留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

益母草碱抑制NLRP3炎症小体过度激活调控巨噬细胞M1/M2表型分化

华荣 陈瑶

梅洪梁, 谢菡, 张晋萍, 张海霞. 临床药师参与1例妊娠合并肠道艰难梭菌感染治疗的药学实践[J]. 药学实践与服务, 2021, 39(2): 182-185. doi: 10.12206/j.issn.1006-0111.202008016
引用本文: 华荣, 陈瑶. 益母草碱抑制NLRP3炎症小体过度激活调控巨噬细胞M1/M2表型分化[J]. 药学实践与服务, 2021, 39(2): 143-147. doi: 10.12206/j.issn.1006-0111.202101003
MEI Hongliang, XIE Han, ZHANG Jinping, ZHANG Haixia. Clinical pharmacist participation in the treatment of a pregnancy complicated with Clostridium difficile infection[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(2): 182-185. doi: 10.12206/j.issn.1006-0111.202008016
Citation: HUA Rong, CHEN Yao. Effect of leonurine on peritoneal macrophages M1/M2 phenotypic differentiation via inhibiting overactivation of NLRP3 inflammasome[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(2): 143-147. doi: 10.12206/j.issn.1006-0111.202101003

益母草碱抑制NLRP3炎症小体过度激活调控巨噬细胞M1/M2表型分化

doi: 10.12206/j.issn.1006-0111.202101003
详细信息
    作者简介:

    华 荣,硕士,主管药师,研究方向:临床药学,Email: huarong0523@126.com

  • 中图分类号: R965

Effect of leonurine on peritoneal macrophages M1/M2 phenotypic differentiation via inhibiting overactivation of NLRP3 inflammasome

  • 摘要:   目的  研究益母草碱对脂多糖(LPS)诱导小鼠腹腔巨噬细胞免疫应答影响及相关机制。  方法  分离小鼠腹腔巨噬细胞,用脂多糖和益母草碱预处理24 h,MMT法检测巨噬细胞活性;Griess法检测NO释放量;ELISA法检测IL-1β、IL-18、IL-6、TNF-α的释放量;RT-PCR法检测NLRP3、ASC、caspase-1、TNF-α、iNOS、Arg-1和CD206的mRNA表达量;Western blot检测NLRP3、ASC、caspase-1蛋白表达量。  结果  益母草碱能显著抑制脂多糖引起的巨噬细胞上清液中NO、IL-1β、IL-18、IL-6、TNF-α的释放。RT-PCR及Western blot实验结果显示,益母草碱可以抑制脂多糖引起的巨噬细胞中NLRP3、ASC、caspase-1的mRNA及蛋白表达;益母草碱还能明显抑制脂多糖所诱导的巨噬细胞向M1型分化,并促进巨噬细胞向M2型分化。  结论  益母草碱能通过抑制NLRP3炎症小体,促进脂多糖诱导的巨噬细胞由M1表型向M2表型分化。
  • 骨质疏松症是一种全身性骨代谢疾病,其典型特征是骨密度下降、骨脆性增加和骨微环境被破坏[1]。骨稳态失衡是其发生的主要病理学基础。骨稳态是指成骨细胞行使的骨形成功能和破骨细胞行使的骨吸收功能处在一个相对平衡的过程[2]。破骨细胞分化及其功能的过度活化是导致骨稳态失衡的重要因素[3]。中国骨质疏松症流行病学调查显示,我国50岁以上人群骨质疏松发病率为19.2%,65岁以上人群发病率为32%[4]。目前临床上治疗骨质疏松症的药物主要是骨吸收抑制剂,其在抑制骨吸收的同时,也干扰骨形成进程。因而发掘更好的治疗骨质疏松的药物是迫切需要的。

    骨髓来源的巨噬细胞(BMMs)向破骨细胞分化需要重组小鼠巨噬细胞集落刺激因子(M-CSF)和核因子κB受体活化因子配体(RANKL)的持续刺激[5]。M-CSF增加了早期BMMs的增殖,RANKL与受体RANK结合激活肿瘤坏死因子受体相关因子6(TRAF6),进而激活细胞凋亡信号调节激酶1(ASK1)和NF-κB抑制物激酶(IKKs),活化的ASK1和IKKs磷酸化JNK、ERK和P38以及NF-κB特异性抑制因子IκB特定部位的丝氨酸,激活MAPK和NF-κB信号。活化的MAPK和NF-κB使c-Fos、NFATc1表达增加,促进DC-STAMP、ATP6V0d2、TRAP、CTSK等破骨细胞特异性基因的转录与表达,导致破骨细胞分化[6]。研究表明,减弱破骨细胞分化及功能,能够有效地治疗骨质疏松症[7]

    冬虫夏草是一味传统中药,有增强免疫、抗炎、抗氧化和延缓衰老等作用[8]。先前的研究表明,富含锶的冬虫夏草菌丝发酵液对去卵巢骨质疏松大鼠有良好的治疗效果,其机制是提高了血清中的雌二醇水平,但是该研究仅基于整体水平解释了冬虫夏草作用于骨质疏松症的机制,对冬虫夏草的菌种也未作鉴定,并且野生的冬虫夏草提取液在骨质疏松症中的作用也未见报道[9-11]。本研究旨在探讨冬虫夏草提取液(CSE)对去卵巢小鼠的治疗作用以及对破骨细胞分化和功能的影响,为CSE防治骨质疏松症提供实验依据。

    SPF级雌性C57BL/6小鼠(上海西普尔-必凯实验动物有限公司),12周龄24只,6周龄7只,体质量20~22 g,合格证号:SCXK(沪)2018-0006。本实验经江西中医药大学实验动物伦理委员会批准(批号JZLLSC2019-0194),且遵循中国伦理委员会指导原则。

    α-MEM培养基(美国Hyclone,批号:SH30265.01);胎牛血清(美国Gbico,批号:10099-141);重组小鼠RANKL、M-CSF蛋白(美国R&D,批号:462-TEC-010、416-ML-010);TRAP染色试剂盒(浙江卓腾生物公司);RNAiso Plus、TB Green(日本Takara,批号:9109、RR420B);p-JNK、JNK、p-ERK1/2、ERK1/2、p-P38、P38和GAPDH兔单克隆抗体(美国CST,批号:4668、9252、4370、4695、4511、8690、5174);山羊抗兔IgG H&L (IRDye® 800CW)预吸附二抗(美国Abcam,批号:ab216773);冬虫夏草(上海雷允上药业有限公司);羟基磷灰石涂板/96孔板(美国Corning,批号:3989);小鼠抗酒石酸酸性磷酸酶、骨钙素、骨碱性磷酸酶ELISA试剂盒(上海生工,批号:D721140、D721126、D721049)。

    371型细胞培养箱(美国Thermo);Cytation 5多功能酶标仪(美国Bio-Tek);CFX96型实时荧光定量PCR仪(美国Bio-Rad);SA型近红外双色激光成像系统(美国odyssey);TI-SR型倒置显微镜(日本Nikon);RM2016型病理切片机(上海徕卡仪器有限公司);JB-P5型包埋机(武汉俊杰)。

    冬虫夏草(Cordyceps sinensis)药材产地为青海玉树,购自上海雷允上药业有限公司,经海军军医大学黄宝康教授鉴定。提取详情见引文[12]

    选取6周龄C57BL/6小鼠,使用颈椎脱臼法处死,取双侧股骨和胫骨,使用PBS将骨髓从骨髓腔中冲出,收集PBS并离心,弃上清液,使用α-MEM培养基重悬,于T75培养瓶内(含10%血清,1%青霉素-链霉素溶液及30 ng/ml M-CSF完全培养基)培养3 d。使用PBS清洗去除未贴壁细胞,加入适量新鲜完全培养基,直至细胞数量达到5×106[13]

    在96孔板中,BMMs以8×103个/孔的密度接种,孵育过夜;分别加入0、0.125、0.25、0.5、1、2、4 mg/ml CSE干预处理,培养48 h或96 h,加入CCK-8检测液,37 ℃孵育1 h后在波长480 nm处检测吸光度。

    在96孔板中,BMMs以6×103个/孔的密度接种,孵育过夜;分别加入0、0.5、1、2 mg/ml CSE干预处理,同时加入50 ng/ml RANKL和30 ng/ml M-CSF,阴性对照组不加入RANKL;每2 d更换一次培养基,直至第5天对破骨细胞进行TRAP染色。

    将同样密度的BMMs接种于96孔板,孵育过夜;记过夜后为第1天,分别于第1、3、5天加入1 mg/ml CSE干预处理,每2 d更换一次培养基至第7天(仅加药1次,之后更换培养基均不加CSE),进行TRAP染色[14]

    在96孔板中,BMMs以6×103个/孔的密度接种,孵育过夜;分别加入0、0.5、1、2 mg/ml CSE干预处理,同时加入50 ng/ml RANKL和30 ng/ml M-CSF,每2 d更换一次培养基。第5天用鬼笔环肽和DAPI分别对F-actin环和细胞核进行染色。

    骨吸收实验:BMMs以5×105个/孔的密度接种于6孔板,孵育过夜;加入含50 ng/ml RANKL和30 ng/ml M-CSF完全培养基,每2 d换液,至第4天出现小的破骨样细胞,胰酶消化以8×103个/孔密度重新接种至羟基磷灰石涂板内,并且加入0、0.5、1、2 mg/ml CSE处理。培养3 d后,用次氯酸钠洗去细胞,PBS清洗后晾干,于光学显微镜下拍照,统计每个孔的骨陷窝面积[15]

    在12孔板中,BMMs以5×104个/孔的密度接种,孵育过夜;分别加入0、0.5、1、2 mg/ml CSE干预处理,同时加入50 ng/ml RANKL和30 ng/ml M-CSF,每2 d更换一次培养基至第5天。抽提RNA,逆转录后使用q-PCR检测DC-STAMP、ATP6V0d2、TRAP、CTSK、NFATc1基因的表达,引物序列详情见引文[16]

    在6孔板中,BMMs以5×105个/孔的密度接种,孵育过夜;使用无血清的α-MEM培养基饥饿细胞1 h,实验组更换含1 mg/ml的CSE的完全培养基,对照组更换含相同体积PBS的完全培养基,孵育3 h;均使用50 ng/ml RANKL刺激5、10、20、30、60 min,未被刺激的细胞作为0 min。刺激完成后,抽提总蛋白。经SDS-PAGE凝胶电泳、转膜、5%脱脂奶粉封闭1 h,4 ℃下一抗孵育过夜,室温下荧光素偶联的二抗孵育1 h,用odyssey成像系统扫膜,分析JNK(1∶2000)、p-JNK(1∶2000)、ERK(1∶2000)、p-ERK(1∶2000)、P38(1∶2000)、p-P38(1∶2000)的表达。

    在24只12周龄小鼠中随机挑选6只作为假手术组(Sham组),其余小鼠使用异氟烷气麻,去除背部毛发,切开皮肤和背膜,使卵巢暴露,切除双侧卵巢并使用可吸收缝合线结扎、缝合(假手术组仅切开背部皮肤和腹膜)[14]。术后1周,按照文献报道方法[17],将卵巢切除小鼠随机分为3组:模型组(OVX组)、CSE低剂量组、CSE高剂量组,每组6只。术后7 d开始给药,由预实验确定给药浓度为312.5和625 mg/kg,按照每只200 μl/d连续灌胃给药6周。

    小鼠处死后取双侧股骨,4%多聚甲醛固定后进行脱钙处理,之后常规脱水、石蜡包埋,切成4 μm切片,分别进行HE染色和TRAP染色。统计破骨细胞数量/骨表面积(N. Oc/BS)、破骨细胞面积/骨表面积(Oc. S/BS)和骨体积/组织体积(BV/TV)。

    小鼠处死前统一摘除小鼠左眼取血,将全血收集并在4 ℃静置30 min,之后在4 ℃下2 000 r/min离心20 min,吸取上清液置于−80 ℃冰箱中保存。按照Elisa试剂盒《用户操作手册》检测血清中TRAP、ALP、BGP含量。

    使用Image J统计破骨细胞面积和个数、F-actin环面积和环内核数、骨陷窝面积、蛋白条带灰度值、N. Oc/BS、Oc. S/BS和BV/TV。使用SPSS 21.0统计学软件对数据进行分析。计量资料用均数±标准差($\bar x $±s)表示,多组间比较使用方差分析,以P<0.05认为差异具有统计学意义。

    CCK-8结果显示,与空白组比较,CSE浓度范围在0.125~4 mg/ml时,48 h内和96 h内CSE对BMMs无细胞毒性(图1)。据此结果选择0.5、1、2 mg/ml作为之后的细胞实验浓度。

    图  1  CSE对BMMs细胞活力的影响(n=3)
    A.CSE处理48 h 后的BMMs细胞相对存活率;B.CSE处理96 h 后的BMMs细胞相对存活率

    TRAP染色显示,与空白组比较,RANKL组的BMMs分化为成熟的TRAP阳性多核巨噬细胞(有完整的圆形状细胞形态且细胞核数目≥3)。与RANKL组比较,CSE不同剂量组的TRAP阳性多核巨噬细胞数量明显减少,且呈剂量依赖的方式下降,并且破骨细胞的大小也被显著抑制(图2A-C)。结果表明CSE不仅抑制破骨细胞的分化也阻碍了破骨细胞前体细胞的融合。

    图  2  CSE对破骨细胞分化的影响(n=3)
    A.破骨细胞图像(×40);B.每孔TRAP阳性多核细胞(细胞核数≥3)面积百分比;C.每孔TRAP阳性多核细胞(细胞核数≥3)个数;D.不同时间段加入CSE处理后的破骨细胞图像(×40);E.加药时间示意图;F.每孔TRAP阳性多核细胞(细胞核数≥3)个数**P<0.01,与RANKL组比较

    在RANKL持续刺激的BMMs中按时段加入CSE。染色结果显示,与空白组比较,0 d组的BMMs几乎全部分化为成熟的破骨细胞,数量多,且形状完整。与0 d组比较,给予CSE1~3 d组的BMMs分化为成熟破骨细胞的数量最少,3~5 d组其次,5~7 d组最多(图2D2E2F)。结果表明CSE对破骨细胞生成的任一阶段均有作用,在早期阶段作用最为明显。

    鬼笔环肽和DAPI染色显示,RANKL组的F-actin环形成完整,数量多且面积大,环内细胞核数量多。与RANKL组比较,CSE不同剂量组的F-actin环数量和大小均下降,环内细胞核数量也明显减少(图3A3B3C)。

    图  3  CSE对破骨细胞F-actin环形成和骨吸收功能的影响(n=3)
    A.F-actin环和细胞核共聚焦图像(×100);B.每孔内F-actin环面积百分比;C.单个F-actin环内细胞核个数;D.骨陷窝图像(×40);E.每孔未吸收面积百分比**P<0.01,与RANKL组比较

    骨板吸收显示,RANKL组未被吸收面积为70%, 1 mg/ml CSE组未被吸收面积为85%,2 mg/ml CSE组为95%,与RANKL组比较,不同剂量的CSE均有效的减少了骨板吸收的面积(图3D3E)。结果表明CSE显著抑制了成熟破骨细胞骨吸收的功能。

    q-PCR结果显示,与RANKL组比较,CSE中、高剂量组显著性地抑制了破骨细胞特异性基因TRAP、CTSK、ATP6V0d2、DC-STAMP和NFATc1的表达,且呈剂量依赖性(图4)。这与CSE抑制破骨细胞分化及功能的结果相一致。

    图  4  CSE对破骨细胞特异性基因表达的影响(n=3)
    A.TRAP;B.CTSK; C.ATP6V0d2; D.DC-STAMP; E.NFATc1*P<0.05,**P<0.01,与RANKL组比较

    Wsetern-blot结果显示,RANKL组各时间段JNK、ERK和P38蛋白磷酸化显著。与RANKL组比较, CSE组p-JNK蛋白表达在第10~30 min明显下降,p-ERK蛋白表达在第20~60 min明显下降和p-P38蛋白表达在第10~60 min明显下降,见图5。结果表明在破骨细胞的分化过程中,CSE作用于MAPK通路JNK、ERK和P38的磷酸化。

    图  5  CSE对p-JNK、JNK、p-ERK、ERK、p-P38、P38蛋白表达的影响

    HE和TRAP染色显示,与假手术组比较,OVX组小鼠的骨小梁数目和面积明显减少(BV/TV值下降)且间距变大,骨小梁表面破骨细胞数量增多、面积变大(N. Oc/BS、Oc. S/BS值上升)。与OVX组比较,CSE低剂量和高剂量组小鼠的骨小梁数目和面积均增加(BV/TV值上升)且间距减小,骨小梁表面破骨细胞数量减少、面积变小(N. Oc/BS、Oc. S/BS值下降),见图6。结果表明,CSE可以增加卵巢切除小鼠骨小梁数目,抑制破骨细胞活性,缓解骨量流失。

    图  6  CSE对去卵巢小鼠股骨破骨细胞数量和骨小梁的影响(n=6)
    A.HE染色和TRAP染色;B.BV/TV;C.Oc. S/BS;D.N. Oc/BS;**P<0.01,与OVX组比较;##P<0.01,与假手术组比较

    ELISA结果显示,与假手术组比较,OVX组小鼠血清中的TRAP含量明显增加,BGP含量明显减少,ALP含量无明显变化;CSE高剂量组小鼠血清中的TRAP、BGP含量无明显变化, ALP含量明显增加。与OVX组比较,CSE低剂量和高剂量组小鼠血清中的ALP、BGP含量明显增加,TRAP含量明显减少(图7)。结果表明,CSE可以调节骨代谢相关指标,具有平衡骨稳态作用。

    图  7  CSE对TRAP、ALP和BGP含量的影响(n=6)
    A.TRAP;B.ALP;C.BGP;*P<0.05,**P<0.01,与OVX组比较;##P<0.01,与假手术组比较

    骨质疏松症是一种与年龄相关的骨代谢疾病,骨重建失衡是其发生的主要原因,因绝经造成的骨质疏松占骨质疏松症的绝大部分。研究表明,雌激素对骨骼的生长、发育和维持至关重要,因雌激素缺失致使RANKL介导的信号通路过度活化,进而使破骨细胞功能异常,是绝经后骨质疏松症主要原因[18]。因而抑制破骨细胞的分化及其功能是治疗骨质疏松的有效途径[19]。在本研究中,我们发现CSE通过抑制MAPK信号通路的激活来抑制RANKL介导的破骨细胞生成,同时对OVX小鼠的骨质流失具有良好的保护作用。

    研究表明,在RANKL的刺激下,BMMs中的MAPK通路被激活,进而刺激破骨细胞特异性基因的表达,促进BMMs分化为破骨细胞[19-21]。NFATc1和DC-STAMP是破骨细胞分化和前体破骨细胞融合的主要调控者,TRAP、CTSK、ATP6V0d2是反映破骨细胞活性和骨吸收状态的特异性指标[22-23]。本研究表明,CSE显著抑制RANKL介导的破骨细胞分化,而且在破骨细胞分化的早期阶段作用最为明显。其机制是抑制JNK、ERK和P38的激活,进而抑制破骨细胞特异性基因的表达。

    F-actin环是分化成熟的破骨细胞在骨面上极化,使骨架重排,F-actin紧密排列形成的一个环,是破骨细胞进行骨吸收的先决条件。因而阻碍破骨细胞前体细胞的融合,能够有效抑制F-actin环的形成和骨吸收功能[24]。本研究发现CSE显著性地抑制F-actin环的形成,并降低了环内细胞核数以及骨陷窝面积,这表明CSE阻碍了破骨细胞前体细胞的融合和骨吸收功能,与CSE抑制破骨细胞分化及其特异性基因表达的结果相一致。

    我们构建了去卵巢小鼠模型模拟绝经后的骨质疏松症,经CSE灌胃给药6周后,采用HE和TRAP染色对小鼠股骨进行骨组织形态学分析以及ELISA检测血清中ALP、TRAP、BGP含量。TRAP是酸性磷酸酶的同工酶,其血清浓度可反映破骨细胞的活性[25]。ALP是一种磷酸单酯酶,由成骨细胞分泌,能有效地反映成骨细胞的活性[27]。BGP由成骨细胞合成及分泌,绝大部分的BGP随成骨细胞矿化在骨基质中沉积,仅有一小部分进入到血液循环[14]。血液中的BGP是成骨细胞分泌完成后直接进入血液,并非是破骨细胞降解骨基质而进入血液,因而检测血液中的BGP含量,对评判机体经药物治疗后变化有较大的参考价值。结果显示,CSE能有效缓解骨量丢失,表现在CSE各剂量组小鼠的骨小梁数量增多,间距减少,以及骨表面破骨细胞数量和面积减少,表明了CSE对去卵巢小鼠的骨量流失具有良好的保护作用。同时CSE提高了血清中ALP含量,使BGP和TRAP含量回归正常水平,说明其可抑制破骨细胞分化,减弱骨吸收功能,具有缓解骨量流失和调节骨代谢作用。

    总之,本研究发现CSE在体外抑制了RANKL诱导的破骨细胞分化及其骨吸收功能,其可能机制部分归因于CSE抑制了级联信号中ERK、JNK和P38的激活,在体内有效的缓解了因卵巢切除造成的骨量丢失,这为CSE防治骨质疏松症提供了初步的药理学证据。

  • 图  1  益母草碱对巨噬细胞活力的影响

    *P<0.05, 与对照组比较。

    图  2  益母草碱对巨噬细胞产生NO、IL-1β、IL-6及IL-18的影响

    *P<0.05, 与对照组比较;#P<0.05, 与脂多糖组比较。

    图  3  益母草碱对NLRP3炎症小体相关蛋白mRNA表达影响

    *P<0.05, 与对照组比较;#P<0.05, 与脂多糖组比较。

    图  4  益母草碱对NLRP3炎症小体相关蛋白表达的影响

    *P<0.05, 与对照组比较;#P<0.05, 与脂多糖组比较。

    图  5  益母草碱调节巨噬细胞由M1/M2型极化

    *P<0.05, 与对照组比较;#P<0.05, 与脂多糖组比较。

    表  1  PCR引物序列

    基因引物序列(5′→3′)
    NLRP3F: AGAAGAGACCACGGCAGAAG
    R: CCTTGGACCAGGTTCAGTGT
    ASCF: TGGATGCTCTGTACGGGAAG
    R: CCAGGCTGGTGTGAAACTGAA
    caspase-1F: CTTGGAAATAGCTCCCAGAA
    R: CATTTGGGAACTTCTCATCC
    TNF-αF: CCAATGGCAGAGTGGGTATG
    R: TGAAGAGGACCTGGGAGTAG
    iNOSF: GGGAATCTTGGAGCGAGTTG
    R: GTGAGGGCTTGGCTGAGTGA
    CD206F: CAGGTGTGGGCTCAGGTAGT
    R: TGGTGAGCTGAAAGGTGA
    Arg-1F: TTGCTGTGCTCCATAGTTTCCA
    R: CCATGCAAGTTTCCACTTGT
    GAPDHF: GGAGAAACCTGCCAAGTATG
    R: TTACTCCTTGGAGGCCATGTAG
    下载: 导出CSV
  • [1] ZAPOROZHAN V, MARICHEREDA V, SITNIK P. Inflammation biomarkers in pelvic inflammatory disease[J]. Eur J Obstet Gynecol Reproductive Biol,2019,234:e43.
    [2] CHYLIKOVA J, DVORACKOVA J, TAUBER Z, et al. M1/M2 macrophage polarization in human obese adipose tissue[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2018,162(2):79-82. doi:  10.5507/bp.2018.015
    [3] LANDIS R C, QUIMBY K R, GREENIDGE A R. M1/M2 macrophages in diabetic nephropathy: Nrf2/HO-1 as therapeutic targets[J]. Curr Pharm Des,2018,24(20):2241-2249. doi:  10.2174/1381612824666180716163845
    [4] COLIN S, CHINETTI-GBAGUIDI G, STAELS B. Macrophage phenotypes in atherosclerosis[J]. Immunol Rev,2014,262(1):153-166. doi:  10.1111/imr.12218
    [5] 乔晶晶, 吴啟南, 薛敏, 等. 益母草化学成分与药理作用研究进展[J]. 中草药, 2018, 49(23):5691-5704.
    [6] LIU H, ZHANG X, DU Y, et al. Leonurine protects brain injury by increased activities of UCP4, SOD, CAT and Bcl-2, decreased levels of MDA and Bax, and ameliorated ultrastructure of mitochondria in experimental stroke[J]. Brain Res,2012,1474:73-81. doi:  10.1016/j.brainres.2012.07.028
    [7] CAO H, SETHUMADHAVAN K, LI K, et al. Cinnamon polyphenol extract and insulin regulate diacylglycerol acyltransferase gene expression in mouse adipocytes and macrophages[J]. Plant Foods Hum Nutr,2019,74(1):115-121. doi:  10.1007/s11130-018-0709-7
    [8] 谢怡. 蒿芩清胆汤联合克林霉素磷酸酯治疗盆腔炎性疾病后遗症的效果及对血清辅助性T细胞1/辅助性T细胞2和粒细胞-巨噬细胞集落刺激因子水平的影响[J]. 中国医药, 2018, 13(7):1083-1086.
    [9] TRACEY K J. The inflammatory reflex[J]. Nature,2002,420(6917):853-859. doi:  10.1038/nature01321
    [10] 丘甜美, 何援利, 蔡慧华. 子宫内膜炎性反应与宫腔粘连的相关性[J]. 现代妇产科进展, 2019, 28(4):317-318, 320.
  • [1] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架治疗创伤性脑损伤的研究 . 药学实践与服务, 2025, 43(2): 67-74. doi: 10.12206/j.issn.2097-2024.202406034
    [2] 曹奇, 张嘉宝, 王培.  基于无监督自动降维分析与手动圈门联用的骨骼肌髓系细胞多色流式分析方法 . 药学实践与服务, 2025, 43(3): 118-122. doi: 10.12206/j.issn.2097-2024.202404077
    [3] 冯婷婷, 张景翔, 王彦, 许维恒, 张俊平.  ANXA3基因及蛋白的研究进展 . 药学实践与服务, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
    [4] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 1-7. doi: 10.12206/j.issn.2097-2024.202406035
    [5] 宋泽成, 马闪闪, 胡巧灵, 仲华, 王彦.  小檗碱与氟康唑合用抗氟康唑耐受白念珠菌的研究 . 药学实践与服务, 2025, 43(2): 87-91. doi: 10.12206/j.issn.2097-2024.202409047
    [6] 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟.  花椒生物碱富集纯化工艺优化及其成分分析 . 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
    [7] 张淑秀, 袁伯川, 杜丽娜, 金义光.  多糖用于放射性核素清除的研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202405060
    [8] 关梦瑶, 夏天爽, 何旭辉, 史策, 蒋益萍, 辛海量.  黑蒜多糖抗便秘作用研究 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202403059
    [9] 周文艳, 胡珊珊, 张万年, 庄春林.  Keap1-Nrf2通路在炎症疾病中的研究进展 . 药学实践与服务, 2025, 43(3): 97-108, 116. doi: 10.12206/j.issn.2097-2024.202405013
    [10] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [11] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [12] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [13] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [14] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [15] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [16] 杨嘉宁, 赵一颖, 肖伟.  七味脂肝方对非酒精性脂肪性肝炎动物模型的药效学评价 . 药学实践与服务, 2024, 42(9): 389-398. doi: 10.12206/j.issn.2097-2024.202404096
    [17] 邹思, 吴岩斌, 吴锦忠, 吴建国, 黄家兴.  虎奶菇菌核多糖功能化纳米硒抗疲劳功效研究 . 药学实践与服务, 2024, 42(10): 426-432. doi: 10.12206/j.issn.2097-2024.202206072
    [18] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [19] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [20] 岳春华, 贲永光, 王海桥.  基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制 . 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
  • 期刊类型引用(1)

    1. 王楠. 小剂量口服避孕药对妇女血凝的影响研究. 实用妇科内分泌电子杂志. 2023(23): 82-84 . 百度学术

    其他类型引用(0)

  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  9293
  • HTML全文浏览量:  2438
  • PDF下载量:  57
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-01-03
  • 修回日期:  2021-03-07
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2021-03-25

益母草碱抑制NLRP3炎症小体过度激活调控巨噬细胞M1/M2表型分化

doi: 10.12206/j.issn.1006-0111.202101003
    作者简介:

    华 荣,硕士,主管药师,研究方向:临床药学,Email: huarong0523@126.com

  • 中图分类号: R965

摘要:   目的  研究益母草碱对脂多糖(LPS)诱导小鼠腹腔巨噬细胞免疫应答影响及相关机制。  方法  分离小鼠腹腔巨噬细胞,用脂多糖和益母草碱预处理24 h,MMT法检测巨噬细胞活性;Griess法检测NO释放量;ELISA法检测IL-1β、IL-18、IL-6、TNF-α的释放量;RT-PCR法检测NLRP3、ASC、caspase-1、TNF-α、iNOS、Arg-1和CD206的mRNA表达量;Western blot检测NLRP3、ASC、caspase-1蛋白表达量。  结果  益母草碱能显著抑制脂多糖引起的巨噬细胞上清液中NO、IL-1β、IL-18、IL-6、TNF-α的释放。RT-PCR及Western blot实验结果显示,益母草碱可以抑制脂多糖引起的巨噬细胞中NLRP3、ASC、caspase-1的mRNA及蛋白表达;益母草碱还能明显抑制脂多糖所诱导的巨噬细胞向M1型分化,并促进巨噬细胞向M2型分化。  结论  益母草碱能通过抑制NLRP3炎症小体,促进脂多糖诱导的巨噬细胞由M1表型向M2表型分化。

English Abstract

梅洪梁, 谢菡, 张晋萍, 张海霞. 临床药师参与1例妊娠合并肠道艰难梭菌感染治疗的药学实践[J]. 药学实践与服务, 2021, 39(2): 182-185. doi: 10.12206/j.issn.1006-0111.202008016
引用本文: 华荣, 陈瑶. 益母草碱抑制NLRP3炎症小体过度激活调控巨噬细胞M1/M2表型分化[J]. 药学实践与服务, 2021, 39(2): 143-147. doi: 10.12206/j.issn.1006-0111.202101003
MEI Hongliang, XIE Han, ZHANG Jinping, ZHANG Haixia. Clinical pharmacist participation in the treatment of a pregnancy complicated with Clostridium difficile infection[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(2): 182-185. doi: 10.12206/j.issn.1006-0111.202008016
Citation: HUA Rong, CHEN Yao. Effect of leonurine on peritoneal macrophages M1/M2 phenotypic differentiation via inhibiting overactivation of NLRP3 inflammasome[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(2): 143-147. doi: 10.12206/j.issn.1006-0111.202101003
  • 盆腔炎是一种常发病于年轻女性上生殖道感染的妇科疾病。临床研究发现,盆腔炎患者上生殖道内存在大量激活的巨噬细胞[1]。在炎症和病原体的刺激下,巨噬细胞过度激活可以释放出大量炎症因子,包括肿瘤坏死因子-α(TNF-α),白细胞介素-1β(IL-1β)和白细胞介素-18(IL-18)。研究发现,NLRP3炎性小体激活可以促使caspase-1活化并切割IL-18、IL-1β前体,促进IL-18、IL-1β的成熟与释放,而抑制NLRP3炎性小体过度激活以减轻盆腔炎临床症状,并且与降低炎症因子、趋化因子释放有关。巨噬细胞在不同刺激下可以活化为不同表型:经典活化的M1型和替代活化的M2型。在含有脂多糖(LPS)和IFN-γ微环境中,巨噬细胞活化为变形虫样的M1型,参与炎症的发生。巨噬细胞在含有IL-4、IL-10、IL-13等抗炎因子微环境中被活化为M2型,表达精氨酸酶 1(Arg-1)和甘露糖受体1(CD206) 等特异性标志分子,参与炎症消退和组织重塑。研究发现,M1 /M2比例失衡是多种炎症性疾病的病理标志,如肥胖[2]、糖尿病[3]、动脉粥样硬化[4]等。

    益母草碱(LEO)是一种具有抗炎、抗氧化和抗肿瘤作用的天然黄酮类化合物[5],研究报道显示益母草碱可抑制Bax/Bcl-2信号通路激活抑制炎症因子的表达[6]。但鲜有益母草碱对巨噬细胞中NLRP3炎症小体影响的报道。本实验以益母草碱为研究对象,探讨其对巨噬细胞中NLRP3炎症小体激活的影响,以及对巨噬细胞M1/M2表型的调节作用。

    • 益母草碱(纯度>98%,西格玛奥德里奇贸易有限公司,上海);脂多糖(L6143)、DMEM高糖培养基、胎牛血清、NuPAGE 10% Bis-Tris Gel、10×MOPS SDS 运行缓冲液、10×传输缓冲液、预制蛋白Marker、荧光定量PCR、反转录试剂盒(美国赛默飞世尔科技公司);青-链霉素混合液、胰蛋白酶(美国Hyclone公司);Griess试剂盒(江苏碧云天生物试剂公司);IL-1β、IL-18、IL-6、TNF-α等ELISA试剂盒(武汉伊莱瑞特生物公司);PVDF膜(美国Millipore公司);caspase-1兔抗单克隆抗体、β-actin兔抗单克隆抗体、羊抗兔/羊抗鼠单克隆二抗(武汉三鹰生物技术有限公司);NLRP3兔抗单克隆抗体(英国Biorbyt生物试剂公司);四甲基偶氮唑蓝溶液(MTT,美国Bio-Rad公司);TRIzol Regent试剂盒(日本TaKaRa公司)。

    • C57BL/6小鼠,6周龄,雌性,体重(20±2) g,购于江苏集萃药康生物科技股份有限公司。小鼠饲养于实验室SPF级动物房,温度(22 ± 1)°C和湿度(60 ± 2)%,动物自由饮食。动物实验操作均通过实验动物伦理委员会批准。

    • 以颈椎脱臼的方式处死小鼠,置于75%的乙醇溶液中浸泡10 min,将15 ml PBS缓冲液注入小鼠腹中,仰卧平放,揉捏小鼠腹部5 min,吸出腹液,离心分离巨噬细胞,用DMEM培养液调整细胞浓度,在细胞培养箱中以5%CO2、37 ℃恒温孵育24 h后,换液,去除未贴壁细胞,即得到纯化的小鼠腹腔巨噬细胞[7]。以1.5×105个/ml密度接种于24孔(或96孔)板中培养24 h后,随机分为空白组、益母草碱(10 μmol/L)组、脂多糖(1 μg/ml)组、脂多糖+益母草碱(10 μmol/L)组,益母草碱预处理1 h之后加入脂多糖,放回孵箱中培养,24 h后,提取上清液和细胞蛋白,检测相关指标。

    • 脂多糖预处理巨噬细胞24 h后,在96孔板中每孔加入10 μl(5 mg/ml)MTT溶液,于37 ℃孵箱中培养,4 h后取出,移除细胞上清液,每孔加入200 μl二甲基亚砜,放置于恒温摇床震摇10 min,于562 nm处测定OA值,检测相关指标。

    • Griess试剂盒取出,恢复至室温。将细胞上清液和标准品和加入到96孔板中,将试剂I 和试剂II 混匀加入96孔板中,避光,放置于恒温摇床震摇30 min,于470 nm处测定OA值,检测NO含量。

    • 提前将ELISA试剂盒取出,恢复至室温。稀释细胞上清液,配置标准品工作液,按照ELISA试剂盒说明书要求依次加入反应液,最后加入终止液,于450 nm处检测OD值,计算IL-1β、IL-18、IL-6、TNF-α含量。

    • 按照Trizol法提取巨噬细胞中总RNA,根据逆转录试剂盒说明书,进行RT-PCR反应。设定反应条件为:5 ℃预变性30 s,接着95 ℃变性6 s,最后60 ℃退火,延伸37 s,重复反应40个循环。RT-PCR引物设计见(表1)。以GAPDH为内参,利用2−∆∆Ct方法分析结果。

      表 1  PCR引物序列

      基因引物序列(5′→3′)
      NLRP3F: AGAAGAGACCACGGCAGAAG
      R: CCTTGGACCAGGTTCAGTGT
      ASCF: TGGATGCTCTGTACGGGAAG
      R: CCAGGCTGGTGTGAAACTGAA
      caspase-1F: CTTGGAAATAGCTCCCAGAA
      R: CATTTGGGAACTTCTCATCC
      TNF-αF: CCAATGGCAGAGTGGGTATG
      R: TGAAGAGGACCTGGGAGTAG
      iNOSF: GGGAATCTTGGAGCGAGTTG
      R: GTGAGGGCTTGGCTGAGTGA
      CD206F: CAGGTGTGGGCTCAGGTAGT
      R: TGGTGAGCTGAAAGGTGA
      Arg-1F: TTGCTGTGCTCCATAGTTTCCA
      R: CCATGCAAGTTTCCACTTGT
      GAPDHF: GGAGAAACCTGCCAAGTATG
      R: TTACTCCTTGGAGGCCATGTAG
    • 脂多糖处理巨噬细胞24 h后,弃去细胞上层培养基,置于冰上,PBS洗涤3次,加入RIPA裂解液(含1%PMSF)反应30 min,离心,收集上清液。BCA蛋白定量试剂盒检测蛋白含量,配置缓冲液,变性。每孔10 μl加入到10%预制胶中,设置电压200 V电泳30 min,设置电压25 V电转30 min,TBST洗涤,5%脱脂牛奶封闭2 h,TBST洗涤,4 ℃一抗孵育过夜,TBST洗涤,二抗孵育30 min,TBST洗涤,加入曝光剂,曝光。

    • 采用SPSS18.0分析实验中所涉及的数据,组间比较方差齐,用LSD检验,方差不齐采用 Dunnett’s T3检验,以P < 0.05为统计学差异,数据结果用均数 ± 标准误($\bar x \pm s$)表示。

    • 首先,观察益母草碱和脂多糖对巨噬细胞活力的影响(图1)。结果显示,脂多糖和益母草碱均能提高巨噬细胞的活力(P<0.05),当益母草碱与脂多糖共同刺激巨噬细胞时,巨噬细胞活力得到了进一步的增强(P<0.05)。

      图  1  益母草碱对巨噬细胞活力的影响

    • 观察益母草碱对巨噬细胞炎症因子释放的影响,在脂多糖刺激下,巨噬细胞上清液中NO的释放增加,而益母草碱可以抑制巨噬细胞NO释放(图2A)。检测脂多糖对巨噬细胞上清液中IL-1β、IL-18和IL-6释放的影响,结果发现,益母草碱可以降低巨噬细胞IL-1β、IL-18和IL-6释放(图2B-2D)。结果显示,益母草碱可以减少脂多糖引起的巨噬细胞炎症因子的释放。

      图  2  益母草碱对巨噬细胞产生NO、IL-1β、IL-6及IL-18的影响

    • 细胞内IL-1β、IL-18等炎症因子的释放需要经过NLRP3炎症小体的激活,为此,观察了益母草碱对NLRP3炎症小体激活的影响。RT-PCR结果显示(图3),脂多糖刺激后,NLRP3、ASC、caspase-1的mRNA表达增加,益母草碱可以降低mRNA表达。Western blot结果也证实益母草碱可以抑制脂多糖引起的巨噬细胞中NLRP3、ASC、caspase-1蛋白表达(图4)。

      图  3  益母草碱对NLRP3炎症小体相关蛋白mRNA表达影响

      图  4  益母草碱对NLRP3炎症小体相关蛋白表达的影响

    • 应用RT-PCR检测益母草碱对巨噬细胞M1/M2表型的影响。正常情况下,巨噬细胞M1型标志物TNF-α和iNOS表达量较低,经脂多糖诱导刺激后TNF-α和iNOS的表达水平显著升高,益母草碱可以降低脂多糖引起的TNF-α和iNOS的mRNA表达(图5A5B)。另一方面,脂多糖诱导刺激后,巨噬细胞M2型标志物Arg-1和CD206的表达水平降低,益母草碱预处理可以增加脂多糖引起的Arg-1和CD206表达(图5C5D)。表明益母草碱可以调控脂多糖引起的巨噬细胞由M1向M2型转化。

      图  5  益母草碱调节巨噬细胞由M1/M2型极化

    • 研究发现在盆腔炎患者的上生殖道内存在大量激活的巨噬细胞[8]。巨噬细胞是参与炎症反应的天然免疫细胞,当病原体入侵或者组织发生病变时,巨噬细胞分泌多种炎症因子,诱导更多的巨噬细胞活化、募集,加强局部抗炎作用。正常生理情况下,炎症因子的含量极少,具有维持机体免疫和调节心脑血管等功能[9]。但当机体长期受到病原微生物、致炎因子刺激时,会导致一系列病理改变,如长期慢性子宫内膜炎刺激可以增加子宫纤维化的发病率[10]。基于此,本实验利用革兰阴性菌来源的脂多糖刺激巨噬细胞,观察益母草碱对脂多糖诱导的巨噬细胞激活和炎症因子表达的影响。结果显示,脂多糖刺激可以引起巨噬细胞过度激活,相关炎症因子表达增加,益母草碱预处理可以减少炎症因子的表达和分泌,提示益母草碱的抗炎作用与抑制巨噬细胞中炎症因子的产生有关。

      为了进一步阐明益母草碱的抗炎作用,本实验对NLRP3炎症小体进行了研究。大量研究发现脂多糖可以激活NLRP3炎症小体,引起细胞因子释放增加。鉴于盆腔炎是炎性刺激引起的病理变化,且抑制NLRP3炎症小体可以降低炎症,推测抑制NLRP3炎症小体过度激活可能对盆腔炎起到一定的治疗效果。本实验中发现,益母草碱可以通过抑制脂多糖引起的巨噬细胞中NLRP3炎症小体相关蛋白表达,从而减少炎症因子释放,证实益母草碱可以抑制脂多糖诱导的巨噬细胞内NLRP3炎症小体的过度激活发挥抗炎作用。

      巨噬细胞的表型转化在盆腔炎的病理进程中发挥着重要作用,M1型巨噬细胞主要发挥促炎、吞噬病原体的作用,M2型巨噬细胞主要发挥促进组织重塑、损伤修复等。因此,在盆腔炎疾病中,M1型巨噬细胞能够加重上生殖道炎症进展,而M2型巨噬细胞能抑制疾病进展。为了明确脂多糖对巨噬细胞分化的影响,使用RT-PCR实验验证不同处理方式对巨噬细胞分型的影响。结果显示,脂多糖能够促进M1型标志物TNF-α和iNOS的mRNA表达,而益母草碱能明显抑制 TNF-α和iNOS的mRNA表达,同时促进M2型标志物Arg-1和CD206的mRNA表达。上述结果提示,益母草碱能抑制脂多糖诱导的巨噬细胞向M1型分化以及IL-18、IL-1β、TNF-α表达,促进巨噬细胞向M2型分化。

      在炎症反应过程中,脂多糖可以引起巨噬细胞中IL-1β、IL-18、IL-6、TNF-α等炎症因子表达增加,益母草碱可以通过抑制NLRP3炎症小体激活发挥其抗炎作用,提示抑制NLRP3炎症小体过度激活可能成为盆腔炎治疗的新策略,同时,本研究也为进一步开发益母草碱作为妇科用药提供理论基础。

参考文献 (10)

目录

/

返回文章
返回