-
纤维化是一种由器官慢性损伤或炎症反应引起的病理变化,其主要特征是细胞外基质(ECM)的过度积累,可见于心、肺、肝、肾、皮肤等多种组织器官,纤维化持续进展可导致组织结构破坏及器官功能障碍,最终引起器官衰竭[1]。尽管各组织器官的纤维化发病机制不尽相同,但其基本过程大抵相似,由器官损伤引起炎症免疫反应,进而激活局部肌成纤维细胞,降低组织收缩力,促进炎症介质的分泌和ECM的合成,从而逐步发展为纤维化。重要脏器的纤维化严重影响人类的健康,是目前世界医学的研究难题。
隐丹参酮(CTS)是一种从唇形科植物丹参Salvia miltiorrhiza Bge的干燥根和根茎中提取的脂溶性二萜类蒽醌化合物,具有抗炎[2]、抗肿瘤[3]、抗菌[4]、神经保护[5]、心血管保护[6]等多种药理活性,近年来研究发现其还具有良好的抗组织纤维化作用[7-9]。目前研究显示,隐丹参酮的抗纤维化作用机制主要与信号转导和转录激活因子3(signal transduction and transcriptional activator 3, STAT3)、转化生长因子β(transforming growth factor-beta, TGFβ)和核因子κB(nuclear factor kappa-B, NF-κB)信号通路的抑制作用有关[7, 9,10]。本文主要就隐丹参酮对心、肺、肝、肾、皮肤等多种组织器官纤维化的治疗作用及其机制进行综述,为隐丹参酮的药物研究提供参考。
-
心脏纤维化涉及由慢性压力、损伤、全身性疾病和药物导致的心脏重塑。其病理特征包括心肌胶原排列紊乱、ECM过度沉积、心脏成纤维细胞(CFs)过度增殖和表型改变[11]。心脏纤维化对许多心脏疾病具有促进作用,主要原因是瘢痕组织阻碍了心脏正常泵血功能,从而引起心房颤动、心力衰竭以及收缩和舒张功能受损等心脏问题。
在心血管疾病中,细胞内活性氧(ROS)可以通过对DNA、蛋白质、脂质和大分子造成非特异性氧化损伤或对细胞信号通路的特异性调节参与心脏重塑。ROS的水平及其作用受到多种酶的调节,如NADPH氧化酶(NOX)、一氧化氮合酶(NOS)、呼吸链复合物蛋白和细胞色素P450等。据报道,血管紧张素Ⅱ(Ang Ⅱ)在心脏纤维化发生发展中发挥关键性作用,主要通过诱导血管中NOX介导的ROS合成,促进心脏纤维化的发展[12]。Ma等[8]研究了隐丹参酮对AngⅡ诱导的心脏纤维化的作用,结果发现隐丹参酮能够通过减少纤维连接蛋白(FN)和结缔组织生长因子(CTGF)的产生,抑制促纤维化基因的表达和ECM的积累,进而预防心脏纤维化。此外,它还可以通过降低环氧化酶2(COX-2)、NOX-2和NOX-4的表达水平减少ROS生成,起到改善心脏功能的作用。同时,作者还研究了隐丹参酮对丝裂原活化蛋白激酶(MAPK)信号通路的作用,发现隐丹参酮能够抑制ERK1/2的激活,对P38 MAPK和JNK的激活没有影响。以上结果表明,隐丹参酮可能通过抑制ERK1/2磷酸化,影响COX-2、FN、CTGF等的表达,从而起到缓解心脏纤维化的作用。
MMP-2和MMP-9系基质金属蛋白酶(MMPs)家族的重要成员,与ECM的重塑密切相关,在心脏纤维化及心血管疾病中发挥重要作用[13-14]。Tao等[15]研究隐丹参酮对异丙肾上腺素诱导的心脏纤维化的影响,发现隐丹参酮能够有效改善异丙肾上腺素引起的心肌细胞排列紊乱、心脏顺应性下降和僵硬度增加等病理变化,其主要作用机制是通过激活MMP-2加速ECM降解从而达到缓解心脏纤维化的作用。此外,Shih-Hsiang等[14, 16]研究还发现隐丹参酮可以降低1型糖尿病大鼠心肌纤维化模型中STAT3、CTGF和MMP-9的蛋白表达水平,改善糖尿病引起的心功能受损和心肌纤维化。
-
肺纤维化(PF)是间质性肺病的终末期,其病理特征是肺实质的破坏、ECM的沉积以及成纤维细胞和肺泡上皮细胞表型发生变化。PF包括早期炎症和晚期纤维化两个病理过程。首先,由外界刺激引起肺上皮细胞损伤,受损的细胞能够刺激产生各种炎症细胞因子,引发炎症反应;同时,为了防止自身死亡,受损细胞还会诱导产生促增殖和促纤维化细胞因子,最终导致肺纤维化。早期炎症反应是导致继发性损伤的主要机制之一,其中包括激活转录因子,释放下游炎症细胞因子。
TGF-β、IL-1β、IL-6和IL-10等细胞因子在肺纤维化发展过程中扮演重要角色。巨噬细胞是炎症早期TGF-β的主要产生者,TGF-β作为促纤维化细胞因子可直接诱导成纤维细胞分化为肌成纤维细胞,促进成纤维细胞的生长、活化和胶原合成[17]。诸多研究表明,受TGF-β影响,上皮细胞亦可经上皮间质转化(EMT)过程获得多种间质细胞表型,从而参与PF的形成[ 18, 19]。Jiang等人[20]研究隐丹参酮对大鼠放射性肺损伤(RILI)的治疗作用,发现隐丹参酮能改善辐射诱导的肺系数增加、肺形态异常、肺泡间隔增厚和胶原纤维聚集等病理特征,其主要作用机制可能是通过降低TGF-β1、IL-6、IL-10、NOX-4和CCL3/CCR1等炎症因子的表达,促进基质金属蛋白酶MMP-1的表达,从而达到改善肺纤维化的作用。 Zhang等[9]研究隐丹参酮对博来霉素诱导的大鼠肺纤维化的疗效,结果发现低浓度隐丹参酮能够有效降低ECM的沉积,如FN、Ⅰ型胶原(Col-1)和Ⅲ型胶原蛋白(Col-3)等,并且随着给药浓度的增加,E-cadherin显著增加,α-SMA显著降低。除此之外,研究还发现隐丹参酮不仅能够抑制经典的TGF-β/Smad信号通路,还可以抑制JAK/STAT信号通路,这提示隐丹参酮治疗肺纤维化的机制可能与抑制上述信号通路诱导的EMT过程相关。
-
肝纤维化是肝脏损伤后发生的伤口愈合反应,是一个动态可逆过程。ECM过度沉积是肝纤维化的主要病理特征,肝星状细胞(HSC)的活化是肝纤维化的核心事件[21]。引发肝纤维化的诱因有饮酒、非酒精性脂肪性肝炎(NASH)、病毒性肝炎、自身免疫性肝炎和胆汁淤积性肝病等[22]。肝炎是肝纤维化发展的必经阶段,因此,抗炎也被认为是防治肝纤维化的重要策略。
炎症小体是控制炎症反应和协调抗菌宿主防御的多蛋白信号平台,炎症小体的组成之一NLRP3是表征最好的炎症体,NLRP3被激活后会自我寡聚化并募集衔接蛋白ASC,激活pro-caspase1介导促炎细胞因子的成熟和分泌,引起NASH。
Liu等[2]研究发现隐丹参酮能够剂量依赖地抑制NLRP3炎症小体激活物诱导的caspase-1 p20激活、IL-1β分泌和LDH释放。Ca2+是NLRP3激活的重要因素之一,在ATP诱导的骨髓衍生的巨噬细胞(BMDM)内,隐丹参酮能够以剂量依赖的方式抑制Ca2+的动员和线粒体活性氧(mtROS)的生产,进而抑制NLRP3炎症小体的激活。此外,研究还发现隐丹参酮能够通过抑制NLRP3,减少IL-7A的表达,进而缓解NASH。
Nagappan等[23]研究了隐丹参酮对乙醇诱导的酒精性肝病的疗效和机制,发现隐丹参酮通过激活AMPK/SIRT1通路减少肝脏脂肪生成和增加脂肪酸氧化来改善乙醇诱导的酒精性肝病。此外,隐丹参酮还可以通过调控NF-κB信号通路降低由乙醇引起的tnf-α、il-6和mcp1等炎症基因的mRNA水平。综上所述,隐丹参酮抗肝纤维化的可能作用机制与其激活AMPK/SIRT1信号转导和抑制NF-κB的活化有关。
-
肾纤维化是许多慢性肾病(CKD)的常见结果,其主要病理特征是成纤维细胞和ECM的过度积累以及功能性肾单位的丧失[24]。已有研究发现,肾纤维化是由多种介质、机制和途径介导的,如:细胞因子、转化生长因子-β和核转录因子等。肾间质纤维化是多数进行性肾病中肾功能丧失的主要原因,而炎症反应和氧化应激损伤是肾间质纤维化发展的主要驱动力。
动物研究表明,隐丹参酮能够有效预防和治疗单侧输尿管梗阻(UUO)[7, 10]。Liang等[10]研究发现隐丹参酮能够显著降低UUO小鼠肾脏中FN和Col-1的表达,减少巨噬细胞和淋巴细胞的浸润,具有直接的抗纤维化作用。进一步研究发现该作用可能是通过阻断NF-κB和Nrf-2/HO-1信号转导抑制小鼠炎症反应和氧化应激实现的。Smad通路和非Smad通路p38 MAPK是涉及肾纤维化和EMT的主要下游信号转导机制,可激活整合素β1,整合素β1是一种介导细胞与ECM之间相互作用的细胞膜表面糖蛋白受体家族分子,在肾脏的纤维化和修复过程中起重要作用。Zhang等[7]研究发现隐丹参酮对MAPK信号没有影响,但能够选择性抑制Smad3的磷酸化和整合素β1启动子活性。以上结果表明,隐丹参酮主要通过抑制NF-κB和经典的Smad信号通路起到治疗肾纤维化的作用。
-
隐丹参酮具有广泛的药理活性,包括抗炎、抗纤维化、抗肿瘤和抗菌以及心血管保护作用,其在抗纤维化方面作用尤为显著。尽管各种器官纤维化的病理表现不尽相同,但是其病理过程均与ECM代谢失常、EMT发生发展、成纤维细胞的活化、关键细胞因子以及信号通路的激活有显著的相关性。体内体外研究表明,隐丹参酮抗纤维化的可能机制有:①调控STAT3、NF-κB、TGF-β/Smad和MAPK信号通路,减少胶原蛋白和纤维的形成。②调控MMPs和TIMPs,影响纤维的生成和降解。③调控α-SMA、Col-1和Col-3的蛋白表达水平。④调控细胞的氧化应激途径,逆转纤维化。⑤调节免疫,减轻炎症。虽然目前已有多项研究证实了隐丹参酮在体内外的抗纤维化作用,但是大部分的研究仍处于初始阶段, 其抑制组织ECM积累、EMT发展、炎性介质释放等具体作用机制仍需进一步深入研究。此外,由于隐丹参酮的水溶性较差,对其进行结构改造和修饰,以增加水溶性和生物利用度也是值得关注的重要问题。
综上所述,隐丹参酮作为一种高效低毒的天然化合物,在各器官组织中具有良好的抗纤维化作用,期待通过进一步明确其关键作用靶点和改善生物利用度,早日实现其在抗纤维化方面的临床应用。
Research progress of cryptotanshinone on anti-fibrosis and its mechanism
-
摘要: 隐丹参酮(CTS)作为一种高效低毒的天然化合物,在各器官组织中具有良好的抗纤维化作用,但目前其作用机制尚未明确,且无系统的文献综述对其抗纤维化潜在机制进行描述。笔者综述了隐丹参酮治疗各脏器纤维化的疗效及其机制,并提出了未来展望。Abstract: As a natural compound with high efficiency and low toxicity, cryptotanshinone (CTS) has a good anti-fibrosis effect in various organs and tissues. However, its mechanism of action has not been clearly defined, and there is no systematic literature review to describe its potential anti-fibrosis mechanism. The efficacy and mechanism of cryptotanshinone in the treatment of fibrosis in various organs were summarized and the use prospects were put forward in this paper.
-
Key words:
- cryptotanshinone /
- renal fibrosis /
- pulmonary fibrosis /
- cardiac fibrosis /
- liver fibrosis /
- mechanism
-
近年来,随着肿瘤、器官移植和获得性免疫缺陷综合征(AIDS)等导致的免疫功能低下人群的增加,侵袭性真菌感染(IFIs)的发病率和病死率逐年上升[1-2]。念珠菌、隐球菌和曲霉菌是IFIs最主要的致病菌,并且造成的病死率超过90%[3]。在念珠菌属中,白念珠菌(Candida. albicans)是院内血液感染最常见的致病菌原体,其在重症监护病房(ICU)患者中致病率超过17%,病死率高达40%[4-5]。临床上治疗IFIs的抗真菌药物主要包括:多烯类(两性霉素B)、核酸类(5-氟胞嘧啶)、唑类(氟康唑)和棘白菌素类(卡泊芬净)药物(图1)[6-7]。然而,由于临床上出现抗真菌药物严重的耐药性和毒副作用,IFIs的治疗效果相当有限。因此,迫切需要研发全新机制的抗真菌药物。
组蛋白乙酰化修饰(包括组蛋白乙酰化和去乙酰化)是表观遗传学研究的重要组成部分。组蛋白去乙酰化酶(HDACs)将组蛋白和其他蛋白上的赖氨酸末端乙酰基去除,对染色体重塑和基因的表达起着重要作用[8-9]。目前HDAC抑制剂主要集中于抗肿瘤研究方向,且已有多个上市药物应用于肿瘤的治疗。据研究报道,真菌中的HDACs,如烟曲霉[10]、白念珠菌[11-12]、酿酒酵母[13]和新生隐球菌的HDACs[14-15]参与了毒力相关的过程和形态变化。因此,抑制真菌HDACs可能是治疗IFIs的有效策略。
联合药物治疗是提高临床一线药物疗效并克服真菌耐药性的有效策略之一。真菌的耐药性涉及转录调节,其中染色体重塑和组蛋白修饰起主要作用。HDACs调节的组蛋白修饰在应激信号通路中起着至关重要的作用,这可能与真菌对各种环境(包括药物)的应激反应有关[16]。此外,已有研究报道,HDAC抑制剂与唑类药物联用具有协同增效作用[17-18]。例如,HDAC抑制剂MGCD290与氟康唑联用具有协同抗多种临床真菌分离株的作用[19]。
基于此,本研究首先对8个市售的HDAC抑制剂(图2)进行体外协同抗真菌活性测试,筛选结果显示化合物Rocilinostat与氟康唑联用具有优秀的体外协同抗耐药白念珠菌活性。后续考察其与不同唑类药物联用时对不同念珠菌属的体外协同抗真菌活性,以及对正常细胞的毒性作用,以期为抗真菌药物的研发提供依据。
1. 材料和方法
1.1 实验试剂与菌株
临床分离的6株唑类耐药白念珠菌(编号:9893,10061,10060,9173,4108和0304103),2株唑类耐药热带念珠菌(编号:5008,10086),1株光滑念珠菌(编号:9073)和1株耳道念珠菌(编号:0029)由海军军医大学附属长征医院提供。菌株活化首先从−80 ℃中挑取菌株冻存液至YEPD液体培养基活化24 h,然后取10 μl菌悬液至1 ml YEPD中,并在30 ℃、200 r/min下培养16 h后待用。HUVEC细胞来源于中国科学院上海细胞库,并在新鲜配置的DMEM完全培养基中培养。
YEPD液体培养基:取10 g酵母浸膏、20 g葡萄糖、20 g蛋白胨溶解于1 000 ml三蒸水中,经高压蒸汽灭菌(121 ℃, 15 min)后,保存于4 ℃条件下备用。RPMI 1640培养基:取10 g RPMI 1640(Gibco)粉末、34.5 g吗啡啉丙磺酸、2 g NaHCO3、2.7 g NaOH溶解于1 000 ml三蒸水中,经0.22 μm的微孔滤膜过滤与灭菌后,置于4 ℃条件下保存和备用。DMEM完全培养基:按照89% DMEM基础培养基+10%胎牛血清+1%的双抗比例混匀制得,混匀后置于4 ℃条件下保存和备用。PBS缓冲液:10 × PBS 100 ml溶解于900 ml三蒸水中,经高压蒸汽灭菌(121 ℃, 15 min)后,置于4 ℃条件下保存和备用。
1.2 仪器
THZ-92A气浴恒温振荡器(上海博迅医疗生物仪器股份有限公司)、MJ-150-I霉菌培养箱(上海一恒科学仪器有限公司)、LW100T生物显微镜(北京测维光电技术有限公司)、HDC-15K高速离心机(上海泰坦科技股份有限公司)、C170二氧化碳培养箱(BINDER GmbH)、infinite M200多功能酶标仪(Tecan Austria GmbH)、高压蒸汽灭菌锅、无菌洁净工作台。
1.3 棋盘式微量液基稀释法
本实验参照美国临床和实验室标准协会(CLSI)公布的M27-A3方案中微量液基稀释法进行。首先,收集活化好的真菌细胞,PBS洗3次后用RPMI 1640培养基制成浓度为1×103 CFU/ml的菌悬液。按照每孔100 μl接种菌悬液至无菌96孔板中,1~9列加入倍半稀释的HDAC抑制剂,A~F行加入倍半稀释的氟康唑,其中G行只加氟康唑,第10列只加化合物,第11列为不加药的阴性对照组,后将96孔板置于35 °C条件下孵育48 h。测定每孔在630 nm处的吸光度A,依据公式:抑制率(%)=(A阳性对照孔−A化合物孔)/(A阳性对照孔−A阴性对照孔)× 100%,计算各孔对应的抑制率。如果某一孔和其左边孔对应的抑制率均大于80%,则该孔对应的化合物和FLC浓度分别作为FIC化合物和FIC氟康唑,利用协同指数公式:FICI =(FIC化合物./MIC80 化合物)+(FIC氟康唑/MIC80 氟康唑),计算各化合物对应的FICI。
1.4 时间-生长曲线实验
收集活化好的白念珠菌0304103稀释在RPMI 1640培养液中,保持菌浓度为1×105 CFU/ml。取5 ml稀释的菌悬液和不同浓度的待测药物加入50 ml的离心管中, DMSO组作为空白对照组和32 μg/ml FLC作为阳性对照。随后将50 ml的离心管置于30 °C条件下振荡培养(200 r/min),在多个时间点吸取不同药物组的真菌混悬液(100 μl)于96孔板上,测量A630值并使用GraphPad Prism 7作图。
1.5 真菌细胞总HDAC酶活性测试实验
收集指数生长期的白念珠菌0304103细胞(湿重为100 mg),然后用3 mg snailase、12 μl 2-巯基乙醇和3 ml snailase反应缓冲液等新鲜配置的真菌裂解液来处理它们,以制备真菌原生质体。真菌原生质体分散在PBS(20 ml)中以获得混悬液,然后往96孔板每孔中加入100 μl的混悬液和不同浓度的化合物Rocilinostat,并在35 °C下培育12 h。接着往每个孔中加入30 μmol/L的HDAC底物,于37°C下孵育6 h。随后添加100 μl HDAC酶促终止溶液并在37°C下孵育2 h。最后,在每个孔中取出100 μl培养物添加到黑板中,用Ex=360 nm,Em=460 nm来监测荧光强度并记录下来用于计算HDAC酶的抑制率。
2. 结果
2.1 化合物Rocilinostat与氟康唑联用具有协同抗真菌活性
表1列出了HDAC抑制剂单独使用或与氟康唑联合使用的体外抗真菌活性筛选结果。MIC80为抑制80%真菌细胞生长的最低药物浓度。实验结果表明,8个HDAC抑制剂单独使用对耐药白念珠菌均无直接的抗真菌活性(MIC80>64 μg/ml);而化合物Rocilinostat(FICI=0.039)和伏立诺他(FICI=0.125)与FLC联用时均表现出良好的协同抗真菌活性。其中,化合物Rocilinostat的协同活性最佳,值得进一步研究。
表 1 单用HDAC抑制剂或者与氟康唑联用对白念珠菌0304103的体外抗真菌活性(μg/ml)抑制剂 抑制剂 氟康唑 FICI 单用 联用 单用 联用 伏立诺他 >64 4 >64 4 0.125 Rocilinostat >64 2 >64 0.5 0.039 T3516 >64 64 >64 64 2 T6016 >64 64 >64 64 2 T6421 >64 32 >64 32 1 T2157 >64 32 >64 32 1 T1726 >64 64 >64 64 2 T3358 >64 32 >64 64 1.5 注: FICI值≤ 0.5表示协同,FICI值> 4表示拮抗;0.5<FICI<4表示不相关。 2.2 Rocilinostat与氟康唑或伏立康唑联用对多种白念珠菌的抗真菌活性
为进一步考察Rocilinostat是否具广谱的抗真菌作用,挑选9株临床分离的念珠菌属菌株进行协同抗真菌活性测试。如表2所示,Rocilinostat与FLC联合使用时,对两株耐FLC的白念珠菌(C. albicans 9173,FICI=0.094; C. albicans 4108, FICI=0.5)和对FLC敏感的光滑念珠菌(C. glabrata 9073)表现出协同增效作用,而对热带念珠菌(C. tropicis)和耳道念珠菌(C. auris)没有协同抗真菌活性。当Rocilinostat与伏立康唑(VRC)联用时,对耐VRC的白念珠菌(C. albicans 10060, FICI=0.033)表现出优异的协同抗真菌活性 (表3)。
表 2 Rocilinostat与氟康唑单用或联用对多种念珠菌菌株的体外抗真菌活性[MIC80 (μg/ml)]菌株 单用 联用 FICI Rocilinostat 氟康唑 Rocilinostat 氟康唑 9893 >64 >64 64 64 2 10061 >64 >64 64 64 2 10060 >64 >64 64 64 2 9173 >64 >64 4 2 0.094 4108 >64 >64 32 32 0.5 10186 >64 >64 64 64 2 5008 >64 >64 64 8 1.125 9073 32 4 32 8 0.375 0029 64 32 >64 32 1 表 3 Rocilinostat与伏立康唑单用或联用对白念珠菌菌株的体外抗真菌活性[MIC80 (μg/ml)]菌株 单用 联用 FICI Rocilinostat 伏立康唑 Rocilinostat 伏立康唑 0304103 >64 >64 32 2 0.531 10061 >64 >64 32 0.125 0.502 10060 >64 >64 2 0.125 0.033 2.3 Rocilinostat与氟康唑联用有效抑制真菌的生长
为进一步考察化合物Rocilinostat的协同抗真菌活性,我们又开展了时间-生长曲线实验。从图3结果可以看出,高浓度的氟康唑或Rocilinostat单独使用对真菌生长无抑制作用,而Rocilinostat与不同浓度的氟康唑联用能够有效抑制真菌的生长,且呈浓度依赖趋势 (图3中抑制剂为Rocilinostat)。
2.4 Rocilinostat对真菌细胞的选择性作用
采用HUVEC(人脐静脉内皮细胞)对化合物Rocilinostat进行细胞毒性的评价。结果如表4显示,化合物Rocilinostat对正常细胞表现出低毒性,IC50值为52.17 μmol/L (22.60 μg/ml),相当于其发挥协同抗耐药真菌(C. albicans 0304103)活性MIC80值的44倍,表明Rocilinostat对真菌细胞具有较强的选择性作用。此外,我们还测试了化合物Rocilinostat对真菌总HDAC酶的抑制活性,结果表明,Rocilinostat对真菌HDAC酶抑制活性(IC50=0.41 μmol/L)优于泛HDAC抑制剂伏立诺他(IC50=1.03 μmol/L)。
表 4 Rocilinostat对正常细胞的毒性和真菌总HDAC酶活性IC50 (μmol/L)化合物 HUVEC 白念珠菌(总HDAC酶) Rocilinostat 52.17 0.41 伏立诺他 — 1.03 注: “—”表示没有测试。 3. 讨论
本研究从市售的8个HDAC抑制剂中筛选出协同活性最佳的化合物Rocilinostat。进一步研究发现Rocilinostat与氟康唑联用对白念珠菌和光滑念珠菌具有协同增效作用。此外,化合物Rocilinostat与伏立康唑联用对临床分离的耐药白念珠菌株同样具有优秀的抗真菌活性。更值得关注的是,化合物Rocilinostat对正常细胞表现出低毒性,其对真菌细胞具有很好的选择性。因此,HDAC抑制剂Rocilinostat可以作为一种低毒、有效的唑类抗真菌药物增效剂,为抗真菌药物的发展提供了新的研究基础。
-
[1] WYNN T A, RAMALINGAM T R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease[J]. Nat Med,2012,18(7):1028-1040. doi: 10.1038/nm.2807 [2] LIU H B, ZHAN X Y, XU G, et al. Cryptotanshinone specifically suppresses NLRP3 inflammasome activation and protects against inflammasome-mediated diseases[J]. Pharmacol Res,2021,164:105384. doi: 10.1016/j.phrs.2020.105384 [3] HAN Z, LIU S, LIN H S, et al. Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses[J]. Cancer Immunol Immunother,2019,68(7):1073-1085. doi: 10.1007/s00262-019-02338-4 [4] CHA J D, LEE J H, CHOI K M, et al. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus[J]. Evid Based Complement Alternat Med,2014,2014:450572. [5] MAO Y F, QU Y, WANG Q D. Cryptotanshinone reduces neurotoxicity induced by cerebral ischemia-reperfusion injury involving modulation of microglial polarization[J]. Restor Neurol Neurosci,2021,39(3):209-220. [6] ZHANG Y P, LUO F, ZHANG H X, et al. Cryptotanshinone ameliorates cardiac injury and cardiomyocyte apoptosis in rats with coronary microembolization[J]. Drug Dev Res,2021,82(4):581-588. doi: 10.1002/ddr.21777 [7] WANG W, ZHOU P H, HU W, et al. Cryptotanshinone hinders renal fibrosis and epithelial transdifferentiation in obstructive nephropathy by inhibiting TGF-β1/Smad3/integrin β1 signal[J]. Oncotarget,2017,9(42):26625-26637. [8] MA Y Z, LI H, YUE Z B, et al. Cryptotanshinone attenuates cardiac fibrosis via downregulation of COX-2, NOX-2, and NOX-4[J]. J Cardiovasc Pharmacol,2014,64(1):28-37. doi: 10.1097/FJC.0000000000000086 [9] ZHANG Y T, LU W T, ZHANG X L, et al. Cryptotanshinone protects against pulmonary fibrosis through inhibiting Smad and STAT3 signaling pathways[J]. Pharmacol Res,2019,147:104307. doi: 10.1016/j.phrs.2019.104307 [10] WANG W, WANG X, ZHANG X S, et al. Cryptotanshinone attenuates oxidative stress and inflammation through the regulation of nrf-2 and NF-κB in mice with unilateral ureteral obstruction[J]. Basic Clin Pharmacol Toxicol,2018,123(6):714-720. doi: 10.1111/bcpt.13091 [11] LIU M R, LÓPEZ DE JUAN ABAD B, CHENG K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies[J]. Adv Drug Deliv Rev,2021,173:504-519. doi: 10.1016/j.addr.2021.03.021 [12] VERMOT A, PETIT-HÄRTLEIN I, SMITH S M E, et al. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology[J]. Antioxidants (Basel),2021,10(6):890. doi: 10.3390/antiox10060890 [13] CHANDRA S, EHRLICH K C, LACEY M, et al. Epigenetics and expression of key genes associated with cardiac fibrosis: NLRP3, MMP2, MMP9, CCN2/CTGF and AGT[J]. Epigenomics,2021,13(3):219-234. doi: 10.2217/epi-2020-0446 [14] DONG F, ABHIJIT T, JIWON L, et al. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease[J]. Fibrogenesis Tissue Repair, 2012, 15(5(1)). [15] MA S T, YANG D C, WANG K Y, et al. Cryptotanshinone attenuates isoprenaline-induced cardiac fibrosis in mice associated with upregulation and activation of matrix metalloproteinase-2[J]. Mol Med Rep,2012,6(1):145-150. [16] LO S H, HSU C T, NIU H S, et al. Cryptotanshinone inhibits STAT3 signaling to alleviate cardiac fibrosis in type 1-like diabetic rats[J]. Phytother Res,2017,31(4):638-646. doi: 10.1002/ptr.5777 [17] FAN D, TAKAWALE A, LEE J, et al. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease[J]. Fibrogenesis Tissue Repair,2012,5(1):15. doi: 10.1186/1755-1536-5-15 [18] MARCONI G D, FONTICOLI L, RAJAN T S, et al. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis[J]. Cells,2021,10(7):1587. doi: 10.3390/cells10071587 [19] KALLURI R, NEILSON E G. Epithelial-mesenchymal transition and its implications for fibrosis[J]. J Clin Invest,2003,112(12):1776-1784. doi: 10.1172/JCI200320530 [20] JIANG Y F, YOU F M, ZHU J, et al. Cryptotanshinone ameliorates radiation-induced lung injury in rats[J]. Evid Based Complement Alternat Med,2019,2019:1908416. [21] ROEHLEN N, CROUCHET E, BAUMERT T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives[J]. Cells,2020,9(4):875. doi: 10.3390/cells9040875 [22] ALTAMIRANO-BARRERA A, BARRANCO-FRAGOSO B, MÉNDEZ-SÁNCHEZ N. Management strategies for liver fibrosis[J]. Ann Hepatol,2017,16(1):48-56. doi: 10.5604/16652681.1226814 [23] NAGAPPAN A, KIM J H, JUNG D Y, et al. Cryptotanshinone from the Salvia miltiorrhiza bunge attenuates ethanol-induced liver injury by activation of AMPK/SIRT1 and Nrf2 signaling pathways[J]. Int J Mol Sci,2019,21(1):265. doi: 10.3390/ijms21010265 [24] LAN H Y. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation[J]. Int J Biol Sci,2011,7(7):1056-1067. doi: 10.7150/ijbs.7.1056 [25] 段红梅, 吴志远, 江黎明. 隐丹参酮对人皮肤瘢痕胶原基因表达的影响[J]. 齐齐哈尔医学院学报, 2009, 30(3):267. doi: 10.3969/j.issn.1002-1256.2009.03.006 [26] 杨莉, 李雪莉, 宋静卉, 等. 隐丹参酮抑制模型兔耳增生性瘢痕的作用及机制[J]. 中国组织工程研究, 2021, 25(20):3150-3155. doi: 10.3969/j.issn.2095-4344.3221 [27] LI Y, SHI S, GAO J X, et al. Cryptotanshinone downregulates the profibrotic activities of hypertrophic scar fibroblasts and accelerates wound healing: a potential therapy for the reduction of skin scarring[J]. Biomed Pharmacother,2016,80:80-86. doi: 10.1016/j.biopha.2016.03.006 -

计量
- 文章访问数: 5295
- HTML全文浏览量: 3152
- PDF下载量: 18
- 被引次数: 0