留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

线粒体靶向抗氧化剂研究进展

樊鹏程 葛越 蒋炜 景临林 马慧萍 贾正平

樊鹏程, 葛越, 蒋炜, 景临林, 马慧萍, 贾正平. 线粒体靶向抗氧化剂研究进展[J]. 药学实践与服务, 2015, 33(1): 1-4,8. doi: 10.3969/j.issn.1006-0111.2015.01.001
引用本文: 樊鹏程, 葛越, 蒋炜, 景临林, 马慧萍, 贾正平. 线粒体靶向抗氧化剂研究进展[J]. 药学实践与服务, 2015, 33(1): 1-4,8. doi: 10.3969/j.issn.1006-0111.2015.01.001
FAN Pengcheng, GE Yue, Jiang Wei, JING Linlin, MA Huiping, JIA Zhengping. Research progress in mitochondria-targeted antioxidants[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(1): 1-4,8. doi: 10.3969/j.issn.1006-0111.2015.01.001
Citation: FAN Pengcheng, GE Yue, Jiang Wei, JING Linlin, MA Huiping, JIA Zhengping. Research progress in mitochondria-targeted antioxidants[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(1): 1-4,8. doi: 10.3969/j.issn.1006-0111.2015.01.001

线粒体靶向抗氧化剂研究进展

doi: 10.3969/j.issn.1006-0111.2015.01.001
基金项目: 国家自然科学基金资助项目(81202458);全军医药卫生科研项目(CLZ12JB06)

Research progress in mitochondria-targeted antioxidants

  • 摘要: 线粒体是细胞呼吸的主要场所,在细胞的生命周期中扮演重要角色,三羧酸循环和氧化磷酸化都是在线粒体中进行。线粒体功能障碍可导致一系列疾病,如缺血-再灌注损伤、败血症和糖尿病等。线粒体是神经退行性病变的治疗靶点,也是药物转运策略研究的引人注目的靶位。虽然线粒体所介导的疾病进程的分子机制尚未完全阐明,但氧化应激是关键的环节。开发线粒体靶向的抗氧化应激保护药物具有诱人的前景。线粒体靶向抗氧化剂是指以线粒体为作用靶位的具有抗氧化作用的药物。该文介绍了现有的线粒体靶向抗氧化剂的概念、分类及其疾病治疗研究进展。
  • [1] Jordan J,de Groot PW,Galindo MF.Mitochondria:the headquarters in ischemia-induced neuronal death[J].Cent Nerv Syst Agents Med Chem,2011,11:98-106.
    [2] Finkel T.Radical medicine:treating ageing to cure disease[J].Nat Rev Mol Cell Biol,2005,6:971-976.
    [3] Fantinelli JC,Perez Nunez IA,Gonzalez Arbelaez LF,et al.Participation of mitochondrial permeability transition pore in the effects of ischemic preconditioning in hypertrophied hearts:role of NO and mitoK(ATP)[J].Int J Cardiol,2011,166:173-180.
    [4] Larsen GA,Skjellegrind HK,Berg-Johnsen J,et al.Depolarization of mitochondria in isolated CA1 neurons during hypoxia,glucose deprivation and glutamate excitotoxicity[J].Brain Res,2006,1077:153-160.
    [5] Lee DR,Helps SC,Macardle PJ,et al.Alterations in membrane potential in mitochondria isolated from brain subregions during focal cerebral ischemia and early reperfusion:evaluation using flow cytometry[J].Neurochem Res,2009,34:1857-1866.
    [6] Dave KR,Bhattacharya SK,Saul I,et al.Activation of protein kinase C delta following cerebral ischemia leads to release of cytochrome C from the mitochondria via bad pathway[J].PLoS One,2011,6(7):e22057.
    [7] Moreira PI,Zhu X,Wang X,et al.Mitochondria:a therapeutic target in neurodegeneration[J].Biochim Biophys Acta,2010,1802:212-220.
    [8] Diogo CV,Grattagliano I,Oliveira PJ,et al.Re-wiring the circuit:mitochondria as a pharmacological target in liver disease[J].Curr Med Chem,2011,18:5448-5465.
    [9] Walters AM,Porter GAJ,Brookes PS.Mitochondria as a drug target in ischemic heart disease and cardiomyopathy[J].Circ Res,2012,111:1222-1236.
    [10] Reale M,Pesce M,Priyadarshini M,et al.Mitochondria as an easy target to oxidative stress events in Parkinson's disease[J].CNS Neurol Disord Drug Targets,2012,11:430-438.
    [11] Gruber J,Fong S,Chen CB,et al.Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing[J].Biotechnol Adv,2012,31:563-592.
    [12] Mukhopadhyay P,Horvath B,Zsengeller Z,et al.Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia-reperfusion:therapeutic potential of mitochondrially targeted antioxidants[J].Free Radic Biol Med,2012,53:1123-1138.
    [13] Telford JE,Kilbride SM,Davey GP.Decylubiquinone increases mitochondrial function in synaptosomes[J].J Biol Chem,2010,285:8639-8645.
    [14] Coulter CV,Kelso GF,Lin TK,et al.Mitochondrially targeted antioxidants and thiol reagents[J].Free Radic Biol Med,2000,28:1547-1554.
    [15] Modica-Napolitano JS,Aprille JR.Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells[J].Adv Drug Deliv Rev,2001,49:63-70.
    [16] Sheu SS,Nauduri D,Anders MW.Targeting antioxidants to mitochondria:a new therapeutic direction[J].Biochim Biophys Acta,2006,1762:256-265.
    [17] Skulachev VP.Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases[J].J Alzheimers Dis,2012,28:283-289.
    [18] Smith RA,Porteous CM,Coulter CV,et al.Selective targeting of an antioxidant to mitochondria[J].Eur J Biochem,1999,263:709-716.
    [19] Hughes G,Murphy MP,Ledgerwood EC.Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis:evidence from mitochondria-targeted antioxidants[J].Biochem J,2005,389:83-89.
    [20] Kelso GF,Porteous CM,Coulter CV,et al.Selective targeting of a redox-active ubiquinone to mitochondria within cells:antioxidant and antiapoptotic properties[J].J Biol Chem,2001,276:4588-4596.
    [21] Solesio ME,Prime TA,Logan A,et al.The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson's disease[J].Biochim Biophys Acta,2013,1832:174-182.
    [22] Asin-Cayuela J,Manas AR,James AM,et al.Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant[J].FEBS Lett,2004,571:9-16.
    [23] Rodriguez-Cuenca S,Cocheme HM,Logan A,et al.Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice[J].Free Radic Biol Med,2010,48:161-172.
    [24] Zelber-Sagi S,Lurie Y,Nitzan-Kaluski D,et al.Mitochondria-targeted antioxidants prevent liver injury in animal models of steatohepatitis and CCl4 intoxication[J].Alcoholic Liver Dis,2006,S267.
    [25] Lowes DA,Thottakam BM,Webster NR,et al.The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis[J].Free Radic Biol Med,2008,45:1559-1565.
    [26] Ghosh A,Chandran K,Kalivendi SV,et al.Neuroprotection by a mitochondria-targeted drug in a Parkinson's disease model[J].Free Radic Biol Med,2010,49:1674-1684.
    [27] Vergeade A,Mulder P,Vendeville-Dehaudt C,et al.Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction:prevention by the targeted antioxidant MitoQ[J].Free Radic Biol Med,2010,49:748-756.
    [28] Wani WY,Gudup S,Sunkaria A,et al.Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain[J].Neuropharmacology,2011,61:1193-1201.
    [29] Zhao K,Zhao GM,Wu D,et al.Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling,oxidative cell death,and reperfusion injury[J].J Biol Chem,2004,279:34682-34690.
    [30] Wright JS,Carpenter DJ,McKay DJ,et al.Theoretical calculation of substituent effects on the O-H bond strength of phenolic antioxidants related to vitamin E[J].J Am Chem Soc,1997,119:4245-4252.
    [31] Schiller PW,Nguyen TM,Berezowska I,et al.Synthesis and in vitro opioid activity profiles of DALDA analogues[J].Eur J Med Chem,2000,35:895-901.
    [32] 赵善民,何显教,晋 玲,等.急性低氧对家兔血压心率微血管反应性及自由基的影响[J].中国应用生理学杂志,2003,19:341-344.
    [33] Chen Z,Putt DA,Lash LH.Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria:further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport [J].Arch Biochem Biophys,2000,373:193-202.
  • [1] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
    [2] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(7): 278-284. doi: 10.12206/j.issn.2097-2024.202306040
    [3] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
    [4] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
    [5] 陈金涛, 乔子婴, 马明华, 张若曦, 王振伟, 年华.  基于网络药理学和分子对接技术研究金芪清疏颗粒治疗社区获得性肺炎的潜在机制 . 药学实践与服务, 2024, 42(11): 471-478. doi: 10.12206/j.issn.2097-2024.202312014
    [6] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [7] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
    [8] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
  • 加载中
计量
  • 文章访问数:  4871
  • HTML全文浏览量:  600
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-28
  • 修回日期:  2014-03-26

线粒体靶向抗氧化剂研究进展

doi: 10.3969/j.issn.1006-0111.2015.01.001
    基金项目:  国家自然科学基金资助项目(81202458);全军医药卫生科研项目(CLZ12JB06)

摘要: 线粒体是细胞呼吸的主要场所,在细胞的生命周期中扮演重要角色,三羧酸循环和氧化磷酸化都是在线粒体中进行。线粒体功能障碍可导致一系列疾病,如缺血-再灌注损伤、败血症和糖尿病等。线粒体是神经退行性病变的治疗靶点,也是药物转运策略研究的引人注目的靶位。虽然线粒体所介导的疾病进程的分子机制尚未完全阐明,但氧化应激是关键的环节。开发线粒体靶向的抗氧化应激保护药物具有诱人的前景。线粒体靶向抗氧化剂是指以线粒体为作用靶位的具有抗氧化作用的药物。该文介绍了现有的线粒体靶向抗氧化剂的概念、分类及其疾病治疗研究进展。

English Abstract

樊鹏程, 葛越, 蒋炜, 景临林, 马慧萍, 贾正平. 线粒体靶向抗氧化剂研究进展[J]. 药学实践与服务, 2015, 33(1): 1-4,8. doi: 10.3969/j.issn.1006-0111.2015.01.001
引用本文: 樊鹏程, 葛越, 蒋炜, 景临林, 马慧萍, 贾正平. 线粒体靶向抗氧化剂研究进展[J]. 药学实践与服务, 2015, 33(1): 1-4,8. doi: 10.3969/j.issn.1006-0111.2015.01.001
FAN Pengcheng, GE Yue, Jiang Wei, JING Linlin, MA Huiping, JIA Zhengping. Research progress in mitochondria-targeted antioxidants[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(1): 1-4,8. doi: 10.3969/j.issn.1006-0111.2015.01.001
Citation: FAN Pengcheng, GE Yue, Jiang Wei, JING Linlin, MA Huiping, JIA Zhengping. Research progress in mitochondria-targeted antioxidants[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(1): 1-4,8. doi: 10.3969/j.issn.1006-0111.2015.01.001
参考文献 (33)

目录

    /

    返回文章
    返回