755078132,Email:1474369123@qq.com

    通讯作者: 王 卓,博士生导师,主任药师,研究方向:临床药学、个体化给药、循证药学,Tel:13818390863,Email:wangzhuo088@163.com王桐生,硕士生导师,研究方向:方药的效应机制及中药的毒性机制研究,Tel:15155152892,Email:wtsyl@163.com
  • 中图分类号: R285.5

摘要:   目的  测定头孢拉定微透析体外回收率及影响因素。  方法  采用微透析浓度差法(减量法、增量法)和液质联用技术(LC-MS/MS)测定头孢拉定的体外回收率,并考察流速、浓度对回收率的影响,以探讨微透析技术用于头孢拉定体内药动学研究的可行性。  结果  所建立的方法在要求范围内线性关系良好,方法灵敏可靠。增、减量法测得的回收率无显著性差异。相同条件下,探针体外回收率随流速增大而减小,不受探针周围药物浓度的影响。  结论  微透析技术可用于头孢拉定药动学研究,减量法可用于头孢拉定微透析体内回收率和药动学参数的测定。

English Abstract

俞月, 路娟, 柴瑞平, 吕欣锴, 邓明慧, 陈曦. 基于抗氧化和抗炎生物效应的生脉注射液质量评价[J]. 药学实践与服务, 2020, 38(2): 143-147. doi: 10.3969/j.issn.1006-0111.201906029
引用本文: 仰先蜜, 许小建, 王学彬, 王卓, 王桐生. 头孢拉定微透析体外回收率及影响因素的研究[J]. 药学实践与服务, 2020, 38(2): 120-123, 128. doi: 10.3969/j.issn.1006-0111.201910044
YU Yue, LU Juan, CHAI Ruiping, LYU Xinkai, DENG Minghui, CHEN Xi. Quality control and evaluation of Shengmai injection based on anti-oxidant and anti-inflammatory biological effects[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(2): 143-147. doi: 10.3969/j.issn.1006-0111.201906029
Citation: YANG Xianmi, XU Xiaojian, WANG Xuebin, WANG Zhuo, Wang Tongsheng. Microdialysis recovery of cefradine in vitro[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(2): 120-123, 128. doi: 10.3969/j.issn.1006-0111.201910044
  • 微透析(microdialysis,MD)在体取样新技术[1-4]逐渐成为药动学研究中一种日趋成熟和实用的方法。由于其探针开发的多样性和微型化,定位更加准确,并利用极微量(一般若干微升)的透析装置实现在体、实时、在线取样和监测。能在微创条件下满足定量、定性、定位、连续动态取样分析等要求,且不破坏生物体内环境对靶器官或组织内的内源性和外源性物质进行取样[5-6],在采用微透析技术进行体内采样测定前,必须先在体外进行微透析探针增量、减量两种方法的回收率测定,以摸索出适合体内测定时的条件,以确保将微透析样品测得的浓度准确地折算为采样部位的组织浓度。

    头孢拉定(cephradine)又称先锋霉素Ⅵ、头孢菌素Ⅵ等,其结构式见图1,是临床常用的第一代头孢菌素。头孢拉定耐酸,可以口服、吸收好、血药浓度较高,特点是耐β内酰胺酶,对耐药性金黄色葡萄球菌及其他多种对广谱抗生素耐药的杆菌等有迅速而可靠的杀菌作用,主要以原形经尿排泄,尿中浓度较高。临床主要用于呼吸道、泌尿道、皮肤和软组织等的感染,如支气管炎、肺炎、肾盂肾炎、膀胱炎、耳鼻咽喉感染、肠炎及痢疾等,也常用于预防外科术后感染[7]。本研究使用微透析技术与液质(LC-MS/MS)这一灵敏度高、检测速度快、前处理方便的分析方法相结合,测定头孢拉定微透析体外回收率,并考察回收率的影响因素,为进一步研究头孢拉定在前列腺组织、血液双位点的药动学提供可靠依据。

    图  1  头孢拉定结构式

    • G-6410型高效液相色谱质谱联用仪(美国安捷伦科技有限公司);DL-180A型超声波清洗器(上海之信仪器有限公司);AG285型电子分析天平(Mettler Toledo仪器上海有限公司);微透析系统包括四通道微量注射泵,双通道微量收集器(瑞典CMA公司);微透析同心圆探针(瑞典CMA公司,CMA 20Elite,膜长10 mm)。

    • 乙腈为色谱纯(美国Tedia公司);头孢拉定对照品(中国食品药品检定研究院,纯度88.4%);林格溶液(辰欣药业股份有限公司);水为三蒸水(海军军医大学附属长海医院制剂室);其他试剂均为分析纯。

    • 色谱柱:Agilent ZORBAX Extend-C18柱(2.1 mm × 100 mm,3.5 μm);流动相:乙腈-0.1%甲酸水溶液(20:80);流速:0.2 ml/min;进样量:1 μl;柱温:30 ℃。

    • ESI+离子源,阳离子MRM扫描模式,干燥气体温度:350 ℃,干燥气流速:8 L/min,雾化压力:15 psi,裂解电压120 V,碰撞能量6 eV,定量离子对为m/z=350.1→176.1。

    • 头孢拉定标准品ESI+模式的扫描图见图2,主要组成为 [M+H][8],确定其准分子离子峰为m/z=350.1。

      图  2  头孢拉定全扫描质谱图

    • 在Product Ion 模式下对碎片离子进行定量分析,如图3所示,其中m/z=176.1的碎片离子响应值最高且稳定。因此,选择的监测离子为m/z=176.1的碎片离子。

      图  3  头孢拉定碎片离子扫描质谱图

    • 精密称取头孢拉定对照品适量溶于50 ml的棕色容量瓶中,加林格溶液超声溶解使成浓度为50 μg/ml的对照品储备液。将此溶液放于4 ℃冰箱中避光保存。

    • 吸取适量“2.1.5”项下对照品储备液,用林格溶液稀释成系列浓度为20 000、10 000、2 000、500、100、25、10 ng/ml的头孢拉定标准品溶液,按上述液质条件进样。以质量浓度为横坐标(X,ng/ml),峰面积为纵坐标(Y)进行线性回归,绘制标准曲线,以加权平均数得回归方程为:Y = 34.096 2X + 150.818 5,r = 0.999,表明头孢拉定在10~20 000 ng/ml范围内线性关系良好,定量下限为10 ng/ml。

    • 在本实验条件下,分别取林格溶液空白样品、微透析溶液对照品进样,记录峰面积。结果表明林格溶液对头孢拉定的测定无干扰,如图4

      图  4  头孢拉定的专属性考察

    • 同法配置浓度为25、500、10 000 ng/ml的低、中、高头孢拉定对照品溶液,同一日平行操作6次,连续测定3 d,按《中国药典》(2015年版)生物样品定量分析方法计算日内精密度、准确度和日间精密度、准确度。结果显示,头孢拉定对照品连续进样6次,连续测定3 d,计算结果见表1,说明方法的精密度、准确度良好。

      表 1  头孢拉定的日内和日间精密度、准确度考察结果(n=6)

      标准浓度(ng/ml)日内日间
      检测浓度(ng/ml)精密度(%)准确度(%)检测浓度(ng/ml)精密度(%)准确度(%)
      2524.60±0.843.4098.3925.49±1.636.39101.94
      500494.87±3.670.8098.97493.23±4.490.9198.65
      10 00010 269.52±82.900.74102.6910 325.06±190.401.84103.25
    • 用林格溶液配制浓度为10 000、100 ng/ml的头孢拉定对照品溶液,分别在0、1、2、4、6、8、12 h进样测定,将结果与0 h进行比较。按《中国药典》(2015年版)生物样品定量分析方法计算所得的低、高浓度在室温25 ℃和4 ℃的稳定性,结果见表2,表明头孢拉定对照品溶液在12 h内稳定。

      表 2  头孢拉定不同温度稳定性考察结果($\bar{ x} \pm { s}$)

      标准浓度(ng/ml)检测浓度(%)
      室温(25 ℃)低温(4 ℃)
      低浓度(100)101.64±4.24103.73±6.30
      高浓度(10 000)104.29±2.51103.79±1.73
    • 减量法:将同心圆探针(膜截留相对分子质量2 000)浸入装有空白林格溶液的200 ml微透析体外回收率校正实验反应瓶中,磁力搅拌器转速200 r/min,水浴温度设置为(37.0±0.5)℃,用含有一定头孢拉定浓度(C灌流液)的林格溶液以一定流速进行灌注。平衡0.5 h后收集一个空白样品,每种灌流速度下收集 5 份样品,每份30 μl,且每个流速之间平衡20 min。在所建立的液质条件下测定透析液中药物含量(C透析液)。减量法公式:

      RL(%) = (C灌流液 – C透析液)/C灌流液 × 100%

      增量法:将同心圆探针(膜截留相对分子质量2 000)浸入含有一定头孢拉定浓度(C灌流液)的200 ml微透析体外回收率校正实验反应瓶中,磁力搅拌器转速200 r/min,水浴温度设置为(37.0±0.5)℃。微透析灌流液为一定灌流速度的空白林格溶液,平衡0.5 h后收集样品,每更换一次灌流速度后平衡20 min,每种灌流速度下收集5份样品,每份30 μl,共收集15份。在所建立的液质条件下测定透析液中药物含量(C透析液)。增量法公式:

      RG(%) = C透析液/C灌流液 × 100%

    • 分别采用增量法、减量法研究流速对探针回收率的影响。以500 ng/ml的头孢拉定药物溶液,灌流速度依次为1.0、2.0、3.0 μl/min测定,并按公式计算探针回收率,结果见图5。结果显示,灌流速度从1 μl/min增至3 μl/min时,随着流速增加,回收率降低。而且,头孢拉定浓度为25、10 000 ng/ml 的回收率试验结果与此相似。

      图  5  不同流速对探针回收率的影响($\bar{ x} \pm { s}$n=5)

    • 分别用增、减量法研究流速为2 μl/min,头孢拉定溶液浓度分别为25、500、10 000 ng/ml时的回收率,结果见图6。结果显示,当以2 μl/min的流速进行灌流时,同一探针不同浓度采用单因素方差分析测得的回收率均无显著性差异(P>0.05)。表明探针回收率与药物浓度高低无关。

      图  6  不同浓度对探针回收率的影响($\bar{ x} \pm { s}$n=5)

    • MD最初可追溯到20世纪60年代,当时不同类型的在体取样技术首次用于测定药物、介质、神经递质和代谢组织浓度[10-11],其原理是利用物质的扩散性和半透膜的选择透过性,探针头部半透膜位于组织内,且导管内液体与细胞内液体保持平衡,类似一个封闭的无孔毛细血管。这是一项为处在具有明显界限隔室里的游离型药物提供连续信息的微创技术。例如,成为测量细胞内和细胞外靶区浓度的标准工具。许多综述文章[12-17]已经证实MD是临床前和临床药学研发的有效工具。MD用于本研究的原理是基于血液-组织屏障的存在,屏障存在对血液浓度的依赖可能误导靶区浓度及药效学。在多年不断的研究中,人们发现血-前列腺屏障(BPB)的存在是影响前列腺炎药物治疗不可忽视的重要因素[18-20]。受采样和测定技术的限制,截止目前尚未明确BPB的具体部位和物质基础,故而很难研究其药物分布的特点和屏障作用的机制[21-23]。而MD有望解决前列腺组织特殊的部位和大小对技术上的高要求。有利于后期动物前列腺实验的开展。

      微透析探针的回收率分为体内和体外,校正方法也有体内和体外之分。而体内校正应用反透析法即减量法的前提是探针的回收率与传递率近似相等,所以需要进行体外增、减量法的回收率试验。本实验结果可看出,体外回收率与流速成反比,与探针周围液体浓度无关,结果与多数报道相符[9, 24],由于待测部位的药物浓度是动态变化的,说明微透析技术可以用于体内药物浓度的测定。MD样品体积也与灌流速度成正比,在相同时间内流速越高体积越大,但是探针回收率也有所降低,这就要求分析方法检测限更低;而流速越低,透析液浓度越接近组织浓度,但为了收集足量样品体积用于检测,同时考虑时间分辨率问题须选择合适流速。此外,增、减量法所得到头孢拉定体外回收率结果相近,说明减量法即反透析法可以用于头孢拉定的体内回收率实验,并以此为体内药动学实验提供参考。

参考文献 (24)

目录

/

返回文章
返回