留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

靶向肿瘤微环境的紫杉醇前药研究进展

程丹 许幼发 傅志勤 陈建明

程丹, 许幼发, 傅志勤, 陈建明. 靶向肿瘤微环境的紫杉醇前药研究进展[J]. 药学实践与服务, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001
引用本文: 程丹, 许幼发, 傅志勤, 陈建明. 靶向肿瘤微环境的紫杉醇前药研究进展[J]. 药学实践与服务, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001
CHENG Dan, XU Youfa, FU Zhiqin, CHEN Jianming. Research progress on tumor-targeting paclitaxel prodrugs[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001
Citation: CHENG Dan, XU Youfa, FU Zhiqin, CHEN Jianming. Research progress on tumor-targeting paclitaxel prodrugs[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001

靶向肿瘤微环境的紫杉醇前药研究进展

doi: 10.3969/j.issn.1006-0111.2018.01.001

Research progress on tumor-targeting paclitaxel prodrugs

  • 摘要: 紫杉醇前药(paclitaxel prodrugs)的设计是一种提高药物制剂成药性、降低其毒副作用、增强抗肿瘤效果的有效手段。随着对前药研究的深入,利用肿瘤过表达的受体、酶、转运蛋白、谷胱甘肽及活性氧自由基以及肿瘤组织弱酸性及低氧环境等作为靶标进行的紫杉醇靶向性前药的研究已取得极大进展。综述近年来以肿瘤微环境特殊的病理与生理特征为靶标的紫杉醇前药的研究进展。
  • [1] Wani M C, Taylor H L, Wall M E, et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia.[J]. J Amer Chem Soc, 1971, 93(9):2325-2327.
    [2] Yusuf RZ, Duan Z, Lamendola DE, et al. Paclitaxel resistance:molecular mechanisms and pharmacologic manipulation[J]. Curr Cancer Drug Targets, 2003,3(1):1-19.
    [3] Scripture CD, Figg WD, Sparreboom A. Paclitaxel chemotherapy:from empiricism to a mechanism-based formulation strategy[J]. Ther Clin Risk Manag, 2005,1(2):107-114.
    [4] Wang Y, Li X, Wang L, et al. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery[J]. Int J Nanomed, 2011,6:1497-1507.
    [5] Webster L, Linsenmeyer M, Millward M, et al. Measurement of cremophor EL following taxol:plasma levels sufficient to reverse drug exclusion mediated by the multidrug-resistant phenotype[J]. JNCI, 1993, 85(20):1685-1690.
    [6] Chervinsky DS, Brecher ML, Hoelcle MJ. Cremophor-EL enhances taxol efficacy in a multi-drug resistant C1300 neuroblastoma cell line[J]. Anticancer Res, 1993, 13(1):93-96.
    [7] 张珏, 吕加国, 朱驹. 抗肿瘤药物紫杉醇的化学研究进展[J]. 中国新药杂志, 2006,15(3):178-181.
    [8] Meerum Terwogt JM, ten Bokkel Huinink WW, Schellens JH, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel.[J]. Anticancer Drugs, 2001,12(4):315-323.
    [9] Tr dan O, Galmarini CM, Patel K, et al. Drug Resistance and the Solid Tumor Microenvironment[J]. JNCI, 2007,99(19):1441-1454.
    [10] Misra S, Hascall VC, Markwald RR, et al. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer[J]. Front Immunol, 2015,6:201.
    [11] Shahbaz M, Ruliang F, Xu Z, et al. mRNA expression of somatostatin receptor subtypes SSTR-2, SSTR-3, and SSTR-5 and its significance in pancreatic cancer[J]. World J Surg Oncol, 2015,13:46.
    [12] Barar J, Kafil V, Majd MH, et al. Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells[J]. J Nanobiotechnol, 2015,13:26.
    [13] Huo M, Zhu Q, Wu Q, et al. Somatostatin receptor-mediated specific delivery of paclitaxel prodrugs for efficient cancer therapy[J]. J Pharm Sci-US, 2015, 104(6):2018-2028.
    [14] Zhong Y, Goltsche K, Cheng L, et al. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo[J]. Biomaterials, 2016, 84:250-261.
    [15] Alaoui AE, Saha N, Schmidt F, et al. New Taxol(paclitaxel) prodrugs designed for ADEPT and PMT strategies in cancer chemotherapy[J]. Bioorg Med Chem, 2006, 14(14):5012-5019.
    [16] Satsangi A, Roy SS, Satsangi RK, et al. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells[J]. Mol Pharm, 2014, 11(6):1906-1918.
    [17] Li N, Cai H, Jiang L, et al. Enzyme-Sensitive and Amphiphilic PEGylated Dendrimer-Paclitaxel Prodrug Based Nanoparticles for Enhanced Stability and Anticancer Efficacy[J]. ACS Appl Mater Interfaces, 2017,9(8),6865-6877.
    [18] 樊健, 俞光荣. 葡萄糖转运蛋白1与恶性肿瘤相关性的研究进展[J]. 中国肿瘤生物治疗杂志, 2010,17(2):232-236.
    [19] Liu DZ, Sinchaikul S, Reddy PV, et al. Synthesis of 2'-paclitaxel methyl 2-glucopyranosyl succinate for specific targeted delivery to cancer cells[J]. Bioorg Med Chem Lett, 2007, 17(3):617-620.
    [20] 常彬霞, 貌盼勇. 谷胱甘肽S转移酶的研究进展及其与肿瘤的相关性[J]. 解放军医学杂志, 2012,37(8):838-842.
    [21] Ushio-Fukai M, Nakamura Y. Reactive oxygen species and angiogenesis:NADPH oxidase as target for cancer therapy[J]. Cancer Lett, 2008,266(1):37-52.
    [22] Jiang Y,Wang X,Liu X, et al. Enhanced antiglioma efficacy of ultrahigh loading capacity paclitaxel prodrug conjugate self-assembled targeted nanoparticles[J]. ACS Appl Mater Interfaces, 2017, 9(1):211-217.
    [23] Luo C, Sun J, Liu D, et al. Self-Assembled Redox Dual-Responsive Prodrug-Nanosystem Formed by Single Thioether-Bridged Paclitaxel-Fatty Acid Conjugate for Cancer Chemotherapy[J]. Nano Lett, 2016, 16(9):5401-5408.
    [24] Yang LV, Castellone RD, Dong L. Targeting Tumor Microenvironments for Cancer Prevention and Therapy[M]. InTech, 2012:1811-1814.
    [25] Ling L, Du Y, Ismail M, et al. Self-assembled liposomes of dual paclitaxel-phospholipid prodrug for anticancer therapy[J]. Int J Pharm, 2017, 526(1-2):11-22.
    [26] 杜征臻, 张琰, 叶金海,等. 聚己内酯-紫杉醇高分子前药的合成及性能研究[J]. 化学学报, 2015, 73(4):349-356.
    [27] Chen L, Endler A, Shibasaki F. Hypoxia and angiogenesis:regulation of hypoxia-inducible factors via novel binding factors.[J]. Experimental & Molecular Medicine, 2009, 41(12):849-857.
    [28] Damen EW, Nevalainen TJ, van den Bergh TJ, et al. Synthesis of novel paclitaxel prodrugs designed for bioreductive activation in hypoxic tumour tissue[J]. Bioorg Med Chem, 2002, 10(1):71-77.
    [29] Wang J, Luo T, Li S, et al. The powerful applications of polyunsaturated fatty acids in improving the therapeutic efficacy of anticancer drugs[J]. Expert Opin Drug Deliv, 2012,9(1):1-7.
    [30] Kuznetsova L, Chen J, Sun L, et al. Syntheses and evaluation of novel fatty acid-second-generation taxoid conjugates as promising anticancer agents[J]. Bioorg Med Chem Lett, 2006,16(4):974-977.
    [31] Bouvier E, Thirot S, Schmidt F, et al. A new paclitaxel prodrug for use in ADEPT strategy[J]. Org Biomol Chem,2003,1(19):3343-3352.
    [32] Nawa A, Tanino T, Luo C, et al. Gene directed enzyme prodrug therapy for ovarian cancer:could GDEPT become a promising treatment against ovarian cancer?[J]. Anticancer Agents Med Chem, 2008, 8(2):232-239.
  • [1] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架用于创伤性脑损伤治疗 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202406034
    [2] 李想, 陆鸿远, 张明玉, 高欢, 姚东, 许子华.  米格列醇激活UCP1介导棕色脂肪对冷暴露小鼠损伤的研究 . 药学实践与服务, 2024, 42(): 1-6. doi: 10.12206/j.issn.2097-2024.202404005
    [3] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [4] 刘依秦, 王超群, 邱娇娜.  胆宁片预处理在糖尿病患者结肠镜检查前的应用效果分析 . 药学实践与服务, 2024, 42(9): 407-410. doi: 10.12206/j.issn.2097-2024.202407037
    [5] 张莲卿, 骆岩, 杨提, 姚佳晨, 李文艳.  基于FAERS数据库的艾塞那肽微球不良事件信号挖掘与研究 . 药学实践与服务, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
    [6] 崔亚玲, 吴琼, 马良煜, 胡北, 姚东, 许子华.  肝素钠肌醇烟酸酯乳膏中肌醇烟酸酯皮肤药动学研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404006
    [7] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
    [8] 陈炳辰, 王思真, 郭贝贝, 杨峰.  紫杉醇棕榈酸酯的合成及其脂质体的制备与处方研究 . 药学实践与服务, 2024, 42(9): 379-384, 410. doi: 10.12206/j.issn.2097-2024.202404062
    [9] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
  • 加载中
计量
  • 文章访问数:  5080
  • HTML全文浏览量:  460
  • PDF下载量:  866
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-13
  • 修回日期:  2017-10-17

靶向肿瘤微环境的紫杉醇前药研究进展

doi: 10.3969/j.issn.1006-0111.2018.01.001

摘要: 紫杉醇前药(paclitaxel prodrugs)的设计是一种提高药物制剂成药性、降低其毒副作用、增强抗肿瘤效果的有效手段。随着对前药研究的深入,利用肿瘤过表达的受体、酶、转运蛋白、谷胱甘肽及活性氧自由基以及肿瘤组织弱酸性及低氧环境等作为靶标进行的紫杉醇靶向性前药的研究已取得极大进展。综述近年来以肿瘤微环境特殊的病理与生理特征为靶标的紫杉醇前药的研究进展。

English Abstract

程丹, 许幼发, 傅志勤, 陈建明. 靶向肿瘤微环境的紫杉醇前药研究进展[J]. 药学实践与服务, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001
引用本文: 程丹, 许幼发, 傅志勤, 陈建明. 靶向肿瘤微环境的紫杉醇前药研究进展[J]. 药学实践与服务, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001
CHENG Dan, XU Youfa, FU Zhiqin, CHEN Jianming. Research progress on tumor-targeting paclitaxel prodrugs[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001
Citation: CHENG Dan, XU Youfa, FU Zhiqin, CHEN Jianming. Research progress on tumor-targeting paclitaxel prodrugs[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001
参考文献 (32)

目录

    /

    返回文章
    返回