留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法

韩凌 孙治国 鲁莹

韩凌, 孙治国, 鲁莹. 抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法[J]. 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
引用本文: 韩凌, 孙治国, 鲁莹. 抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法[J]. 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
HAN Ling, SUN Zhiguo, LU Ying. Preparation materials, drug loading and modification of nanoparticles as anticancer drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
Citation: HAN Ling, SUN Zhiguo, LU Ying. Preparation materials, drug loading and modification of nanoparticles as anticancer drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005

抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法

doi: 10.3969/j.issn.1006-0111.2018.04.005

Preparation materials, drug loading and modification of nanoparticles as anticancer drug carrier

  • 摘要: 纳米粒作为抗肿瘤药物的载体,具有提高药物靶向性、稳定性、降低药物毒副作用等诸多优点。近年来,抗肿瘤药物纳米粒载体研究取得了较大进展,从其制备材料、包载药物及修饰方法3方面进行综述。
  • [1] SHI J, KANTOFF PW, WOOSTER R, et al. Cancer nanomedicine:progress, challenges and opportunities[J]. Nat Rev Cancer, 2017, 17(1):20-37.
    [2] 陈清江, 张明智, 陈小兵. 抗肿瘤纳米药物载体材料的安全性[J]. 中国组织工程研究与临床康复, 2010, 14(47):8861-8864.
    [3] PRADOS J,CABEZA L,ORTIZ R, et al. Enhanced antitumor activity of doxorubicin in breast cancer through the use of poly(butylcyanoacrylate) nanoparticles[J]. IJN, 2015, 10:1291-1306.
    [4] MA W, CHEN M, KAUSHAL S, et al. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses[J]. Int J Nanomed, 2012, 7:1475-1487.
    [5] LIU R, LI D, HE B, et al. Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly (L -histidine-)-poly (L -lactide) nanoparticles[J]. J Controll Releas, 2011, 152(1):49-56.
    [6] LEE SJ, YHEE JY, KIM SH, et al. Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice[J]. J Controll Release, 2013, 172(1):358-366.
    [7] GAO C, TANG F, ZHANG J, et al. Glutathione-responsive nanoparticles based on a sodium alginate derivative for selective release of doxorubicin in tumor cells[J]. J Mater Chem B, 2017, 5(12):2337-2346.
    [8] ABOUTALEB E, ATYABI F, KHOSHAYAND MR, et al. Improved brain delivery of vincristine using dextran sulfate complex solid lipid nanoparticles:optimization and in vivo evaluation[J]. J Biomed Mater Res A, 2014, 102(7):2125-2136.
    [9] CHEN Y, CHEN H, SHI J. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells[J]. Mol Pharm, 2014, 11(8):2495-2510.
    [10] HE X, HAI L, SU J, et al. One-pot synthesis of sustained-released doxorubicin silica nanoparticles for aptamer targeted delivery to tumor cells[J]. Nanoscale, 2011, 3(7):2936-2942.
    [11] REJINOLD NS, THOMAS RG, MUTHIAH M, et al. Breast tumor targetable Fe3O4 embedded thermo-responsive nanoparticles for radiofrequency assisted drug delivery[J]. J Biomed Nanotechnol, 2016, 12(1):43-55.
    [12] ZHAO X, YANG L, LI X, et al. Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug[J]. Bioconjug Chem, 2015, 26(1):128-136.
    [13] PARVEEN S, SAHOO SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery[J]. Eur J Pharmacol, 2011, 670(2-3):372-383.
    [14] MOCAN L, MATEA C, TABARAN FA, et al. Selective exvivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles[J]. Biomaterials, 2017, 119:33-42.
    [15] MICHA JP, GOLDSTEIN BH, BIRK CL, et al. Abraxane in the treatment of ovarian cancer:the absence of hypersensitivity reactions[J]. Gynecol Oncol, 2006, 100(2):437-438.
    [16] KUMAR M, GUPTA D, SINGH G, et al. Novel polymeric nanoparticles for intracellular delivery of peptide Cargos:antitumor efficacy of the BCL-2 conversion peptide NuBCP-9[J]. Cancer Res, 2014, 74(12):3271-3281.
    [17] Phase I intratumoral Pbi-shRNA STMN1 LP in advanced and/or metastatic cancer (STMN1-LP)[DB/OL]. Clinical Trials.gov:US National Library of Medicine,[2012-01-06].[2017-09-20]. https://clinicaltrials.gov/ct2/show/NCT01505153term.
    [18] LV S, TANG Z, LI M, et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer[J]. Biomaterials, 2014, 35(23):6118-6129.
    [19] LIU Q, LI RT, QIAN HQ, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles[J]. Biomaterials, 2013, 34(29):7191-7203.
    [20] KOUCHAKZADEH H,SHOJAOSADATI SA,TAHMA-SEBI F, et al. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles[J]. Int J Pharm, 2013, 447(12):62-69.
    [21] GAN CW, FENG SS. Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier[J]. Biomaterials, 2010, 31(30):7748-7757.
    [22] KIM YH, JEON J, HONG SH, et al. Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125[J]. Small, 2011, 7(14):2052-2060.
    [23] JOKERST JV, MIAO Z, ZAVALETA C, et al. Affibody-functionalized gold silica nanoparticles for raman molecular imaging of the epidermal growth factor receptor[J]. Small, 2011, 7(5):625-633.
    [24] HWANG DW, SON S, Jang J, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA[J]. Biomaterials, 2011, 32(21):4968-4975.
    [25] CERCHIA L, DE FRANCISCIS V. Targeting cancer cells with nucleic acid aptamers[J]. Trends Biotechnol, 2010, 28(10):517-525.
    [26] YANG SJ, LIN FH, TSAI KC, et al. Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells[J]. Bioconjug Chem, 2010, 21(4):679-689.
    [27] TAHERI A, DINARVAND R, ATYABI F, et al. Targeted delivery of methotrexate to tumor cells using biotin functionalized methotrexate-human serum albumin conjugated nanoparticles[J]. J Biomed Nanotechnol, 2011, 7(6):743-753.
    [28] CAI X, LI X, LIU Y, et al. Galactose decorated acid-labile nanoparticles encapsulating quantum dots for enhanced cellular uptake and subcellular localization[J]. Pharm Res, 2012, 29(8):2167-2179.
    [29] YAO XK, ZHU Q, LI CH, et al. Carbamoylmannose enhances tumor targeting of supramolecular nanoparticles formed through host-guest complexation of a pair of homopolymers[J]. J Materi Chem B, 2016, 5(4):834-848.
    [30] SUN H, BENJAMINSEN RV, ALMADAL K, et al. Hyaluronic acid immobilized polyacrylamide nanoparticle sensors for CD44 receptor targeting and pH measurement in cells[J]. Bioconjug Chem, 2012, 23(11):2247-2255.
    [31] AYDOGAN B, LI J, RAJH T, et al. AuNP-DG:deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging[J]. Mol Imag Biol, 2010, 12(5):463-467.
    [32] YUK SH, OH KS, SUN HC, et al. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging[J]. Biomacromolecules, 2011, 12(6):2335-2343.
    [33] ZU Y, LI M, ZHAO X, et al. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery[J]. Int J Nanomed, 2013, 8:1207-1222.
    [34] SUN W, XIE C, WANG H, et al. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain[J]. Biomaterials, 2004, 25(15):3065-3071.
    [35] BAZILE D, PRUD'me C, BASSOULLET MT, et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system[J]. J Pharm Sci, 1995, 84(4):493-498.
    [36] XI J, QIN J, FAN L. Chondroitin sulfate functionalized mesostructured silica nanoparticles as biocompatible carriers for drug delivery[J]. Int J Nanomed, 2012, 7:5235-5247.
    [37] TANAKA K, KANAZAWA T, SHIBATA Y, et al. Development of cell-penetrating peptide-modified MPEG-PCL diblock copolymeric nanoparticles for systemic gene delivery[J]. Int J Pharm, 2010, 396(1-2):229-238.
    [38] WANG YC, WANG F, SUN TM, et al. Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells[J]. Bioconjug Chem, 2011, 22(10):1939-1945.
    [39] WU M, ZHANG D, ZENG Y, et al. Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy[J]. Nanotechnology, 2015, 26(11):115102.
    [40] WANG C, HO PC, LIM LY. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells[J]. Int J Pharm, 2010, 400(12):201-210.
    [41] CHEN H, LIU R, NAN W, et al. Abstract 5659:Surface modification of epirubicin-loaded PLGA nanoparticle with biotinylated chitosan enhances anti-cancer efficacy in breast cancer cells[J]. Cancer Res, 2013, 73(8):5659-5659.
    [42] RAO L, XU JH, CAI B, et al. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake[J]. Nanotechnology, 2016, 27(8):085106.
    [43] PARODI A, QUATTROCCHI N, VAN DE VEN AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions[J]. Nat Nanotechnol, 2013, 8(1):61-68.
    [44] GAO C, LIN Z, JURADO-S NCHEZ B, et al. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery[J]. Small, 2016, 12(30):4056-4062.
    [45] FANG RH, HU CM, LUK BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery[J]. Nano Lett, 2014, 14(4):2181-2188.
    [46] LO GIUDICE MC, MEDER F, POLO E, et al. Constructing bifunctional nanoparticles for dual targeting:improved grafting and surface recognition assessment of multiple ligand nanoparticles[J]. Nanoscale, 2016, 8(38):16969-16975.
    [47] DOOLITTLE E, PEIRIS PM, DORON G, et al. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis[J]. ACS Nano, 2015, 9(8):8012-8021.
  • [1] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [2] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [3] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [4] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [5] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404034
    [6] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [7] 邹思, 吴岩斌, 吴锦忠, 吴建国, 黄家兴.  虎奶菇菌核多糖功能化纳米硒抗疲劳功效研究 . 药学实践与服务, 2024, 42(10): 426-432. doi: 10.12206/j.issn.2097-2024.202206072
    [8] 陈怡君, 王卓, 何苗, 张宇, 田泾.  泌尿系统碎石术抗菌药物预防使用合理管控实践 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402034
    [9] 郭灵怡, 刘艳超, 高路, 刘瑞瑶, 吕权真, 俞媛.  醋酸卡泊芬净单硬脂酸甘油酯纳米粒抗白色念珠菌感染的增效作用研究 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202310043
  • 加载中
计量
  • 文章访问数:  3340
  • HTML全文浏览量:  492
  • PDF下载量:  592
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-14
  • 修回日期:  2018-01-10

抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法

doi: 10.3969/j.issn.1006-0111.2018.04.005

摘要: 纳米粒作为抗肿瘤药物的载体,具有提高药物靶向性、稳定性、降低药物毒副作用等诸多优点。近年来,抗肿瘤药物纳米粒载体研究取得了较大进展,从其制备材料、包载药物及修饰方法3方面进行综述。

English Abstract

韩凌, 孙治国, 鲁莹. 抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法[J]. 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
引用本文: 韩凌, 孙治国, 鲁莹. 抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法[J]. 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
HAN Ling, SUN Zhiguo, LU Ying. Preparation materials, drug loading and modification of nanoparticles as anticancer drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
Citation: HAN Ling, SUN Zhiguo, LU Ying. Preparation materials, drug loading and modification of nanoparticles as anticancer drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
参考文献 (47)

目录

    /

    返回文章
    返回