[1] |
LIN L, WU Q, LU F F, et al. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers[J]. Front Oncol, 2023, 13:1184079. doi: 10.3389/fonc.2023.1184079 |
[2] |
ITOH K, WAKABAYASHI N, KATOH Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain[J]. Genes Dev, 1999, 13(1):76-86. doi: 10.1101/gad.13.1.76 |
[3] |
DINKOVA-KOSTOVA A T, KOSTOV R V, CANNING P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants[J]. Arch Biochem Biophys, 2017, 617:84-93. doi: 10.1016/j.abb.2016.08.005 |
[4] |
BELLEZZA I, GIAMBANCO I, MINELLI A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5):721-733. doi: 10.1016/j.bbamcr.2018.02.010 |
[5] |
YAMAMOTO M, KENSLER T W, MOTOHASHI H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Physiol Rev, 2018, 98(3):1169-1203. doi: 10.1152/physrev.00023.2017 |
[6] |
ADINOLFI S, PATINEN T, JAWAHAR DEEN A, et al. The KEAP1-NRF2 pathway: Targets for therapy and role in cancer[J]. Redox Biol, 2023, 63:102726. doi: 10.1016/j.redox.2023.102726 |
[7] |
ALMUKAINZI M, EL-MASRY T A, SELIM H, et al. New insight on the cytoprotective/antioxidant pathway Keap1/Nrf2/HO-1 modulation by Ulva intestinalis extract and its selenium nanoparticles in rats with carrageenan-induced paw edema[J]. Mar Drugs, 2023, 21(9):459. doi: 10.3390/md21090459 |
[8] |
HAYDEN M S, GHOSH S. NF-κB, the first quarter-century: remarkable progress and outstanding questions[J]. Genes Dev, 2012, 26(3):203-234. doi: 10.1101/gad.183434.111 |
[9] |
SAHA S, BUTTARI B, PANIERI E, et al. An overview of Nrf2 signaling pathway and its role in inflammation[J]. Molecules, 2020, 25(22):5474. doi: 10.3390/molecules25225474 |
[10] |
OECKINGHAUS A, HAYDEN M S, GHOSH S. Crosstalk in NF-κB signaling pathways[J]. Nat Immunol, 2011, 12(8):695-708. doi: 10.1038/ni.2065 |
[11] |
LI Q T, VERMA I M. NF-kappaB regulation in the immune system[J]. Nat Rev Immunol, 2002, 2(10):725-734. doi: 10.1038/nri910 |
[12] |
GANESH YERRA V, NEGI G, SHARMA S S, et al. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy[J]. Redox Biol, 2013, 1(1):394-397. doi: 10.1016/j.redox.2013.07.005 |
[13] |
CUADRADO A, MARTÍN-MOLDES Z, YE J P, et al. Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation[J]. J Biol Chem, 2014, 289(22):15244-15258. doi: 10.1074/jbc.M113.540633 |
[14] |
HUANG C Y, DENG J S, HUANG W C, et al. Attenuation of lipopolysaccharide-induced acute lung injury by hispolon in mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated ER stress-induced apoptosis and autophagy[J]. Nutrients, 2020, 12(6):1742. doi: 10.3390/nu12061742 |
[15] |
AHMED S M, LUO L, NAMANI A, et al. Nrf2 signaling pathway: Pivotal roles in inflammation[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(2):585-597. doi: 10.1016/j.bbadis.2016.11.005 |
[16] |
HOU Y H, WANG Y T, HE Q, et al. Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury[J]. Behav Brain Res, 2018, 336:32-39. doi: 10.1016/j.bbr.2017.06.027 |
[17] |
HE J C, LIU L, LIU X J, et al. Epoxymicheliolide prevents dextran sulfate sodium-induced colitis in mice by inhibiting TAK1-NF-κB pathway and activating Keap1-NRF2 signaling in macrophages[J]. Int Immunopharmacol, 2022, 113(Pt A): 109404. |
[18] |
WANG Z C, NIU K M, WU Y J, et al. A dual Keap1 and p47phox inhibitor Ginsenoside Rb1 ameliorates high glucose/ox-LDL-induced endothelial cell injury and atherosclerosis[J]. Cell Death Dis, 2022, 13(9):824. doi: 10.1038/s41419-022-05274-x |
[19] |
SATOH T, TRUDLER D, OH C K, et al. Potential therapeutic use of the rosemary diterpene carnosic acid for Alzheimer’s disease, Parkinson’s disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome[J]. Antioxidants, 2022, 11(1):124. doi: 10.3390/antiox11010124 |
[20] |
SONG J Y, WANG H R, SHENG J Y, et al. Vitexin attenuates chronic kidney disease by inhibiting renal tubular epithelial cell ferroptosis via NRF2 activation[J]. Mol Med, 2023, 29(1):147. doi: 10.1186/s10020-023-00735-1 |
[21] |
JIA Y X, GUO H, CHENG X Z, et al. Hesperidin protects against cisplatin-induced cardiotoxicity in mice by regulating the p62-Keap1-Nrf2 pathway[J]. Food Funct, 2022, 13(7):4205-4215. doi: 10.1039/D2FO00298A |
[22] |
HONG H W, LOU S Y, ZHENG F L, et al. Hydnocarpin D attenuates lipopolysaccharide-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway[J]. Phytomedicine, 2022, 101:154143. doi: 10.1016/j.phymed.2022.154143 |
[23] |
AI G X, WU X Y, DOU Y X, et al. Oxyberberine, a novel HO-1 agonist, effectively ameliorates oxidative stress and inflammatory response in LPS/D-GalN induced acute liver injury mice via coactivating erythrocyte metabolism and Nrf2 signaling pathway[J]. Food Chem Toxicol, 2022, 166:113215. doi: 10.1016/j.fct.2022.113215 |
[24] |
ZHANG Y B, YAN T T, SUN D X, et al. Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced colitis[J]. Free Radic Biol Med, 2020, 148:33-41. doi: 10.1016/j.freeradbiomed.2019.12.012 |
[25] |
YANG X P, ZHI J K, LENG H F, et al. The piperine derivative HJ105 inhibits Aβ1-42-induced neuroinflammation and oxidative damage via the Keap1-Nrf2-TXNIP axis[J]. Phytomedicine, 2021, 87:153571. doi: 10.1016/j.phymed.2021.153571 |
[26] |
LEE S M, HU L Q. Nrf2 activation through the inhibition of Keap1-Nrf2 protein-protein interaction[J]. Med Chem Res, 2020, 29(5):846-867. doi: 10.1007/s00044-020-02539-y |
[27] |
LIU X J, SHEN X F, WANG H, et al. Mollugin prevents CLP-induced sepsis in mice by inhibiting TAK1-NF-κB/MAPKs pathways and activating Keap1-Nrf2 pathway in macrophages[J]. Int Immunopharmacol, 2023, 125(Pt A): 111079. |
[28] |
IEGRE J, KRAJCOVICOVA S, GUNNARSSON A, et al. A cell-active cyclic peptide targeting the Nrf2/Keap1 protein-protein interaction[J]. Chem Sci, 2023, 14(39):10800-10805. doi: 10.1039/D3SC04083F |
[29] |
ZOU J H, YAN J Y, LU Y F, et al. Cyclic peptide Keap1-Nrf2 protein-protein interaction inhibitors: design, synthesis, and in vivo treatment of acute lung injury[J]. J Med Chem, 2024, 67(6):4889-4903. doi: 10.1021/acs.jmedchem.4c00065 |
[30] |
JIANG Z Y, LU M C, XU L L, et al. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis[J]. J Med Chem, 2014, 57(6):2736-2745. doi: 10.1021/jm5000529 |
[31] |
LU M C, ZHAO J, LIU Y T, et al. CPUY192018, a potent inhibitor of the Keap1-Nrf2 protein-protein interaction, alleviates renal inflammation in mice by restricting oxidative stress and NF-κB activation[J]. Redox Biol, 2019, 26:101266. doi: 10.1016/j.redox.2019.101266 |
[32] |
JAIN A D, POTTETI H, RICHARDSON B G, et al. Probing the structural requirements of non-electrophilic naphthalene-based Nrf2 activators[J]. Eur J Med Chem, 2015, 103:252-268. doi: 10.1016/j.ejmech.2015.08.049 |
[33] |
ZHANG L, XU L J, CHEN H H, et al. Structure-based molecular hybridization design of Keap1-Nrf2 inhibitors as novel protective agents of acute lung injury[J]. Eur J Med Chem, 2021, 222:113599. doi: 10.1016/j.ejmech.2021.113599 |
[34] |
WINKEL A F, ENGEL C K, MARGERIE D, et al. Characterization of RA839, a noncovalent small molecule binder to Keap1 and selective activator of Nrf2 signaling[J]. J Biol Chem, 2015, 290(47):28446-28455. doi: 10.1074/jbc.M115.678136 |
[35] |
LIU G D, HOU R L, XU L J, et al. Crystallography-guided optimizations of the Keap1-Nrf2 inhibitors on the solvent exposed region: from symmetric to asymmetric naphthalenesulfonamides[J]. J Med Chem, 2022, 65(12):8289-8302. doi: 10.1021/acs.jmedchem.2c00170 |
[36] |
SUN Y, XU L J, ZHENG D P, et al. A potent phosphodiester Keap1-Nrf2 protein-protein interaction inhibitor as the efficient treatment of Alzheimer’s disease[J]. Redox Biol, 2023, 64:102793. doi: 10.1016/j.redox.2023.102793 |
[37] |
XIE Z Z, LIU Y, BIAN J S. Hydrogen sulfide and cellular redox homeostasis[J]. Oxid Med Cell Longev, 2016, 2016:6043038. doi: 10.1155/2016/6043038 |
[38] |
LU M C, ZHANG X, ZHAO J, et al. A hydrogen peroxide responsive prodrug of Keap1-Nrf2 inhibitor for improving oral absorption and selective activation in inflammatory conditions[J]. Redox Biol, 2020, 34:101565. doi: 10.1016/j.redox.2020.101565 |
[39] |
ZHANG X, CUI K N, WANG X L, et al. Novel hydrogen sulfide hybrid derivatives of Keap1-Nrf2 protein-protein interaction inhibitor alleviate inflammation and oxidative stress in acute experimental colitis[J]. Antioxidants, 2023, 12(5):1062. doi: 10.3390/antiox12051062 |
[40] |
HU L Q, MAGESH S, CHEN L, et al. Discovery of a small-molecule inhibitor and cellular probe of Keap1-Nrf2 protein-protein interaction[J]. Bioorg Med Chem Lett, 2013, 23(10):3039-3043. doi: 10.1016/j.bmcl.2013.03.013 |
[41] |
ONTORIA J M, BIANCOFIORE I, FEZZARDI P, et al. Combined peptide and small-molecule approach toward nonacidic THIQ inhibitors of the KEAP1/NRF2 interaction[J]. ACS Med Chem Lett, 2020, 11(5):740-746. doi: 10.1021/acsmedchemlett.9b00594 |
[42] |
WEN X, THORNE G, HU L Q, et al. Activation of NRF2 signaling in HEK293 cells by a first-in-class direct KEAP1-NRF2 inhibitor[J]. J Biochem Mol Toxicol, 2015, 29(6):261-266. doi: 10.1002/jbt.21693 |
[43] |
TONG K I, KATOH Y, KUSUNOKI H, et al. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model[J]. Mol Cell Biol, 2006, 26(8):2887-2900. doi: 10.1128/MCB.26.8.2887-2900.2006 |
[44] |
DAVIES T G, WIXTED W E, COYLE J E, et al. Monoacidic inhibitors of the kelch-like ECH-associated protein 1: nuclear factor erythroid 2-related factor 2(KEAP1: NRF2)protein-protein interaction with high cell potency identified by fragment-based discovery[J]. J Med Chem, 2016, 59(8):3991-4006. doi: 10.1021/acs.jmedchem.6b00228 |
[45] |
KASEDA S, SANNOMIYA Y, HORIZONO J, et al. Novel Keap1-Nrf2 protein-protein interaction inhibitor UBE-1099 ameliorates progressive phenotype in alport syndrome mouse model[J]. Kidney360, 2022, 3(4):687-699. doi: 10.34067/KID.0004572021 |
[46] |
BERTRAND H C, SCHAAP M, BAIRD L, et al. Design, synthesis, and evaluation of triazole derivatives that induce Nrf2 dependent gene products and inhibit the Keap1-Nrf2 protein-protein interaction[J]. J Med Chem, 2015, 58(18):7186-7194. doi: 10.1021/acs.jmedchem.5b00602 |
[47] |
LAO Y Q, WANG Y, CHEN J W, et al. Synthesis and biological evaluation of 1, 2, 4-triazole derivatives as potential Nrf2 activators for the treatment of cerebral ischemic injury[J]. Eur J Med Chem, 2022, 236:114315. doi: 10.1016/j.ejmech.2022.114315 |
[48] |
COSIMELLI B, GRECO G, LANERI S, et al. Identification of novel indole derivatives acting as inhibitors of the Keap1-Nrf2 interaction[J]. J Enzyme Inhib Med Chem, 2019, 34(1):1152-1157. doi: 10.1080/14756366.2019.1623209 |
[49] |
HERRERA-AROZAMENA C, ESTRADA-VALENCIA M, PÉREZ C, et al. Tuning melatonin receptor subtype selectivity in oxadiazolone-based analogues: Discovery of QR2 ligands and NRF2 activators with neurogenic properties[J]. Eur J Med Chem, 2020, 190:112090. doi: 10.1016/j.ejmech.2020.112090 |
[50] |
ZHOU H S, HU L B, ZHANG H, et al. Design, synthesis, and structure-activity relationships of indoline-based kelch-like ECH-associated protein 1-nuclear factor(erythroid-derived 2)-like 2(Keap1-Nrf2)protein-protein interaction inhibitors[J]. J Med Chem, 2020, 63(19):11149-11168. doi: 10.1021/acs.jmedchem.0c01116 |
[51] |
ZHOU H S, WANG Y, YOU Q D, et al. Recent progress in the development of small molecule Nrf2 activators: a patent review(2017-present)[J]. Expert Opin Ther Pat, 2020, 30(3):209-225. doi: 10.1080/13543776.2020.1715365 |
[52] |
ZHANG ZX, TIAN SW, YOU Y. The pathophysiological role of neuroinflammation in neurodegenerative and psychiatric disorders[J]. 中南医学科学杂志, 2017, 45(3):312-314. |
[53] |
YANG Y Y, LI X Y, PENG L Y, et al. Tanshindiol C inhibits oxidized low-density lipoprotein induced macrophage foam cell formation via a peroxiredoxin 1 dependent pathway[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(3):882-890. doi: 10.1016/j.bbadis.2017.12.033 |
[54] |
JAKOBS P, SERBULEA V, LEITINGER N, et al. Nuclear factor(erythroid-derived 2)-like 2 and thioredoxin-1 in atherosclerosis and ischemia/reperfusion injury in the heart[J]. Antioxid Redox Signal, 2017, 26(12):630-644. doi: 10.1089/ars.2016.6795 |
[55] |
CLERICI S, BOLETTA A. Role of the KEAP1-NRF2 axis in renal cell carcinoma[J]. Cancers, 2020, 12(11):3458. doi: 10.3390/cancers12113458 |
[56] |
TORRES V E, CHAPMAN A B, DEVUYST O, et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease[J]. N Engl J Med, 2017, 377(20):1930-1942. doi: 10.1056/NEJMoa1710030 |
[57] |
WU K C, LIU J, KLAASSEN C D. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation[J]. Toxicol Appl Pharmacol, 2012, 262(3):321-329. doi: 10.1016/j.taap.2012.05.010 |
[58] |
LIU WJ, CHEN WW, CHEN JY, et al. Baicalin attenuated metabolic dysfunction-associated fatty liver disease by suppressing oxidative stress and inflammation via the p62-Keap1-Nrf2 signalling pathway in db/db mice [J]. Phytother Res, 2023: 1-16. |