-
高寒地区战斗的特殊自然地理环境对战斗行动带来了很大的影响,人员极易冻伤,易患皮肤病、感冒和雪盲等病症,伤病员救治和后送任务重,后勤保障任务艰巨复杂[1]。因此,高原高寒环境对驻训的野战卫生装备的运输、机动、使用有特殊的要求[2]。药材保障是影响救治的主要因素之一,如此极端的环境对官兵野外训练和作战的药品保障也是一种极大的考验。
甲硝唑是一种抗厌氧菌和抗滴虫药,主要用于治疗或预防厌氧菌引起的系统或局部感染,治疗破伤风常与破伤风抗毒素(TAT)联用[3]。作为一种抗菌药物,在战争条件下是不可或缺的。它主要的剂型为片剂和注射液,而注射液在严寒环境下容易冻结,应模拟药品在运输与使用过程中可能碰到的温度条件进行热循环考察以评价药品的稳定性[4]。本研究从药材保障实际需求出发,对模拟严寒环境下的甲硝唑氯化钠注射液的稳定性进行考察,可为同类药品暴露在极端严寒环境下的储存和使用提供数据支持。
质控图是指对过程质量加以测定、记录从而评估和监察过程是否处于控制状态的一种统计方法设计的图,是实验室进行内部质量控制的重要工具之一[5]。质控图可以直观地反映检测过程的状态,对于检测实验室宏观的、长期的质量控制有着重要的意义。本研究利用质控图对甲硝唑氯化钠注射液的含量测定结果进行分析,能够及时发现实验过程中的异常,以便采取相应的纠正措施和预防措施,保证药物质量检验的可控。
-
LC-20A液相色谱仪(日本岛津公司),分析软件为LabSolutions;AUW/220D型十万分之一电子天平(日本岛津公司);BPS-50CH恒温恒湿箱、DZG-6020型真空干燥箱(上海一恒公司);HHS型电热恒温水浴锅(上海博迅公司);BCD-247e型美的冰箱。
-
甲硝唑氯化钠注射液(批号:719082601;规格:100 ml含甲硝唑0.5 g、氯化钠0.8 g;浙江天瑞药业有限公司);甲醇(色谱纯,国药试剂公司);甲硝唑对照品(批号:100191-201804;含量100%;中国食品药品检定研究院);水为娃哈哈纯净水。
-
将甲硝唑氯化钠注射液放置于−20 ℃冰箱冷冻后,分别在室温,40 ℃恒温,60 ℃水浴条件下解冻,具体条件如表1所示,其中基于运输条件考虑模拟环境的样品在每次冻融循环后分别取样,基于使用条件考虑模拟环境的样品分别在第3、6、9、12、15、18次冻融循环后取样测定[6]。
表 1 样品冻融条件
模拟环境 冷冻条件 解冻条件 循环次数 基于运输条件 −20 ℃冷冻2 d 40 ℃恒温解冻2 d 3次 基于使用条件 −20 ℃冷冻1 d 室温解冻至完全 18次 60 ℃水浴解冻至完全 -
色谱柱为Agilent Extend C18 (250 mm×4.6 mm,5 μm);流动相为甲醇-水(20:80,V/V);检测波长320 nm;流速1.0 ml/min,进样体积10 μl。
-
将甲硝唑对照品置于105 ℃下干燥2 h,取10 mg精密称定,置于10 ml容量瓶中,用流动相稀释并定容,即得浓度为1.0 mg/ml的甲硝唑对照品溶液。
-
精密移取甲硝唑氯化钠注射液0.5 ml置于10 ml量瓶,用流动相稀释并定容,即为供试品溶液。
-
分别取对照品溶液及供试品溶液各10 μl,按“2.2”项下的色谱条件进样分析,结果如图1所示,供试品溶液在与对照品溶液对应位置出现相对应的色谱峰,空白溶剂无干扰,方法专属性良好。
-
将“2.3”项下制备的对照品溶液依次稀释,配制成浓度分别为0.010、0.050、0.125、0.250、0.500、1.000 mg/ml的系列溶液,作为线性工作溶液。按“2.2”项下色谱条件,浓度由低到高依次进样,以甲硝唑对照品的浓度(X,mg/ml)为横坐标,峰面积(Y)为纵坐标,进行线性回归,得到回归方程Y=31387979 X+0.1903,r=1.000,结果表明,甲硝唑在0.010~1.000 mg/ml范围内与峰面积呈良好的线性关系。
-
取甲硝唑对照品溶液适量(0.25 mg/ml),按“2.2”项下色谱条件在1 d以内连续进样6次,以及连续3 d分别进样,根据所得峰面积分别考察日内精密度和日间精密度。结果显示,日内精密度RSD为0.24%;日间精密度RSD为1.06%,表明方法的精密度良好。
-
精密量取甲硝唑氯化钠注射液样品6份,各0.5 ml,按“2.4”项下方法分别制成供试品溶液,按“2.2”项下色谱条件测定。结果显示每100 ml注射液中甲硝唑的平均含量为0.504 g,RSD为1.26%,表明方法的重复性良好。
-
取同一份供试品溶液,在室温下放置0、3、6、9、12、18、24 h后,分别按“2.2”项下色谱条件进样分析,考察溶液的稳定性,结果显示RSD为0.05%,表明供试品溶液在室温条件下24 h内稳定。
-
取已知含量的甲硝唑样品0.2 ml(含甲硝唑0.1 mg)共9份,每3份为1组,按低、中、高3个水平分别加入适当浓度的对照品溶液(相当于样品中含量的80%、100%、120%),按“2.2”项下色谱条件进样分析,结果显示甲硝唑的平均回收率为101.03%,RSD为1.17%(n=9)。
-
取不同冻融条件下的甲硝唑氯化钠注射液,按“2.4”项下方法制备供试品溶液,进样测定,以外标法分别计算各样品中甲硝唑的含量,结果如表2所示。
表 2 各阶段样品中甲硝唑的含量测定结果(按标示量计/%)
冻融条件 冻融循环周期 0 1 2 3 6 9 12 15 18 室温解冻 100.8 − − 101.68 101.20 100.92 96.92 96.16 95.84 60 ℃水浴解冻 − − 100.84 98.88 100.84 101.04 100.84 101.36 40 ℃恒温解冻 99.80 99.16 100.40 − − − − − 注:“−”表示无测定值。 -
收集室温保存下连续9 d的供试品含量测定数据(按标示量计),结果依次为 103.02、103.13、101.84、101.27、99.29、100.69、101.65、101.84、99.39、99.79、100.82、100.06、99.39、99.77、101.82、101.29、98.84、99.03。根据测定结果计算均值(X)=100.72,标准偏差(σ)=1.35,X+2σ=103.42 ,X−2σ=98.02,X+3σ=104.77,X−3σ=96.67。
-
以测定次序为横坐标,测定结果为纵坐标,X(均值)为中心线,(X±2σ)为上下警告限,(X±3σ)为上下行动限,绘制控制图,并将每次测定质控样品的结果按测定次序标注在控制图上,如图2所示。各数据点均在上下行动限内,也未出现常规控制图判异准则里规定的8种情形,不存在异常的趋势[7]。因此,该图可用于甲硝唑氯化钠注射液日常检测过程质量控制。
-
质控图绘制完成后,对不同冻融条件下的甲硝唑氯化钠注射液样品进行含量测定,每测定一个条件的样品时,同时测定质控样品(正常条件储存),用于判断检测是否处于控制状态。每3个冻融循环后的分别测定样品含量,18次循环后共测定6次,将各条件下的数据标于控制图中,如图3所示。质控样品均在上下警告线内,且波动较小,说明检测过程的质量处于较好的水平控制中,样品的检测结果准确可靠。室温下解冻的样品在第4次测定(12次冻融循环)开始位于下警告线外,第5次测定(15次冻融循环)后位于下行动线外,说明室温解冻条件下12次冻融循环后的检测已属于失控状态,应查明原因;60 ℃水浴解冻的样品所有测试数据均在上下警告线内,表明甲硝唑的含量处于可控状态。
-
新药研究过程中在设计药品的稳定性考察实验方案时,往往会通过一系列的影响因素试验来选定药品的包装与储存条件,但经常会忽略一些特殊的药品在运输或使用过程中因为温度的变化而可能给产品的质量所造成的不利影响。美国FDA的稳定性指导原则中提出对于易发生物相分离、黏度减小、沉淀或聚集的药品需通过热循环实验来验证其运输或使用过程中的稳定性[8]。对于可能暴露于冰点以下的药品,热循环实验应包括3次循环,每次循环应在−20~−10 ℃冷冻2 d,然后在40 ℃加速条件下考察2 d。因此,本项目采取−20 ℃冷冻2 d,40 ℃加热2 d,循环3次来考察甲硝唑在运输过程中的稳定性。
甲硝唑氯化钠注射液作为常规的战备液体药品,在高原寒区保障使用过程中,冻结无法避免,在不影响药品质量的前提下如何快速解冻是影响药品安全性和有效性的重要因素之一。本研究从实际应用的角度出发,考察了室温、60 ℃水浴解冻以及冻融次数对质量稳定性的影响,结果表明,60 ℃水浴解冻的样品含量虽然出现了波动,但始终在上、下警告线之内,并且其pH值和有关物质也没有发现明显的变化,表明该条件下的反复冻融对甲硝唑氯化钠注射液的稳定性影响较小。相比之下,室温解冻的样品在12次冻融后出现了针状结晶,其原因可能是室温解冻使得样品缓慢到达并通过最大冰晶生成带,而导致结晶的形成。在15次冻融后出现含量低于质控图下行动线的现象,并且我们将出现针状结晶的样品通过反复振荡,待结晶消失后再进行测定,其含量没有显著变化(依旧低于下警告线),说明室温解冻对甲硝唑氯化钠注射液的稳定性有更大的影响。
本研究以甲硝唑氯化钠注射液为例对液体药品的冻融稳定性进行研究,结果表明不同的冻融条件会影响甲硝唑氯化钠注射液的稳定性,在严寒地区使用时应当尽量减少其冻融次数,避免室温解冻。本研究可为液体药物的冻融研究提供方法借鉴,并为优化严寒地区的药材保障提供数据支持。
Freeze/thaw stability and quality control chart analysis of metronidazole sodium chloride injection
-
摘要:
目的 考察极端严寒环境及不同冻融条件对甲硝唑氯化钠注射液稳定性的影响。 方法 模拟甲硝唑氯化钠注射液在极端寒冷环境下的冻结过程,并给予适当的条件使其融化。采用HPLC法测定甲硝唑的含量,分别考察室温和60 ℃水浴解冻及冻融次数对甲硝唑含量的影响,并对变化情况作质控图分析。 结果 甲硝唑在0.01~1.00 mg/ml范围内线性关系良好,r=1.000,平均回收率101.38%(RSD=0.94%),符合方法学要求。样品在−20 ℃冷冻,60 ℃水浴解冻18次,稳定性良好;室温解冻时,容易形成针状结晶,含量降低。 结论 在极端严寒环境下甲硝唑氯化钠注射液的稳定性会受冻融条件的影响,使用时应当尽量减少其冻融次数,避免室温解冻。 Abstract:Objective To investigate the effect of different freezing thawing conditions on the stability of metronidazole sodium chloride injection in extreme cold environment. Methods The freezing process of metronidazole sodium chloride injection in extremely cold environment was simulated and appropriate conditions were given to melt. The effects of room temperature, 60 ℃ water bath thawing and freeze-thaw times on the content of metronidazole were investigated by HPLC, and the changes were analyzed by quality control chart. Results The linear range of metronidazole was 0.01~1.00 mg/ml and the relationship was acceptable, r=1.000, the average recovery was 101.03% (RSD=1.17%), which met the requirements of methodology. The samples were frozen at −20 ℃ and thawed in 60 ℃ water bath for 18 times with good stability. However, when thawed at room temperature, acicular crystals formed and the content decreased. Conclusion In extreme cold environment, the stability of metronidazole sodium chloride injection could be affected by freezing and thawing conditions. Therefore, in the use of Metronidazole and Sodium Chloride Injection, the number of freeze-thaw cycles should be minimized, and try to avoid thaw at room temperature. -
随着我国经济的发展以及居民生活水平的提高,越来越多的人来到高原生活、工作和旅游,但由于高原地区氧分压较低,高原病的发病率呈现逐年上升的趋势[1]。高原脑水肿(HACE)是高原病发生发展过程中最为严重的阶段,其临床表现为头痛、协调丧失、虚弱、意识水平降低[2],并对机体造成不可逆的损伤。7-羟乙基白杨素(7-hydroxyethyl chrysin,7-HEC)是课题组前期筛选发现并合成的具有自主知识产权的抗高原缺氧化合物[3],研究发现[4-5],其对脑缺血再灌注大鼠和模拟高原低压性缺氧致脑组织损伤大鼠均具有明显的保护作用,并能够减轻低压低氧诱导的认知功能损伤[6],在抗高原缺氧方面表现出优异的活性与前景。因此,本文主要从7-HEC对高原脑水肿的可能作用机制出发,探究其与自噬、周期、凋亡等通路之间的关系,为防治高原脑水肿的可能作用机制奠定基础。
1. 材料与方法
1.1 动物、试剂与仪器
27只SPF级雄性Wistar大鼠(体重180~200 g),购自联勤保障部队第九四〇医院动物实验科,合格证号:SCXX(军)2012-0029,动物伦理委员会编号:2021KYLL173。
7-HEC由实验室景林临副教授自行合成;MDA、SOD试剂盒(南京建成生物工程研究所);CDK2、CDK6、CyclinD1、CyclinE2、PARP、Bax、Bcl-2、P62、LC3B抗体(英国Abcom公司);BCA蛋白试剂盒(Solarbio公司);脱脂奶粉(美国BD公司);Western Bright TM ECL(美国Advansta)。
IEC-Micromax高速离心机(美国ThermoElectron公司);Tissuelyser快速研磨仪(上海净信科技公司);BP210S电子天平(赛多利斯有限公司);HP-8453紫外分光光度计(美国惠普公司);SpectraMax i3全自动荧光酶标仪(美国Molecular Devices公司);FLYDWC20-ⅡA大型低压低氧动物实验舱(中航贵州风雷航空军械有限责任公司)。
1.2 动物分组及高原脑水肿模型的建立[7]
将27只SPF级雄性Wistar大鼠适应性饲喂3 d后,随机分为3组,正常对照组、缺氧模型组、7-HEC给药组。给药组连续灌胃7-HEC(350 mg/kg)7 d,对照组和模型组给予等量灭菌注射用水。第四天,模型组和给药组放入大型低压低氧动物实验舱中,以10 m/s速度减压上升至相当于海拔6000 m处,缺氧处理3 d后处死,取脑组织。缺氧处理期间,氧舱温度:8:00~20:00,12 ℃,20:00~次日8:00,2 ℃;动物自由摄食及饮水;给药组继续灌胃给药。
1.3 脑组织氧化应激指标的检测
每组分别取6只大鼠脑组织标本,准确称重后,按质量(g)∶体积(ml)=1∶9 加入生理盐水制成10 %组织匀浆,采用WST-1法检测SOD活性、采用硫代巴比妥酸法检测MDA含量,以上操作均按试剂盒说明书进行。
1.4 蛋白质印迹法测定凋亡、周期、自噬相关蛋白的表达
每组选取3只大鼠脑组织,称重后加入9倍量高效裂解液,使用组织研磨仪进行组织匀浆,于冰上裂解30 min,低温离心后吸取上清匀浆液10 μl,BCA法测蛋白含量,剩余上清与4×上样缓冲液按体积3∶1比例混匀,封口膜封口,95 ℃煮沸10 min进行蛋白变性,取等量蛋白样品上样,采用 SDS-PAGE 进行分离,电泳完成后将蛋白转至PVDF膜上,含5 %脱脂牛奶室温封闭2 h,一抗4 ℃孵育过夜。用TBST缓冲液漂洗4次,每次10 min。加入二抗,室温孵育2 h,TBST缓冲液洗涤PVDF膜4次,每次10 min。配制ECL发光液,按照A液和B液1∶1进行配制,涂抹发光液,放入ChemiDoc MP Imaging System全能型成像系统进行曝光。用Image J软件对蛋白条带进行灰度值分析。
1.5 统计学分析
实验结果以(
$ \bar x \pm s $ )表示,采用 SPSS 21.0 软件进行数据分析,选用单因素方差分析法进行组间变量分析,LSD-t 法比较组间差异。以P<0.05表示有显著性差异,以P<0.01表示有极显著性差异。2. 结果
2.1 氧化应激相关指标的测定
大鼠脑组织中氧化应激相关指标MDA与SOD的测定结果如图1所示,与对照组相比,缺氧组大鼠脑组织中MDA含量显著性升高,SOD活力显著性下调(P<0.05),当给予7-HEC时,缺氧组大鼠脑组织中MDA含量下调,SOD活力上调,且差异具有统计学意义(P<0.05)。结果提示,7-HEC可能参与机体氧化应激的调节,起到防护高原脑水肿的效果。
2.2 凋亡相关蛋白的表达
如图2所示,大鼠脑组织中PARP与Bcl-2的蛋白表达在缺氧组下调,给药后显著上调(P<0.01),大鼠脑组织中Bax的蛋白表达在缺氧组上调,给药组显著下调(P<0.01),为进一步探讨Bcl-2与Bax对凋亡的易感性,对Bax/Bcl-2的比例进行比较,结果显示,与对照组相比,缺氧组显著下降,与缺氧组相比,给药组极显著上调(P<0.01)。结果提示,7-HEC可能参与细胞凋亡从而防治高原脑水肿。
2.3 周期相关蛋白的表达
如图3所示,与对照组相比,大鼠脑组织中周期相关蛋白CyclinE2、CyclinD1、CDK6、CDK2的表达在缺氧组均下调(P<0.05);与缺氧组相比,在给药组中,CyclinE2、CyclinD1、CDK6、CDK2蛋白的表达显著上调(P<0.05)。结果提示,7-HEC可能参与细胞周期调控从而防治高原脑水肿。
2.4 自噬相关蛋白的表达
如图4所示,大鼠脑组织中P62的蛋白表达在缺氧组极显著上调,给药后显著下调(P<0.01);与对照组相比,大鼠脑组织中LC3-B的蛋白表达在缺氧组显著下降,与缺氧组相比,给药组极显著上调(P<0.01)。结果提示,7-HEC可能参与细胞自噬过程从而防治高原脑水肿。
3. 讨论
氧化应激是一种有害事件,可导致活性氧大量产生或抗氧化防御功能不足,损害神经血管单元的完整性,造成神经元不可逆死亡,进而血脑屏障破坏形成脑水肿[8]。MDA是脂质过氧化的产物,其含量可以间接反映组织氧化应激的水平,SODs是一类具有催化超氧化物生成过氧化氢的抗氧化酶[9],可以直接或间接地反映氧化应激的水平。本研究发现,经给药干预后,大鼠脑组织MDA含量显著降低,SOD活力显著提高,表明7-HEC可改善脑水肿大鼠的氧化损伤,从而对脑水肿起到一定的预防作用。
研究表明,缺氧与细胞周期、凋亡、自噬密切相关,细胞周期蛋白表达异常会引发细胞凋亡[10]。细胞周期失调的细胞有机会通过DNA损伤反应的各种机制来阻止DNA修复、细胞周期调节和DDR基因转录。目前研究认为,自噬是另一种DDR机制,它通过促进或防止细胞死亡来应对DNA损伤,从而发挥作用[11]。细胞周期从G1期到S期的调节因子是CDK2蛋白,自噬主要影响细胞周期的G1期和S期,因此自噬与周期也存在密不可分的关系。
细胞凋亡是一种受基因调控的细胞程序性死亡方式,是一种正常的生理变化。缺氧是细胞凋亡的诱导因子之一,细胞凋亡加剧是低氧环境诱发机体机能损伤的重要途径[12]。其受Bax和Bcl-2控制。Bcl-2蛋白的过表达在动物模型中被证明可以减轻肝和肾的损伤,而Bax的过度表达则可诱导细胞凋亡[13]。本实验的结果表明,缺氧组大鼠脑组织中Bax/Bcl2比值降低,诱导细胞凋亡,加重脑水肿,7-HEC可上调Bax/Bcl2比值,进而抑制细胞凋亡,起到抗高原脑水肿的作用。
细胞周期在细胞增殖和分裂中起着关键作用,其由两类蛋白精确调控,CDKs、cyclin作为关键的周期蛋白。这两类蛋白决定了细胞维持在停滞状态或继续进行细胞周期。细胞周期抑制已被证明可以提供神经保护,减少星形胶质细胞瘢痕形成和微胶质激活,并改善创伤性脑损伤后的运动和认知恢复[14]。在本实验中,缺氧环境可下调周期蛋白的表达,而7-HEC可上调周期蛋白的表达,对高原脑水肿起到一定的预防作用。
缺氧与自噬密切相关。缺氧条件下,会诱导自噬的发生。自噬是一种高度调控的连续过程,它是一种重要的程序性细胞死亡[15]。LC3蛋白与P62蛋白相互作用,是自噬的标志物。P62蛋白通常存在于自噬体中,并在自溶酶体形成时被降解[16]。LC3蛋白是哺乳动物自噬蛋白和自噬小体标记物,LC3B是自噬体标记的四种不同亚型中使用最广泛的一种。自噬受体包括P62等一系列连接泛素化底物和LC3的适配器,自噬体一旦形成,就会经历成熟阶段,然后与溶酶体融合,发生自噬。此外,P62还可调节细胞凋亡,主要通过选择性减少胞质中促凋亡蛋白来减轻细胞死亡,保护机体免受伤害[17]。在本实验中7-HEC可下调P62、上调LC3B的表达,从而促进自噬,保护机体免遭高原脑水肿损害。
凋亡、自噬、周期三种生物过程相互联系,相互影响,作用于机体,保障机体的正常运行。凋亡、自噬、周期相关因子的变化又会影响氧化应激通路的发生发展。在本实验中,7-HEC降低大鼠脑组织中MDA含量,上调SOD含量,从而抑制HACE引发的氧化应激;其还可上调周期和自噬蛋白的表达,从而增强大鼠脑神经元细胞的增殖活性,加速损伤细胞的自噬,保护机体免受HACE的损害。综上,7-HEC可抑制细胞凋亡和周期,增强自噬,进而抑制机体氧化应激,从而达到防护高原脑水肿的作用。
-
表 1 样品冻融条件
模拟环境 冷冻条件 解冻条件 循环次数 基于运输条件 −20 ℃冷冻2 d 40 ℃恒温解冻2 d 3次 基于使用条件 −20 ℃冷冻1 d 室温解冻至完全 18次 60 ℃水浴解冻至完全 表 2 各阶段样品中甲硝唑的含量测定结果(按标示量计/%)
冻融条件 冻融循环周期 0 1 2 3 6 9 12 15 18 室温解冻 100.8 − − 101.68 101.20 100.92 96.92 96.16 95.84 60 ℃水浴解冻 − − 100.84 98.88 100.84 101.04 100.84 101.36 40 ℃恒温解冻 99.80 99.16 100.40 − − − − − 注:“−”表示无测定值。 -
[1] 熊武一, 周家法. 军事大辞海·下册[M], 北京: 长城出版社, 2000: 2535. [2] 骆文敏, 王艳, 申丽. 高原寒区、戈壁沙漠环境下野战卫生装备配置特点探讨[J]. 世界最新医学信息文摘, 2017, 17(57):206-207. [3] 国家药典委员会. 中华人民共和国药典(二部)2020年版[S]. 北京: 中国医药科技出版社, 2020: 253-254. [4] SHEA M L, DEBELL R M, BONDI K R, et al. Drug exposed to extreme cold: the military perspective[R]. Defense Technical Information Center, 1981. [5] 中国合格评定国家认可委员会. 化学分析实验室内部质量控制指南—质控图的应用[S]. CNAS-GL027: 2018. [6] RAYFIELD W J, KANDULA S, KHAN H, et al. Impact of freeze/thaw process on drug substance storage of therapeutics[J]. J Pharm Sci,2017,106(8):1944-1951. doi: 10.1016/j.xphs.2017.03.019 [7] 孙佳玲, 周迪. 统计学在药品检验工作中的应用[J]. 中国卫生产业, 2018, 15(23):166-167. [8] Food and Drug Administration. U. S. Department of Health and Human Services , Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) Guidance for Industry Q1A Stability Testing New Drug Substances Products[S]. Rockville: 2001: 7. -