-
在众多Keap1-Nrf2通路抗炎药物中,有3种药物近年来应用最广泛:富马酸二甲酯、齐墩果烷三萜以及甲基巴多索隆(bardoxolone methyl, CDDO-Me)。研究人员也不断推动着它们的临床进展,与此同时,其他药物也不断进入临床试验,如表1所示。
表 1 药物在临床试验中的应用
临床试验编号 试验标题 试验药物 适应症 NCT06319339 Nrf2激活对周围动脉疾病患者大血管功能、微血管功能、腿部功能和步行能力的影响 富马酸地罗西美 外周动脉闭塞性疾病 CTIS2023- 506795 -27-00富马酸二甲酯对肾上腺脊髓神经病患者的影响:一项多中心、安慰剂对照、Ⅱb/Ⅲ期试验 富马酸二甲酯 神经系统疾病肾上腺脑白质营养不良 NCT05959759 富马酸二甲酯治疗颅内未破裂动脉瘤:双盲随机对照试验 富马酸二甲酯 颅内动脉瘤炎症 CTR20232004 单中心、开放、单次给药试验评价硝酮嗪片在肾功能不全和健康受试者中药代动力学特征 硝酮嗪 肾功能不全糖尿病肾病 NCT05811949 富马酸二甲酯对多发性硬化症认知表现、灰质和丘脑病理学的影响:相关性研究。 富马酸二甲酯 多发性硬化症 NCT05798520 一项2部分、多中心、随机、盲法、主动控制的2期研究,依次评估 BIIB091 单一疗法和BIIB091联合富马酸地罗昔美治疗复发型多发性硬化症参与者的安全性和有效性 富马酸地罗西美BIIB-091 复发性多发性硬化 NCT05718375 CU01- 1001 治疗2型糖尿病肾病蛋白尿患者 24 周疗效评估和安全性评估的多中心、随机、双盲、安慰剂对照、平行Ⅱb 期临床试验CU-01 非胰岛素依赖型糖尿病白蛋白尿2型糖尿病肾脏病 CTR20221451 一项旨在评价Diroximel Fumarate(BIIB098)用于亚太地区成年复发型多发性硬化受试者中的安全性和耐受性以及药代动力学的开放性、单臂、多中心、Ⅲ期研究 富马酸地罗西美 复发性多发性硬化 NCT05083923 一项开放标签、单臂、多中心、Ⅲ期研究,旨在评估富马酸二羟甲基(BIIB098)在亚太地区复发性多发性硬化症患者中的安全性、耐受性和药代动力学 富马酸地罗西美 复发性多发性硬化 NCT04948606 一项前瞻性观察性研究,评估真实世界环境中富马酸二羟甲基嘧啶的治疗持久性、安全性、耐受性和有效性(EXPERIENCE-CA+IL研究) 富马酸地罗西美 复发性多发性硬化 NCT04890353 免疫调节剂富马酸二甲酯对急性缺血性中风的影响 富马酸二甲酯 急性缺血性卒中 NCT04890366 免疫调节剂富马酸二甲酯与阿替普酶联合治疗急性缺血性中风 富马酸二甲酯 急性缺血性卒中 CTR20210206 多中心、随机、双盲、安慰剂平行对照试验探索性研究硝酮嗪治疗 2 型糖尿病肾病患者的有效性和安全性 硝酮嗪 2型糖尿病肾病 NCT04702997 评估甲基巴多索隆在有快速进展风险的慢性肾病患者中的安全性、耐受性和疗效的Ⅱ期试验 甲基巴多索隆 慢性肾病 NCT04657926 使用夹竹桃苷和丹皮酚(APPA)治疗膝关节骨性关节炎的安慰剂对照、双盲、随机试验 APPA 膝关节炎 CTR20202126 硝酮嗪治疗肌萎缩侧索硬化症有效性和安全性的多中心、随机、双盲、安慰剂对照临床研究 硝酮嗪 肌萎缩侧索硬化 NCT04468165 通用延迟释放富马酸二甲酯(Sclera® 或Marovarex®, Hikma)在治疗中东和北非地区复发缓解型多发性硬化症的常规医疗实践中的有效性和安全性 富马酸二甲酯 复发-缓解型多发性硬化 CTR20192413 多中心、随机、双盲、平行、安慰剂对照试验研究硝酮嗪片治疗2型糖尿病肾病患者的有效性和安全性 硝酮嗪 2型糖尿病肾脏病 NCT04292080 富马酸二甲酯的长期分析,以减缓地理萎缩区域的增长 富马酸二甲酯 地图样萎缩年龄相关性黄斑变性 NCT04263610 一项开放标签、随机、Ⅳ 期研究,以评估 Tildrakizumab 在对富马酸二甲酯治疗无反应的中度至重度慢性斑块状银屑病患者中的疗效和安全性(TRANSITION) 富马酸二甲酯替瑞奇珠单抗 斑块状银屑病 NCT04221191 法国患者支持计划(PSP)OroSEP 中包含的缓解-复发性多发性硬化症(RR-MS)患者的富马酸二甲酯(Tecfidera®)持久性研究 富马酸二甲酯 复发-缓解型多发性硬化 NCT04142749 一项评估奥替普拉疗效和安全性的多中心、随机、双盲、安慰剂对照、平行、Ⅲ期临床试验 奥替普拉 肝硬化代谢功能障碍相关的脂肪肝病 NCT04125745 CXA-10在肺动脉高压中的安全性和有效性试验的Ⅱ期开放标签研究 10-硝基油酸 肺动脉高压 NCT04072861 在健康志愿者和慢性肾病 3-4 期受试者中使用 RBT-9进行的1b期剂量递增研究 Stannous protoporphyrin (Renibus Therapeutics) 慢性肾病急性肾损伤 -
许多神经系统疾病的发生与氧化应激密切相关,神经炎症是由创伤、缺氧、中毒、感染等因素引发的中枢及周围神经系统的炎症,可能导致神经元变性及退化,成为阿尔茨海默病、帕金森病、中风等神经系统疾病及神经损伤的关键病理过程。因此,抑制炎症对于预防和治疗神经系统疾病具有重要意义。
备受关注的富马酸二甲酯于2014年就被Biogen批准用于治疗复发型多发性硬化症[51],富马酸地罗西美也针对复发性多发性硬化进行了临床试验(NCT05798520)。越来越多的研究者关注到SFN对神经系统的保护作用,研究结果证实了SFN在急慢性神经退行性病变和神经发育疾病等神经系统疾病的预防和辅助治疗方面具有巨大应用潜力。SFN通过经典途径调控Nrf2通路,即通过化学修饰Keap1半胱氨酸残基(主要为Cys151)阻止Keap1与Nrf2结合,从而抑制Nrf2的泛素化和降解,实现Nrf2的积累以及依赖Nrf2调控的下游基因转录增强[52],减轻炎症反应。
-
研究表明,Nrf2作为一种重要的抗氧化基因,对心血管系统具有保护作用。已在动物实验中得到证实,Nrf2敲除小鼠较正常小鼠心血管事件发生率增加,提示Nrf2表达与各种心血管疾病的发生发展有着重要联系[21]。Nrf2在心血管疾病中的作用机制复杂且多样。在动脉粥样硬化中,Nrf2通过抑制氧化低密度脂蛋白的摄取和泡沫细胞的形成,降低斑块形成的风险[53]。在缺血再灌注损伤与心肌梗死中,Nrf2能够减轻氧化应激和炎症反应,从而减少心肌损伤和梗死面积[54]。此外,研究还发现,在心血管疾病中Nrf2的表达受到多种因素的调控,如Keap1、p27蛋白、钙离子稳态调节等。这些调控因子在不同的心血管疾病中发挥的作用也各有差异,进一步揭示了Nrf2在心血管疾病中具有广泛的应用前景。
-
在肾缺血再灌注、慢性肾脏疾病和糖尿病肾病等不同类型的肾脏疾病中,Nrf2的激活都发挥着关键性的作用。它主要通过以下两个方面的作用来发挥其生理功能:第一,Nrf2的活化能够上调肾组织中抗氧化蛋白的表达,如硫氧还蛋白、HO-1和GCL等,从而清除体内的过量活性氧。第二,Nrf2还能够调控NF-κB,抑制肾组织中炎症介质的表达,如细胞因子、趋化因子、黏附分子、COX-2和iNOS等[55]。炎症介质的过度表达会导致肾脏组织的损伤和炎症反应,Nrf2通过抑制这些炎症介质的表达,能够发挥肾脏保护作用。
由Reata制药公司开发的CDDO-Me是另一种广为人知的Nrf2激活剂,可强烈激活Keap1-Nrf2系统[56]。研究表明,CDDO-Me的开发有望为各种类型肾脏疾病患者提供有前景的新治疗方法。如今评估CDDO-Me在慢性肾病患者中的安全性、耐受性和疗效的临床试验已经进展到Ⅱ期(NCT04702997)。
-
先前的研究发现,Nrf2激活能够防止酒精诱导的氧化应激和肝脏中游离脂肪酸的积累,通过增加参与抗氧化防御的基因表达和减少参与脂肪生成的基因表达来发挥肝脏保护作用[57]。刘等[58]发现,黄芩苷显著减弱代谢功能障碍相关性脂肪肝小鼠肝组织中的脂质积累、肝硬化和肝细胞凋亡,降低促炎生物标志物并增强抗氧化酶,这些酶似乎受到上调的p62-Keap1-Nrf2信号级联的调节;黄芩苷和全反式维甲酸(Nrf2抑制剂)的联合治疗显示出黄芩苷及其诱导的抗氧化和抗炎反应明显减弱了肝脏保护作用。
Research progresses on Keap1-Nrf2 pathway in inflammatory diseases
-
摘要: Kelch样环氧氯丙烷相关蛋白-1-核因子e2相关因子2(Keap1-Nrf2) 通路已被证实是应对氧化应激的重要防御机制,调控该系统或许能成为众多疾病的有效治疗策略。主要探讨了Keap1-Nrf2通路在炎症疾病中的研究进展,介绍了Keap1-Nrf2通路的基本组成成分及激活机制,阐述了Keap1-Nrf2通路调控炎症与NF-κB通路、HO-1之间的影响、与炎症介质和酶的表达、炎症小体之间的关系。介绍了靶向Keap1-Nrf2通路的天然产物来源抑制剂、小分子抑制剂以及临床进展,探讨了Keap1-Nrf2通路在炎症治疗中的潜在应用价值。Abstract: The Keap1-Nrf2 pathway has been shown to be an important defense mechanism against oxidative stress, which may be an effective therapeutic strategy for many diseases. The research progresses on Keap1-Nrf2 pathway in inflammatory diseases were mainly reviewed. the basic components and activation mechanism of Keap1-Nrf2 pathway were introduced. The relationship between Keap1-Nrf2 pathway and the crosstalk between NF-κB pathway and HO-1 pathway, the expression of inflammatory mediators and enzymes, and inflammatory bodies were expounded. Natural product-derived inhibitors, small molecule inhibitors targeting Keap1-Nrf2 pathway and their clinical progress were introduced, and the potential application value of Keap1-Nrf2 pathway in the treatment of inflammation was discussed.
-
Key words:
- Keap1 /
- Nrf2 /
- mechanism of action /
- inflammation /
- inhibitor
-
表 1 药物在临床试验中的应用
临床试验编号 试验标题 试验药物 适应症 NCT06319339 Nrf2激活对周围动脉疾病患者大血管功能、微血管功能、腿部功能和步行能力的影响 富马酸地罗西美 外周动脉闭塞性疾病 CTIS2023- 506795 -27-00富马酸二甲酯对肾上腺脊髓神经病患者的影响:一项多中心、安慰剂对照、Ⅱb/Ⅲ期试验 富马酸二甲酯 神经系统疾病肾上腺脑白质营养不良 NCT05959759 富马酸二甲酯治疗颅内未破裂动脉瘤:双盲随机对照试验 富马酸二甲酯 颅内动脉瘤炎症 CTR20232004 单中心、开放、单次给药试验评价硝酮嗪片在肾功能不全和健康受试者中药代动力学特征 硝酮嗪 肾功能不全糖尿病肾病 NCT05811949 富马酸二甲酯对多发性硬化症认知表现、灰质和丘脑病理学的影响:相关性研究。 富马酸二甲酯 多发性硬化症 NCT05798520 一项2部分、多中心、随机、盲法、主动控制的2期研究,依次评估 BIIB091 单一疗法和BIIB091联合富马酸地罗昔美治疗复发型多发性硬化症参与者的安全性和有效性 富马酸地罗西美BIIB-091 复发性多发性硬化 NCT05718375 CU01- 1001 治疗2型糖尿病肾病蛋白尿患者 24 周疗效评估和安全性评估的多中心、随机、双盲、安慰剂对照、平行Ⅱb 期临床试验CU-01 非胰岛素依赖型糖尿病白蛋白尿2型糖尿病肾脏病 CTR20221451 一项旨在评价Diroximel Fumarate(BIIB098)用于亚太地区成年复发型多发性硬化受试者中的安全性和耐受性以及药代动力学的开放性、单臂、多中心、Ⅲ期研究 富马酸地罗西美 复发性多发性硬化 NCT05083923 一项开放标签、单臂、多中心、Ⅲ期研究,旨在评估富马酸二羟甲基(BIIB098)在亚太地区复发性多发性硬化症患者中的安全性、耐受性和药代动力学 富马酸地罗西美 复发性多发性硬化 NCT04948606 一项前瞻性观察性研究,评估真实世界环境中富马酸二羟甲基嘧啶的治疗持久性、安全性、耐受性和有效性(EXPERIENCE-CA+IL研究) 富马酸地罗西美 复发性多发性硬化 NCT04890353 免疫调节剂富马酸二甲酯对急性缺血性中风的影响 富马酸二甲酯 急性缺血性卒中 NCT04890366 免疫调节剂富马酸二甲酯与阿替普酶联合治疗急性缺血性中风 富马酸二甲酯 急性缺血性卒中 CTR20210206 多中心、随机、双盲、安慰剂平行对照试验探索性研究硝酮嗪治疗 2 型糖尿病肾病患者的有效性和安全性 硝酮嗪 2型糖尿病肾病 NCT04702997 评估甲基巴多索隆在有快速进展风险的慢性肾病患者中的安全性、耐受性和疗效的Ⅱ期试验 甲基巴多索隆 慢性肾病 NCT04657926 使用夹竹桃苷和丹皮酚(APPA)治疗膝关节骨性关节炎的安慰剂对照、双盲、随机试验 APPA 膝关节炎 CTR20202126 硝酮嗪治疗肌萎缩侧索硬化症有效性和安全性的多中心、随机、双盲、安慰剂对照临床研究 硝酮嗪 肌萎缩侧索硬化 NCT04468165 通用延迟释放富马酸二甲酯(Sclera® 或Marovarex®, Hikma)在治疗中东和北非地区复发缓解型多发性硬化症的常规医疗实践中的有效性和安全性 富马酸二甲酯 复发-缓解型多发性硬化 CTR20192413 多中心、随机、双盲、平行、安慰剂对照试验研究硝酮嗪片治疗2型糖尿病肾病患者的有效性和安全性 硝酮嗪 2型糖尿病肾脏病 NCT04292080 富马酸二甲酯的长期分析,以减缓地理萎缩区域的增长 富马酸二甲酯 地图样萎缩年龄相关性黄斑变性 NCT04263610 一项开放标签、随机、Ⅳ 期研究,以评估 Tildrakizumab 在对富马酸二甲酯治疗无反应的中度至重度慢性斑块状银屑病患者中的疗效和安全性(TRANSITION) 富马酸二甲酯替瑞奇珠单抗 斑块状银屑病 NCT04221191 法国患者支持计划(PSP)OroSEP 中包含的缓解-复发性多发性硬化症(RR-MS)患者的富马酸二甲酯(Tecfidera®)持久性研究 富马酸二甲酯 复发-缓解型多发性硬化 NCT04142749 一项评估奥替普拉疗效和安全性的多中心、随机、双盲、安慰剂对照、平行、Ⅲ期临床试验 奥替普拉 肝硬化代谢功能障碍相关的脂肪肝病 NCT04125745 CXA-10在肺动脉高压中的安全性和有效性试验的Ⅱ期开放标签研究 10-硝基油酸 肺动脉高压 NCT04072861 在健康志愿者和慢性肾病 3-4 期受试者中使用 RBT-9进行的1b期剂量递增研究 Stannous protoporphyrin (Renibus Therapeutics) 慢性肾病急性肾损伤 -
[1] LIN L, WU Q, LU F F, et al. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers[J]. Front Oncol, 2023, 13:1184079. doi: 10.3389/fonc.2023.1184079 [2] ITOH K, WAKABAYASHI N, KATOH Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain[J]. Genes Dev, 1999, 13(1):76-86. doi: 10.1101/gad.13.1.76 [3] DINKOVA-KOSTOVA A T, KOSTOV R V, CANNING P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants[J]. Arch Biochem Biophys, 2017, 617:84-93. doi: 10.1016/j.abb.2016.08.005 [4] BELLEZZA I, GIAMBANCO I, MINELLI A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5):721-733. doi: 10.1016/j.bbamcr.2018.02.010 [5] YAMAMOTO M, KENSLER T W, MOTOHASHI H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Physiol Rev, 2018, 98(3):1169-1203. doi: 10.1152/physrev.00023.2017 [6] ADINOLFI S, PATINEN T, JAWAHAR DEEN A, et al. The KEAP1-NRF2 pathway: Targets for therapy and role in cancer[J]. Redox Biol, 2023, 63:102726. doi: 10.1016/j.redox.2023.102726 [7] ALMUKAINZI M, EL-MASRY T A, SELIM H, et al. New insight on the cytoprotective/antioxidant pathway Keap1/Nrf2/HO-1 modulation by Ulva intestinalis extract and its selenium nanoparticles in rats with carrageenan-induced paw edema[J]. Mar Drugs, 2023, 21(9):459. doi: 10.3390/md21090459 [8] HAYDEN M S, GHOSH S. NF-κB, the first quarter-century: remarkable progress and outstanding questions[J]. Genes Dev, 2012, 26(3):203-234. doi: 10.1101/gad.183434.111 [9] SAHA S, BUTTARI B, PANIERI E, et al. An overview of Nrf2 signaling pathway and its role in inflammation[J]. Molecules, 2020, 25(22):5474. doi: 10.3390/molecules25225474 [10] OECKINGHAUS A, HAYDEN M S, GHOSH S. Crosstalk in NF-κB signaling pathways[J]. Nat Immunol, 2011, 12(8):695-708. doi: 10.1038/ni.2065 [11] LI Q T, VERMA I M. NF-kappaB regulation in the immune system[J]. Nat Rev Immunol, 2002, 2(10):725-734. doi: 10.1038/nri910 [12] GANESH YERRA V, NEGI G, SHARMA S S, et al. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy[J]. Redox Biol, 2013, 1(1):394-397. doi: 10.1016/j.redox.2013.07.005 [13] CUADRADO A, MARTÍN-MOLDES Z, YE J P, et al. Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation[J]. J Biol Chem, 2014, 289(22):15244-15258. doi: 10.1074/jbc.M113.540633 [14] HUANG C Y, DENG J S, HUANG W C, et al. Attenuation of lipopolysaccharide-induced acute lung injury by hispolon in mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated ER stress-induced apoptosis and autophagy[J]. Nutrients, 2020, 12(6):1742. doi: 10.3390/nu12061742 [15] AHMED S M, LUO L, NAMANI A, et al. Nrf2 signaling pathway: Pivotal roles in inflammation[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(2):585-597. doi: 10.1016/j.bbadis.2016.11.005 [16] HOU Y H, WANG Y T, HE Q, et al. Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury[J]. Behav Brain Res, 2018, 336:32-39. doi: 10.1016/j.bbr.2017.06.027 [17] HE J C, LIU L, LIU X J, et al. Epoxymicheliolide prevents dextran sulfate sodium-induced colitis in mice by inhibiting TAK1-NF-κB pathway and activating Keap1-NRF2 signaling in macrophages[J]. Int Immunopharmacol, 2022, 113(Pt A): 109404. [18] WANG Z C, NIU K M, WU Y J, et al. A dual Keap1 and p47phox inhibitor Ginsenoside Rb1 ameliorates high glucose/ox-LDL-induced endothelial cell injury and atherosclerosis[J]. Cell Death Dis, 2022, 13(9):824. doi: 10.1038/s41419-022-05274-x [19] SATOH T, TRUDLER D, OH C K, et al. Potential therapeutic use of the rosemary diterpene carnosic acid for Alzheimer’s disease, Parkinson’s disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome[J]. Antioxidants, 2022, 11(1):124. doi: 10.3390/antiox11010124 [20] SONG J Y, WANG H R, SHENG J Y, et al. Vitexin attenuates chronic kidney disease by inhibiting renal tubular epithelial cell ferroptosis via NRF2 activation[J]. Mol Med, 2023, 29(1):147. doi: 10.1186/s10020-023-00735-1 [21] JIA Y X, GUO H, CHENG X Z, et al. Hesperidin protects against cisplatin-induced cardiotoxicity in mice by regulating the p62-Keap1-Nrf2 pathway[J]. Food Funct, 2022, 13(7):4205-4215. doi: 10.1039/D2FO00298A [22] HONG H W, LOU S Y, ZHENG F L, et al. Hydnocarpin D attenuates lipopolysaccharide-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway[J]. Phytomedicine, 2022, 101:154143. doi: 10.1016/j.phymed.2022.154143 [23] AI G X, WU X Y, DOU Y X, et al. Oxyberberine, a novel HO-1 agonist, effectively ameliorates oxidative stress and inflammatory response in LPS/D-GalN induced acute liver injury mice via coactivating erythrocyte metabolism and Nrf2 signaling pathway[J]. Food Chem Toxicol, 2022, 166:113215. doi: 10.1016/j.fct.2022.113215 [24] ZHANG Y B, YAN T T, SUN D X, et al. Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced colitis[J]. Free Radic Biol Med, 2020, 148:33-41. doi: 10.1016/j.freeradbiomed.2019.12.012 [25] YANG X P, ZHI J K, LENG H F, et al. The piperine derivative HJ105 inhibits Aβ1-42-induced neuroinflammation and oxidative damage via the Keap1-Nrf2-TXNIP axis[J]. Phytomedicine, 2021, 87:153571. doi: 10.1016/j.phymed.2021.153571 [26] LEE S M, HU L Q. Nrf2 activation through the inhibition of Keap1-Nrf2 protein-protein interaction[J]. Med Chem Res, 2020, 29(5):846-867. doi: 10.1007/s00044-020-02539-y [27] LIU X J, SHEN X F, WANG H, et al. Mollugin prevents CLP-induced sepsis in mice by inhibiting TAK1-NF-κB/MAPKs pathways and activating Keap1-Nrf2 pathway in macrophages[J]. Int Immunopharmacol, 2023, 125(Pt A): 111079. [28] IEGRE J, KRAJCOVICOVA S, GUNNARSSON A, et al. A cell-active cyclic peptide targeting the Nrf2/Keap1 protein-protein interaction[J]. Chem Sci, 2023, 14(39):10800-10805. doi: 10.1039/D3SC04083F [29] ZOU J H, YAN J Y, LU Y F, et al. Cyclic peptide Keap1-Nrf2 protein-protein interaction inhibitors: design, synthesis, and in vivo treatment of acute lung injury[J]. J Med Chem, 2024, 67(6):4889-4903. doi: 10.1021/acs.jmedchem.4c00065 [30] JIANG Z Y, LU M C, XU L L, et al. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis[J]. J Med Chem, 2014, 57(6):2736-2745. doi: 10.1021/jm5000529 [31] LU M C, ZHAO J, LIU Y T, et al. CPUY192018, a potent inhibitor of the Keap1-Nrf2 protein-protein interaction, alleviates renal inflammation in mice by restricting oxidative stress and NF-κB activation[J]. Redox Biol, 2019, 26:101266. doi: 10.1016/j.redox.2019.101266 [32] JAIN A D, POTTETI H, RICHARDSON B G, et al. Probing the structural requirements of non-electrophilic naphthalene-based Nrf2 activators[J]. Eur J Med Chem, 2015, 103:252-268. doi: 10.1016/j.ejmech.2015.08.049 [33] ZHANG L, XU L J, CHEN H H, et al. Structure-based molecular hybridization design of Keap1-Nrf2 inhibitors as novel protective agents of acute lung injury[J]. Eur J Med Chem, 2021, 222:113599. doi: 10.1016/j.ejmech.2021.113599 [34] WINKEL A F, ENGEL C K, MARGERIE D, et al. Characterization of RA839, a noncovalent small molecule binder to Keap1 and selective activator of Nrf2 signaling[J]. J Biol Chem, 2015, 290(47):28446-28455. doi: 10.1074/jbc.M115.678136 [35] LIU G D, HOU R L, XU L J, et al. Crystallography-guided optimizations of the Keap1-Nrf2 inhibitors on the solvent exposed region: from symmetric to asymmetric naphthalenesulfonamides[J]. J Med Chem, 2022, 65(12):8289-8302. doi: 10.1021/acs.jmedchem.2c00170 [36] SUN Y, XU L J, ZHENG D P, et al. A potent phosphodiester Keap1-Nrf2 protein-protein interaction inhibitor as the efficient treatment of Alzheimer’s disease[J]. Redox Biol, 2023, 64:102793. doi: 10.1016/j.redox.2023.102793 [37] XIE Z Z, LIU Y, BIAN J S. Hydrogen sulfide and cellular redox homeostasis[J]. Oxid Med Cell Longev, 2016, 2016:6043038. doi: 10.1155/2016/6043038 [38] LU M C, ZHANG X, ZHAO J, et al. A hydrogen peroxide responsive prodrug of Keap1-Nrf2 inhibitor for improving oral absorption and selective activation in inflammatory conditions[J]. Redox Biol, 2020, 34:101565. doi: 10.1016/j.redox.2020.101565 [39] ZHANG X, CUI K N, WANG X L, et al. Novel hydrogen sulfide hybrid derivatives of Keap1-Nrf2 protein-protein interaction inhibitor alleviate inflammation and oxidative stress in acute experimental colitis[J]. Antioxidants, 2023, 12(5):1062. doi: 10.3390/antiox12051062 [40] HU L Q, MAGESH S, CHEN L, et al. Discovery of a small-molecule inhibitor and cellular probe of Keap1-Nrf2 protein-protein interaction[J]. Bioorg Med Chem Lett, 2013, 23(10):3039-3043. doi: 10.1016/j.bmcl.2013.03.013 [41] ONTORIA J M, BIANCOFIORE I, FEZZARDI P, et al. Combined peptide and small-molecule approach toward nonacidic THIQ inhibitors of the KEAP1/NRF2 interaction[J]. ACS Med Chem Lett, 2020, 11(5):740-746. doi: 10.1021/acsmedchemlett.9b00594 [42] WEN X, THORNE G, HU L Q, et al. Activation of NRF2 signaling in HEK293 cells by a first-in-class direct KEAP1-NRF2 inhibitor[J]. J Biochem Mol Toxicol, 2015, 29(6):261-266. doi: 10.1002/jbt.21693 [43] TONG K I, KATOH Y, KUSUNOKI H, et al. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model[J]. Mol Cell Biol, 2006, 26(8):2887-2900. doi: 10.1128/MCB.26.8.2887-2900.2006 [44] DAVIES T G, WIXTED W E, COYLE J E, et al. Monoacidic inhibitors of the kelch-like ECH-associated protein 1: nuclear factor erythroid 2-related factor 2(KEAP1: NRF2)protein-protein interaction with high cell potency identified by fragment-based discovery[J]. J Med Chem, 2016, 59(8):3991-4006. doi: 10.1021/acs.jmedchem.6b00228 [45] KASEDA S, SANNOMIYA Y, HORIZONO J, et al. Novel Keap1-Nrf2 protein-protein interaction inhibitor UBE-1099 ameliorates progressive phenotype in alport syndrome mouse model[J]. Kidney360, 2022, 3(4):687-699. doi: 10.34067/KID.0004572021 [46] BERTRAND H C, SCHAAP M, BAIRD L, et al. Design, synthesis, and evaluation of triazole derivatives that induce Nrf2 dependent gene products and inhibit the Keap1-Nrf2 protein-protein interaction[J]. J Med Chem, 2015, 58(18):7186-7194. doi: 10.1021/acs.jmedchem.5b00602 [47] LAO Y Q, WANG Y, CHEN J W, et al. Synthesis and biological evaluation of 1, 2, 4-triazole derivatives as potential Nrf2 activators for the treatment of cerebral ischemic injury[J]. Eur J Med Chem, 2022, 236:114315. doi: 10.1016/j.ejmech.2022.114315 [48] COSIMELLI B, GRECO G, LANERI S, et al. Identification of novel indole derivatives acting as inhibitors of the Keap1-Nrf2 interaction[J]. J Enzyme Inhib Med Chem, 2019, 34(1):1152-1157. doi: 10.1080/14756366.2019.1623209 [49] HERRERA-AROZAMENA C, ESTRADA-VALENCIA M, PÉREZ C, et al. Tuning melatonin receptor subtype selectivity in oxadiazolone-based analogues: Discovery of QR2 ligands and NRF2 activators with neurogenic properties[J]. Eur J Med Chem, 2020, 190:112090. doi: 10.1016/j.ejmech.2020.112090 [50] ZHOU H S, HU L B, ZHANG H, et al. Design, synthesis, and structure-activity relationships of indoline-based kelch-like ECH-associated protein 1-nuclear factor(erythroid-derived 2)-like 2(Keap1-Nrf2)protein-protein interaction inhibitors[J]. J Med Chem, 2020, 63(19):11149-11168. doi: 10.1021/acs.jmedchem.0c01116 [51] ZHOU H S, WANG Y, YOU Q D, et al. Recent progress in the development of small molecule Nrf2 activators: a patent review(2017-present)[J]. Expert Opin Ther Pat, 2020, 30(3):209-225. doi: 10.1080/13543776.2020.1715365 [52] ZHANG ZX, TIAN SW, YOU Y. The pathophysiological role of neuroinflammation in neurodegenerative and psychiatric disorders[J]. 中南医学科学杂志, 2017, 45(3):312-314. [53] YANG Y Y, LI X Y, PENG L Y, et al. Tanshindiol C inhibits oxidized low-density lipoprotein induced macrophage foam cell formation via a peroxiredoxin 1 dependent pathway[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(3):882-890. doi: 10.1016/j.bbadis.2017.12.033 [54] JAKOBS P, SERBULEA V, LEITINGER N, et al. Nuclear factor(erythroid-derived 2)-like 2 and thioredoxin-1 in atherosclerosis and ischemia/reperfusion injury in the heart[J]. Antioxid Redox Signal, 2017, 26(12):630-644. doi: 10.1089/ars.2016.6795 [55] CLERICI S, BOLETTA A. Role of the KEAP1-NRF2 axis in renal cell carcinoma[J]. Cancers, 2020, 12(11):3458. doi: 10.3390/cancers12113458 [56] TORRES V E, CHAPMAN A B, DEVUYST O, et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease[J]. N Engl J Med, 2017, 377(20):1930-1942. doi: 10.1056/NEJMoa1710030 [57] WU K C, LIU J, KLAASSEN C D. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation[J]. Toxicol Appl Pharmacol, 2012, 262(3):321-329. doi: 10.1016/j.taap.2012.05.010 [58] LIU WJ, CHEN WW, CHEN JY, et al. Baicalin attenuated metabolic dysfunction-associated fatty liver disease by suppressing oxidative stress and inflammation via the p62-Keap1-Nrf2 signalling pathway in db/db mice [J]. Phytother Res, 2023: 1-16.