-
翻译后修饰(PTM)是在蛋白质的氨基酸侧链上共价结合化学小分子基团的过程,能够显著改变蛋白质的理化性质、构象,从而调节、丰富蛋白质的功能。从细胞水平而言,信号蛋白快速而特异性的翻译后修饰,能实现信号的准确传递,引发转录与翻译水平的适应性改变,使细胞及时响应外部环境变化信号,实现自身调节。泛素化修饰是一种重要的翻译后修饰,其中的关键分子——泛素,是一种由76个氨基酸构成的在进化上高度保守的蛋白质,相对分子质量8.5kDa[1]。泛素分子与底物共价结合的过程即泛素化修饰,其能调控基因转录、DNA损伤修复及信号转导等过程[2]。泛素系统的主要功能有两个:一是通过靶向蛋白酶体降解底物或溶酶体降解底物,实现对错误蛋白的调控;二是通过调节蛋白-蛋白相互作用、定位及功能,以实现精细调控细胞信号网络[3]。这种功能上的多样性与泛素化修饰过程中所能募集的不同类型泛素信号有关,根据泛素连接数目的不同,可分为单泛素化修饰和多聚泛素化修饰。在多聚泛素化修饰中,泛素链主要有8种连接模式,其中7种为泛素链内赖氨酸(Lys)与泛素分子C末端甘氨酸(Gly)相连的模式,赖氨酸连接位点包括Lys6、Lys11、Lys27、Lys29、Lys33、Lys48和Lys63,目前研究较多的是Lys48和Lys63位的多聚泛素化修饰。Lys48位的多聚泛素化修饰,其功能是作为蛋白酶体降解的信号,而Lys63位的多聚泛素化修饰主要调控非降解功能,例如参与DNA损伤修复、机体炎症、信号转导等功能[4-6]。其他赖氨酸位点的多聚泛素化修饰功能目前研究较少,但他们在诸如细胞周期调节等过程中,同样是非常重要的胞内信号[7]。剩下的一种连接模式是由一个泛素分子C末端甘氨酸的羧基基团,与另一泛素分子N末端甲硫氨酸(Met1)的氨基基团以肽键相连的模式,形成的是线性泛素链(Linear ubiquitin/Met1-linked ubiquitin chains/Met1-Ub)[8]。近年来的研究表明,线性泛素链在免疫信号调节、NF-κB转录因子激活及细胞凋亡等过程中能发挥强有力的调控作用。更有意义的是,多项研究表明线性泛素链信号的异常调节与免疫失调、肿瘤等人类疾病密切相关[8](图1)。本文将介绍线性泛素连接酶复合体(LUBAC)、去线性泛素化酶(OTULIN)及其与肿瘤的关系。
-
LUBAC是脊椎动物中唯一发现的线性泛素连接酶,该复合体分子量约为600KDa,由三个蛋白构成:HOIP(HOIL-1-interacting protein,RNF31)、HOIL-1(Heme-Oxidised IRP2 Ub Ligase-1,RBCK1)和SHARPIN(SHANK-Associated RH Domain Interacting Protein)(图2)[9]。LUBAC通过这3部分结构的多种分子内相互作用维持稳定,失去任何部分都会影响复合物的稳定性并影响其细胞内活性[8, 10-11]。HOIP与HOIL-1同属RBR(Really Interesting New Gene (RING)-in-between-RING)家族泛素连接酶,两者协同调节LUBAC的活性,尽管两者都有E3泛素连接酶活性,但只有HOIP是主要的E3泛素连接酶[12-13]。然而,HOIP作为单体存在时,会通过RBR、PUB结构域间复杂的分子内相互作用被自抑制[10-11, 14]。HOIL-1和SHARPIN在LUBAC中起到辅助因子的功能,对HOIP的活化至关重要,HOIL-1、SHARPIN的类泛素结构域(UBL),与HOIP的泛素连接结构域(UBA)结合,可以解除HOIP的自抑制,促进线性泛素链的聚集。HOIP的RBR结构域是LUBAC复合物的催化中心[15-16],能通过特殊的RING-HECT杂化反应生成多聚泛素链[17-18]。在线性泛素化的过程中,HOIP的RING1结构域会连接一个带有泛素的E2,这一泛素供体通过瞬间形成硫酯键,被转移到HOIP的RING2结构域中半胱氨酸(CYS)885位点。最后,泛素供体通过HOIP的C端线性泛素链决定域(LDD)与泛素受体结合,特异性地形成线性泛素链[17-19]。
慢性炎症、NF-κB信号通路的激活与癌症的发生、发展、耐药息息相关[20],YANG等证实了LUBAC活性的增强及表达上调,能通过影响NF-κB信号通路,促进活化B细胞样弥漫性大B细胞淋巴瘤(ABC-DLBCL)的发生、发展[20]。罕见的HOIP功能变体在ABC-DLBCL患者中(突变率7.8%)较健康人群(突变率1.0%)增加了近8倍,这种功能变体通过调节HOIP的α螺旋,增加了HOIP与HOIL-1的相互作用,因而提升了LUBAC的活性并激活NF-κB信号通路[20]。同时,在B细胞受体途径(BCR)中,LUBAC与CARD11/MALT1/BCL10复合物的结合,对ABC-DLBCL的生存有重要作用[20]。此外,JO等证实,HOIP的表达在ABC-DLBCL细胞中有整体提升,其能够阻止细胞凋亡、增强NF-κB信号通路并导致AID介导的突变,以此促进淋巴瘤的生成[21]。LUBAC表达及活性的上调增强了BCR介导的NF-κB活性,并保护其免受基因毒性应激诱导的细胞凋亡,以此促进突变体细胞的聚集及淋巴瘤的生成[20-22]。SONG等证实LUBAC在ε蛋白的作用下,能使NF-κB重要调节因子NEMO线性泛素化,可促进NF-κB的持续激活,从而导致雌激素阴性乳腺癌的发生[23]。以上研究表明LUBAC介导的NF-κB的活化可以成为多种肿瘤发生的一种途径。JO等还利用高通量筛选,获得能够特异性抑制LUBAC活性的天然物质——硫藤黄素,在小鼠移植瘤模型中能抑制肿瘤的生长[21]。
LUBAC介导的NF-κB的激活是人类与小鼠肿瘤耐药的关键因素。RUIZ等人证明了人类与小鼠的肺鳞癌(LSCC)细胞中均存在LUBAC表达水平的上调,这导致了肿瘤中线性泛素链的堆积以及NF-κB活性的增强,从而导致对顺铂耐药的产生[24]。利用LUBAC的小分子抑制剂胶霉毒素,通过抑制LUBAC的活性,降低NF-κB的活性,能够使LSCC细胞重新对顺铂的治疗变得敏感,半剂量的顺铂与胶霉毒素的联合用药,显著抑制了肿瘤在小鼠体内生长,荷瘤小鼠的生存期明显延长,且未显示出毒副作用[25]。同样,HOIP也被证实能够在许多肿瘤株中诱导对顺铂耐药的产生。MACKAY等发现低表达HOIP的细胞会显示出对顺铂的高度敏感性,这主要依赖于ATM介导的DNA损伤检查点的激活,所导致的半胱氨酸蛋白酶8与半胱氨酸蛋白酶3介导的细胞凋亡的增加。HOIP表达量的降低能使对顺铂耐药的卵巢癌细胞,重新恢复对顺铂的敏感性[26]。以上研究表明抑制LUBAC的活性在特定的肿瘤中,可能能够直接或间接地成为有效治疗手段。基于LUBAC在肿瘤发生、发展、耐药过程中的重要作用,研究人员开始了针对LUBAC抑制剂的探索(图3)。除了JO等人报道的硫藤黄素,以及RUIZ等人报道的胶霉毒素以外,JOHANSSON等人利用基于片段的共价配体筛选技术,获得了靶向LUBAC催化亚基HOIP活性位点半胱氨酸的抑制剂,并进一步通过基于细胞的分析和化学蛋白质组学技术,证明以环戊二烯吡啶醇衍生物为代表的一类化合物能有效地渗透到哺乳动物细胞中,标记并抑制HOIP和NF-κB的激活,这些化合物有潜力作为先导化合物,开发选择性探针,以研究LUBAC生物学功能[27]。Virginia等人报告了一种基于MALDI-TOF质谱的无标记高通量筛选方法,能检测抑制剂对泛素E2偶联酶和E3连接酶的抑制强度和特异性,并发现苯达莫司汀是潜在的LUBAC抑制剂[28]。KATSUYA等建立了由LUBAC介导的线性泛素化的细胞非依赖实验,及以NF-κB荧光素酶报告基因为基础的基于细胞的LUBAC实验,两者构成了高通量筛选平台,以此发现LUBAC抑制剂。筛选所得的化合物JTP-0819958能选择性作用于HOIP催化结构域的赖氨酸残基,实现对LUBAC活性的抑制,并在细胞水平降低LUBAC介导的线性泛素链的生成与炎性细胞因子所导致的NF-κB的激活[29]。KATSUYA等以JTP-0819958为先导化合物,测得其LUBAC抑制活性IC50值为2.8 μmol/L,构效关系研究发现其中的α、β-不饱和酮结构是活性必须基团,能通过迈克尔加成反应可逆抑制LUBAC的活性,并由此设计合成了HOIPIN-2~8,最终发现HOIPIN-8有最强的LUBAC(IC50=11 nmol/L)、NF-κB通路的抑制活性,其可能的作用位点同样是HOIP催化结构域的赖氨酸残基,HOIPIN-8是已报道的最有效的LUBAC抑制剂[30]。STRICKSON等人发现NF-κB抑制剂BAY 11-7082能通过使LUBAC失活,发挥抗炎作用、诱导B细胞淋巴瘤和白血病T细胞死亡,并阻止蛋白质向DNA损伤位点募集[31]。AGUILAR-ALONSO等开发了基于HOIP的固定α螺旋的多肽C-helix3,其能够通过与HOIP结合,阻断HOIL-1与HOIP的相互作用,抑制LUBAC活性及功能,并实现降低细胞存活率、减少NF-κB信号通路的激活及其相关基因的产生[32]。虽然目前针对LUBAC抑制剂的研究尚处于初级阶段,但可以预见的是,通过抑制LUBAC活性,影响机体免疫调节,会成为当前及今后肿瘤治疗研究的新方向。
-
OTULIN,是目前唯一能够水解线性泛素链的哺乳动物去泛素化酶,也被称为Fam105b或Gumby,由352个氨基酸构成,其拥有一段含Cys129/His339/Asn341三分子催化中心的高度保守的OTU结构域[33-34],该结构域以底物辅助催化机制发挥功能,即OTULIN仅在与线性泛素链作用时被激活[34]。OTULIN的C端是PDZ(PSD95–Dlg1–ZO-1)结构域结合基序,N端是PUB相互作用基序(PIM),可与HOIP的PUB结构域发生相互作用,发挥去线性泛素化酶的功能(图2)[35- 36]。OTULIN能在不影响其他种类泛素链的情况下,专一性地水解线性泛素链,即使在高浓度OTULIN情况下,也不会作用于与线性泛素链结构高度相似的Lys63连接模式的泛素链,其与线性泛素链的结合常数KD为20 nmol/L,与Lys63连接的泛素链KD为12 μmol/L,两者有超过100倍的结合活性差[34]。OTULIN同样广泛参与机体免疫、信号转导等多个过程,OTULIN的存在可以防止LUBAC复合体的自身泛素化,以及线性泛素链在细胞内的堆积[37-39]。此外OTULIN在TNFα与NOD2响应的刺激下,可以限制LUBAC的活性以及NF-κB通路的激活[39]。OTULIN的N端可通过与蓬乱蛋白2(DVL2)相互作用,与LUBAC共同调节Wnt信号通路[40](图4)。
DAMGAARD等揭示了OTULIN在肝脏稳态与病理状态中的重要作用,作者构建了肝实质细胞内特异性敲除OTULIN的(OtulinΔHEP)小鼠,该模型会自发产生诸如肝炎、肝细胞凋亡、代偿性的肝细胞增生等症状,并导致脂肪性肝炎、肝纤维化以及肝细胞癌(HCC)。Fas相关死亡域(FADD)基因的消除能挽救这一过程,敲入未激活的受体相互作用蛋白激酶1(RIPK1)同样能防止小鼠患上肝脏疾病,这也进一步证明了缺失OTULIN的肝细胞的凋亡,是引发肝脏疾病的关键,OTULIN在肝脏中能预防慢性肝炎及肝细胞癌,起到关键的保护作用[41]。同样,HOSTE等证实了OTULIN在维持皮肤稳态、防止疣状癌的发生中也有重要作用。作者构建了角质细胞特异性缺失OTULIN的小鼠(ΔKerOTULIN),该模型会自发产生炎症性皮肤损伤并发展成疣状癌。在缺失OTULIN的角质细胞中会显示1型干扰素与白细胞介素-1β的响应信号,从基因层面或药物层面抑制这些细胞因子可以一定程度抑制皮肤炎症。此外,表达会引发人类OTULIN相关自身炎症综合征(ORAS)的OTULIN突变基因,会引发相类似的皮肤炎症表型,以此证明OTULIN在抑制皮肤炎症、维持免疫稳态、避免皮肤肿瘤发生中的重要价值[42]。
不同于OTULIN在肝脏、皮肤中的保护作用,WANG等证实OTULIN在一定条件下参与肿瘤耐药的形成。三阴性乳腺癌细胞中Wnt/β-catenin信号通路被异常激活,其在癌症的发展、转移、耐药中发挥着重要作用。在化疗过程中,基因毒性的治疗会导致OTULIN56位酪氨酸的磷酸化,使OTULIN从与HOIP结合中被释放,并增强OTULIN与β-catenin的相互作用,Wnt/β-catenin信号通路以一种OTULIN依赖的方式被进一步活化,诱导耐药的产生。此外,作者还证明了抑制Wnt/β-catenin信号通路或OTULIN能恢复三阴性乳腺癌移植瘤模型对化疗药物的敏感性并减少肿瘤的转移[43]。同时,体内OTULIN水平较高的乳腺癌患者,表现出较低的总体生存率与无疾病生存期。由于Wnt/β-catenin信号通路在正常组织中广泛存在,通过抑制OTULIN以克服肿瘤耐药与转移,是治疗三阴性乳腺癌的一种新选择。
-
线性泛素化修饰作为一种特殊的翻译后修饰,由于其在细胞死亡、免疫信号调节及其他细胞重要功能中所发挥的作用,成为了近年来的研究热点。LUBAC与OTULIN在细胞内可实现对线性泛素链信号的精细调节,而其异常表达则会导致ORAS、肿瘤等严重疾病的发生。目前已能实现利用小分子化合物或多肽对LUBAC的活性进行调节,但其具体作用机制仍有待深入阐明。以HOIPIN-8为代表的高活性LUBAC抑制剂(IC50=11 nmol/L)在体外展现出了较优的抑制效果,然而,需开展更为广泛的体内药效与安全性实验,以验证LUBAC抑制剂的优势,以及LUBAC作为肿瘤、炎症等疾病治疗靶点的潜在价值。对于OTULIN而言,由于其在不同组织中广泛的生理调控功能,未来针对OTULIN的研究重点,仍将停留在对其生理作用与机制的阐明。同时,目前尚无OTULIN小分子配体或抑制剂的报道,因此,开发精确调节OTULIN活性的分子,实现免疫调节或疾病治疗,也是未来极具价值的研究方向。
Research Progress on Linear Ubiquitin Chain Assembly Complex and OTU Deubiquitinase With Linear Linkage Specificity in Tumor
-
摘要: 线性泛素化修饰是近年来发现的一种重要的翻译后修饰。线性泛素链由一分子泛素的甘氨酸与另一分子泛素的甲硫氨酸连接而形成。线性泛素化修饰过程由线性泛素连接酶复合体(LUBAC)与去线性泛素化酶(OTULIN)共同调控,广泛参与机体免疫、炎症反应、细胞凋亡等过程。近年来的研究表明,线性泛素化修饰能够影响NF-κB、Wnt/β-catenin等信号通路,并与肿瘤的发生、发展和耐药密切相关。本文将对LUBAC与OTULIN在肿瘤中的研究进展进行综述。
-
关键词:
- 线性泛素化修饰 /
- 线性泛素连接酶复合体 /
- 去线性泛素化酶 /
- 肿瘤
Abstract: Linear ubiquitination is an important post-translational modification that has been discovered in recent years. The linear ubiquitin chain is formed by the linkage of glycine residue of one ubiquitin protein to the methionine residue of another ubiquitin. This process is regulated by the linear ubiquitin chain assembly complex (LUBAC) and the OTU deubiquitinase with linear linkage specificity (OTULIN). Linear ubiquitination is involved in various biological processes, including immune response, inflammation, and cell apoptosis. Recent studies have shown that linear ubiquitination is closely related to the occurrence, development, and drug resistance of tumors by affecting signaling pathways such as NF-κB and Wnt/β-catenin. The research progress on the function of LUBAC and OTULIN in tumors was reviewed in this paper. -
烟草流行是世界有史以来面临的最大公共卫生威胁之一,全球每年有800多万人由于烟草而死亡[1],吸烟不仅是各种非传染性疾病常见的主要风险因素,尤其是慢性呼吸道疾病、心血管疾病、癌症和糖尿病,同时会影响周围人的健康,而且对个人和国家的经济及社会形象产生负面影响[2]。据估计,每年全球消耗治疗烟草相关疾病的费用约1.4万亿美元[1]。
戒烟是降低非传染性疾病风险的最重要有效的干预措施之一。随着公共卫生工作的防范与发展,60%的烟草使用者希望戒烟[3],但只有约35%能够获得全面的戒烟服务,患者的戒烟意愿突显了在医疗系统内扩大戒烟可及服务及优先开展戒烟治疗的重要性[4-5]。
1. 药师参与戒烟的价值及其发展进程
1.1 药师参与戒烟的价值
由于尼古丁的成瘾性,依靠吸烟者以自我管理的方式戒烟实施困难。事实证明,医疗保健专业人员提供的戒烟干预措施比自助式戒烟更有效[6]。药师的工作职责是为公众调配处方、提供用药指导与建议、解答用药咨询等,被认为是为公众提供戒烟服务的最佳专业人员,不仅能够指导其正确使用戒烟替代药品及提供相关建议,同时也可以给予戒烟行为上的专业支持[6-7]。
药师及其药房团队提供的戒烟服务有助于帮助吸烟者戒烟 [8]。葡萄牙进行的一项研究发现,接受药师服务的患者相较于对照组会参加更多社区药房主导的用药咨询(χ2=59.994,P<0.001)、更多电话会议(χ2=17.845,P<
0.0013 ),因此戒烟成功率更高[9]。新加坡一家三级转诊皮肤病中心进行的一项单中心回顾性研究评估了由药师领导的结构化戒烟诊所的疗效,表明药师及其药房团队主导的患者咨询服务能有效为戒烟者提供行为支持[10]。1.2 药师参与戒烟政策支持的发展进程
1.2.1 世界卫生组织的号召与行动
1998年,世界卫生组织(WHO)首次认识到药师在帮助个人戒烟和防止潜在使用者方面的关键作用[11]。2003年为应对全球烟草流行,WHO成员国通过了《世界卫生组织烟草控制框架公约》(WHO FCTC)[12-13],要求缔约方采取有效措施促进戒烟。WHO FCTC是促进公众健康的一个里程碑,自2005年生效以来,WHO FCTC已有183个缔约方,涵盖90%以上的世界人口[14]。
为了扩大实施WHO FCTC中关于减少烟草需求的条款,WHO在2007年还启动了一项具有成本效益的实用行动MPOWER系列措施[15]。MPOWER措施中的策略与WHO FCTC相一致,已证明在挽救生命和降低医疗卫生费用方面卓有成效[1]。然而随着WHO FCTC的成功实施,一些中低收入国家也面临着来自烟草产业对其干扰的重大障碍[16-17]。药师可以在克服这些问题及现有制度和行业体系结构进行重大变革中发挥一定作用,为促进烟草控制和戒烟工作做出应有的贡献[18]。2019年WHO发布的全球烟草流行报告中,强调了药师为吸烟者戒烟提供帮助,并高度鼓励成员国就此采取行动[19]。
目前,151个国家至少实施了WHO FCTC及MPOWER措施中的一项,150个国家的烟草使用率正在下降。2000年,全世界大约1/3的成年人吸烟,然而,到2022年这一数字已大幅下降约1/5,这反映出各国在减少全球烟草消费方面取得了相当大的进展[20]。
1.2.2 国际药学会的响应与行动
2003年,国际药学会(FIP)发布了关于药师在促进无烟未来中的作用的政策声明。2007年出版的《遏制烟草流行病:药学的全球作用》和2015年出版的《建立无烟社区:药师实用指南》均强调了药师在戒烟服务方面的重要贡献。
2023年,FIP出版《支持戒烟和治疗烟草依赖:药师手册》强调药师在为寻求戒烟患者提供系统服务方面的关键作用,是药师支持个人戒烟过程中可参考的综合性实用资源。其涵盖了最新的循证实践、技术和策略,以帮助患者戒烟并减少复吸。该手册详细介绍了以药师为主导的支持戒烟所需的专业知识和实践技能,以及药师可干预的因素(包括非传染性疾病风险因素,如运动不足、不健康饮食习惯和过量饮酒等)及相关措施。随着近年来替代品电子烟使用的增多趋势,出于对电子烟安全性的担忧,同年FIP又发布了《关于电子烟使用对公众健康和经济的影响以及药房工作人员对消除电子烟贡献的声明》[21]。
2024年,WHO和FIP就药师在戒烟中的作用发表了一份新的联合声明,重申了药师在帮助吸烟者戒烟中发挥的关键作用。该声明中,WHO和FIP敦促各个国家烟草控制组织和国家药学协会制定并实施戒烟计划,同时在该计划和各国卫生系统服务的背景下,让药师参与到与烟草的斗争工作中[22]。
2. 药师提供戒烟服务的可行性
2.1 患者的偏好
有研究表明患者更愿意社区药师参与戒烟服务[23],同时社区药师也有能力开展戒烟服务[24]。美国一家三级护理医院进行的一项研究表明,药师无论是在患者入院还是出院时,都可以对患者开展戒烟宣教与指导,在了解患者疾病与用药史、药物核对和出院咨询工作流程中与患者讨论吸烟问题,通过患者住院期间开展戒烟治疗并不断完善方案,达到有效戒烟的目的[25]。
2.2 赋予药师戒烟药物处方权
英国在新型冠状病毒流行期间进行的一项研究表明,药师可以通过远程咨询为戒烟患者开具处方,提供有效的戒烟服务。目前,英国国家医疗服务体系(NHS)正在支持现有药师(包括社区药房药师)获得处方资格,根据患者需要开具戒烟药物从而促进戒烟服务开展。计划到2026年,在英国完成药学学位的毕业生将在监管机构注册为独立处方权药师, 进而扩大了可以提供戒烟服务药师的范围[26]。
美国药师有权根据合作处方协议或通过州范围的协议拥有自主处方权或授权开具处方。处方医生将开启、修改和停止药物治疗以及开具实验室检查的权利委托给药师。药师在完成继续教育课程后,可以根据国家法律法规授予的权限开具某些药物[27]。
2.3 开展药师戒烟服务培训
药师的戒烟培训应包括基于行为支持的社区药师培训课程,通过戒烟服务个体化随访识别障碍并提供积极的强化措施,可以有效提高患者戒烟率,进而提高其生活质量[28]。El Hajj等[29]在卡塔尔进行的一项随机对照试验评估了戒烟培训计划对药师技能和能力的影响,共有86名社区药师(干预组54名,对照组32名)完成了6个目标结构化临床检查病例。研究结果表明,强化戒烟培训显著提高了社区药师提供戒烟服务的技能和能力。
在一项评估埃塞俄比亚药师和药学学生对吸烟/戒烟的知识和态度的横断面调查中,与未接受过戒烟培训的人相比,接受过培训人员的平均知识和态度得分明显更高[30]。Greenhalgh等[31]通过定性和混合方法进行的描述性综合和真实世界调查表明,精心设计的戒烟培训课程将药师从生物医学和产品导向的角度,转变为以公共卫生和患者为中心的角度方面发挥至关重要的作用。
2.4 跨专业合作对于加强药师在戒烟中角色的影响
促进戒烟的跨专业合作可以提高患者的戒烟率。一项探索医疗卫生保健专业人员与社区药师之间跨专业合作的研究表明,将社区药师为患者提供戒烟服务纳入患者护理项目是很有价值的,社区药房开展戒烟支持服务可以填补现有医院戒烟与家庭戒烟之间的空白。跨专业合作不仅为患者和医疗保健专业人员之间的有效沟通提供了途径,同时通过医疗保健专业人员汇总的患者电子健康记录,可以提高患者用药治疗的安全性[32]。
根据Greenhalgh等[31]的说法,增加药师和其他医疗从业者之间的跨专业互动是社区药房提供有效戒烟服务的先决条件。药师专业的能力增强了临床医生对药师的信任,因此,明确且精准的转诊途径,特别是当地全科医生将戒烟患者转诊给药师,对于跨专业开展戒烟服务是必要的。
Bouchet-Benezech等[33]在法国进行的一项研究表明,与其他医疗保健专业人员的合作是发挥药师在戒烟服务中作用的关键之一。药师为戒烟者提供的尼古丁替代治疗处方没有得到社会医疗保险体系的支持,因此建议药师与具有尼古丁替代治疗处方权的其他医疗保健专业人员合作。
3. 药师开展戒烟服务的效益
3.1 健康相关的获益
吸烟是非传染性疾病的主要可变风险因素之一。药师主导的戒烟干预措施可以显著影响吸烟者的戒烟率,并在改善其健康状况方面发挥关键作用[34]。
Peletidi等[35]的调查研究表明,以社区药师主导的戒烟服务可以降低与吸烟相关慢病的发病率和病死率。Bouchet-Benezech等[33]为评估法国社区药房药师提供戒烟服务的可行性而进行的一项研究显示,在第6个月,23.3%的参与者参加了随访,其中75%的参与随访者自第一次随访以来一直保持戒烟状态,超过一半的参与者持续了90 d,从第二次随访开始,所有参与者的身心健康综合得分与基线相比都有所提高。
药师作为一线医疗保健提供者,在戒烟工作中发挥着关键作用,可以在更大范围内对个体和公共健康产生重大影响。社区药房的戒烟服务应该被纳入国家公共卫生保健政策,这对于促进社区服务的健康有积极的促进作用[36]。
3.2 经济相关的获益
Peletidi等[35]在英国进行的一项系统综述强调了将药房主导的戒烟服务与对照组进行比较的研究,提供了强有力的证据证明药房主导的服务具有很高的成本效益。药房主导的服务要求每位戒烟者在为期4周的方案中支付772英镑的补充成本,而对照组基于集体小组的服务需要1 612英镑的戒烟补充成本。同时接受药房主导的戒烟服务,每周一对一的支持结合尼古丁替代疗法的治疗,与对照组接受集体戒烟治疗药物相比具有更高的有效戒烟率。此外,药房主导的服务每生命质量调整年的增量成本为2 600英镑,而对照组为4 800英镑。
社区药师是提供戒烟服务的一种可获得的、未充分利用的但具有成本效益的资源[24,28,35]。一项随机试验旨在比较两个药师主导的戒烟计划(强化版与简化版)之间的戒烟率以及这些计划与基于文献的对照组之间的成本效益,揭示了强化版药师主导的戒烟计划是3种策略中最具成本效益的干预措施。强化版比简化版多花费了14 000美元(每100名参与者),但14人戒烟成功,取得10.8个生命年的获益额;强化版比对照组多花费35 300美元(每100名参与者),但29名戒烟者取得22.4个生命年的获益,每增加一名戒烟者多花费1 217美元,戒烟的增量成本效果比为1 576美元 [32]。
2000年,一项在英格兰进行的研究从提供者和NHS的角度比较了普通牙科诊所、普通医疗诊所(GMP)、社会药房和NHS戒烟服务(NHS SSS)中戒烟服务的成本效益,研究结果表明“成本效益高”的服务是在社区药房开展戒烟服务[37]。
由此可见,药师主导的戒烟服务不仅有效且极具成本效益,医疗卫生管理者及政策制定者可以基于此就最佳资源分配做出合理决策[24]。
4. 药师在提供戒烟服务方面发挥作用的障碍
然而,有证据表明,药师在承担戒烟服务提供者这一角色存在障碍,这影响了将全面戒烟服务纳入实践的可行性。障碍包括缺乏充分的培训、缺乏适当的转诊结构、社区药房环境中的时间限制、公众对药剂师提供戒烟服务缺乏认识、药房缺乏私人咨询区以及缺乏提供服务的报销[33]。
4.1 缺乏专业临床戒烟知识与技能
在许多国家,药师缺乏戒烟知识和技能以及缺乏培训被认为是药师在提供戒烟服务方面发挥作用的常见障碍[6,30,32,35,38-39]。Erku等[30]在埃塞俄比亚进行的一项由410名参与者(213名药学学生和197名药师)的横断面调查,提出药师在戒烟服务方面存在临床知识不足和实践技能差距。澳大利亚进行的另一项研究分析了250名大四药学专业学生、51名药师和20名戒烟教育工作者在当前基于证据的药房戒烟干预实践中的表现,得出了药学学生及药师与戒烟教育工作者之间存在较大的临床或药物治疗服务方面的差距[34]。药师由于缺乏戒烟相关教育与培训导致在戒烟服务中缺乏自信,从而阻碍了与患者的有效沟通,降低了提供的戒烟服务的质量[35,39]。在约旦,大多数药师认为,由于培训不到位导致对戒烟治疗的了解不足,致使药师无法提供足够的戒烟干预措施[40]。
4.2 缺乏劳务报酬与戒烟药物处方权
缺乏戒烟计划或劳务报酬也是许多有意愿药师提供戒烟服务的一个障碍[31-33,39-40]。美国的一篇研究论文探讨了药师在护理过渡期间(住院到出院回家期间)如何衔接戒烟服务,得出支付报酬对维持任何医疗服务(包括药师提供的戒烟服务)至关重要。由于药师不被视为戒烟服务的提供者,因此美国大多数州的药师没有资格通过医疗补助获得提供戒烟服务的劳务报酬,通过商业保险获得报销的也很少见。缺乏鼓励药师向烟草使用者提供戒烟干预措施的计划和政策,药师没有戒烟药物处方权也大大阻碍了戒烟服务的开展[35]。研究表明,授予药师戒烟服务提供者身份或药师拥有戒烟药物处方权,并在医保政策中明确劳务报酬的支付标准,可能是解决该问题的最佳方式[40]。
4.3 缺乏戒烟环境及服务时间上的保障
社会药店缺乏相对私人空间为患者进行戒烟咨询服务也是障碍之一[6,33]。药店是否设有专门的可以为患者提供面对面戒烟服务咨询的区域,为患者咨询营造一个轻松舒适的环境,对于提高患者戒烟依从性是非常重要的影响因素[33]。药师实施戒烟服务与履行其他职责在时间上的矛盾也是限制戒烟服务工作开展的障碍之一[34-35]。根据Peletidi等[35]的系统调查结果显示,缺乏时间是所有参与戒烟服务者,包括患者在内的共性问题。日本对11家社区药房进行的一项随机研究显示,由于时间和精力有限,许多药房没有将戒烟服务纳入其日常运营范围[32]。
4.4 缺乏戒烟需求与服务
在法国、约旦和尼日利亚等一些国家,对戒烟服务的需求不足被视为药师开展戒烟服务的障碍[9,33,40]。由于缺乏戒烟服务,泰国的戒烟率很低,因此需要在药店开展戒烟服务,为药师提供机会[36]。为了解决这一问题,Bouchet等[33]评估了法国社区药房实施药师提供的戒烟方案的可行性,并建议向社区药房顾客有效推广戒烟服务,以解决需求不足的问题。
4.5 社区药房开展戒烟服务的问题
社会药房在烟草控制政策中的参与度较低[9],原因是医疗机构与社会药房缺乏统一的转诊系统来保障提供安全、有效的戒烟服务[23,28]。社会药房药师在无法全面、详细获得患者医疗护理、处方记录的前提下,也就意味着无法了解到患者准确的疾病史与用药史,提供戒烟药物及相关指导可能会增加用药错误的可能性[26]。其他阻碍戒烟服务工作开展的因素还包括性别、年龄、民族、文化等不同所带来的戒烟者个性化差异及沟通交流障碍[23]。
5. 展望
全面了解药师主导的戒烟服务及其在不同地区和医疗保健环境中的影响,对于世界各国药师参与戒烟服务至关重要。基于药师缺乏戒烟知识、技能和培训有关的问题,政策制定者和教育工作者需要做更多的工作,以确保戒烟服务对患者的最大益处。有必要针对不同地区和国家的具体需求采取全面的能力建设措施,包括制定标准化的培训计划,采用线下结合远程学习方式助力药师实践技能发展,促进全球药师专业的持续深入发展。
医药卫生政策制定应适时考虑将药师主导的戒烟服务纳入国家和地区医疗卫生服务指南,并开展宣传工作,提高人们对药师在戒烟方面发挥作用的认识。立法明确和药师薪酬补偿将有利于公众获得经许可的戒烟服务的机会,扩大药师在提供戒烟服务中的作用也有利于增强公众戒烟信心,同时在不同的医疗保健环境中实施和扩大这些服务争取足够的资源与支持。未来应促进药师、医师、护师、公共卫生专业人员及其他参与烟草控制工作的利益相关者之间更紧密的合作,激发出药师主导戒烟干预措施的全部潜力,提高戒烟的有效性和可持续性。
随着医药卫生体制的改革及药师进一步以患者为中心的角色转变,药师的可及性被视为开展戒烟服务的最重要驱动因素之一。药师和社会药房团队能够通过结合药理学和行为学方法持续提供成本效益高的个体化戒烟服务,提高戒烟率,最终达到减轻烟草和尼古丁依赖以及烟草相关疾病的负担,促进医疗卫生系统的发展、改善全球卫生状况。
-
[1] HERSHKO A, CIECHANOVER A, VARSHAVSKY A. The ubiquitin system[J]. Nat Med, 2000, 6(10): 1073-1081. doi: 10.1038/80384 [2] HAGLUND K, DIKIC I. Ubiquitylation and cell signaling[J]. EMBO J, 2005, 24(19): 3353-3359. doi: 10.1038/sj.emboj.7600808 [3] KOMANDER D, RAPE M. The ubiquitin code[J]. Annu Rev Biochem, 2012, 81: 203-229. doi: 10.1146/annurev-biochem-060310-170328 [4] YAU R, RAPE M. The increasing complexity of the ubiquitin code[J]. Nat Cell Biol, 2016, 18(6): 579-586. doi: 10.1038/ncb3358 [5] PICKART C M, FUSHMAN D. Polyubiquitin chains: polymeric protein signals[J]. Curr Opin Chem Biol, 2004, 8(6): 610-616. doi: 10.1016/j.cbpa.2004.09.009 [6] POPOVIC D, VUCIC D, DIKIC I. Ubiquitination in disease pathogenesis and treatment[J]. Nat Med, 2014, 20(11): 1242-1253. doi: 10.1038/nm.3739 [7] KULATHU Y, KOMANDER D. Atypical ubiquitylation—the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages[J]. Nat Rev Mol Cell Biol, 2012, 13(8): 508-523. doi: 10.1038/nrm3394 [8] JAHAN A S, ELBÆK C R, DAMGAARD R B. Met1-linked ubiquitin signalling in health and disease: inflammation, immunity, cancer, and beyond[J]. Cell Death Differ, 2021, 28(2): 473-492. doi: 10.1038/s41418-020-00676-w [9] STIEGLITZ B, MORRIS-DAVIES A C, KOLIOPOULOS M G, et al. LUBAC synthesizes linear ubiquitin chains via a thioester intermediate[J]. EMBO Rep, 2012, 13(9): 840-846. doi: 10.1038/embor.2012.105 [10] FIIL B K, GYRD-HANSEN M. The Met1-linked ubiquitin machinery in inflammation and infection[J]. Cell Death Differ, 2021, 28(2): 557-569. doi: 10.1038/s41418-020-00702-x [11] GERLACH B, CORDIER S M, SCHMUKLE A C, et al. Linear ubiquitination prevents inflammation and regulates immune signalling[J]. Nature, 2011, 471(7340): 591-596. doi: 10.1038/nature09816 [12] SPRATT D E, WALDEN H, SHAW G S. RBR E3 ubiquitin ligases: new structures, new insights, new questions[J]. Biochem J, 2014, 458(3): 421-437. doi: 10.1042/BJ20140006 [13] DOVE K K, STIEGLITZ B, DUNCAN E D, et al. Molecular insights intoRBR E3 ligase ubiquitin transfer mechanisms[J]. EMBO Rep, 2016, 17(8): 1221-1235. doi: 10.15252/embr.201642641 [14] STIEGLITZ B, RANA R R, KOLIOPOULOS M G, et al. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP[J]. Nature, 2013, 503(7476): 422-426. doi: 10.1038/nature12638 [15] FUSEYA Y, FUJITA H, KIM M, et al. The HOIL-1L ligase modulates immune signalling and cell death via monoubiquitination of LUBAC[J]. Nat Cell Biol, 2020, 22(6): 663-673. doi: 10.1038/s41556-020-0517-9 [16] TOKUNAGA F, NAKAGAWA T, NAKAHARA M, et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex[J]. Nature, 2011, 471(7340): 633-636. doi: 10.1038/nature09815 [17] WENZEL D M, LISSOUNOV A, BRZOVIC P S, et al. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids[J]. Nature, 2011, 474(7349): 105-108. doi: 10.1038/nature09966 [18] SMIT J J, MONTEFERRARIO D, NOORDERMEER S M, et al. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension[J]. EMBO J, 2012, 31(19): 3833-3844. doi: 10.1038/emboj.2012.217 [19] LECHTENBERG B C, RAJPUT A, SANISHVILI R, et al. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation[J]. Nature, 2016, 529(7587): 546-550. doi: 10.1038/nature16511 [20] YANG Y B, SCHMITZ R, MITALA J, et al. Essential role of the linear ubiquitin chain assembly complex in lymphoma revealed by rare germline polymorphisms[J]. Cancer Discov, 2014, 4(4): 480-493. doi: 10.1158/2159-8290.CD-13-0915 [21] JO T, NISHIKORI M, KOGURE Y, et al. LUBAC accelerates B-cell lymphomagenesis by conferring resistance to genotoxic stress on B cells[J]. Blood, 2020, 136(6): 684-697. doi: 10.1182/blood.2019002654 [22] NIU J X, SHI Y L, IWAI K, et al. LUBAC regulates NF-κB activation upon genotoxic stress by promoting linear ubiquitination of NEMO[J]. EMBO J, 2011, 30(18): 3741-3753. doi: 10.1038/emboj.2011.264 [23] SONG K, CAI X F, DONG Y Z, et al. Epsins 1 and 2 promote NEMO linear ubiquitination via LUBAC to drive breast cancer development[J]. J Clin Investig, 2021, 131(1): e129374. doi: 10.1172/JCI129374 [24] RUIZ E J, DIEFENBACHER M E, NELSON J K, et al. LUBAC determines chemotherapy resistance in squamous cell lung cancer[J]. J Exp Med, 2019, 216(2): 450-465. doi: 10.1084/jem.20180742 [25] SAKAMOTO H, EGASHIRA S, SAITO N, et al. Gliotoxin suppresses NF-κB activation by selectively inhibiting linear ubiquitin chain assembly complex (LUBAC)[J]. ACS Chem Biol, 2015, 10(3): 675-681. doi: 10.1021/cb500653y [26] MACKAY C, CARROLL E, IBRAHIM A F M, et al. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin[J]. BMC Cancer, 2014, 74(8): 2246-2257. doi: 10.1158/0008-5472.CAN-13-2131 [27] JOHANSSON H, ISABELLA TSAI Y C, FANTOM K, et al. Fragment-based covalent ligand screening enables rapid discovery of inhibitors for the RBR E3 ubiquitin ligase HOIP[J]. J Am Chem Soc, 2019, 141(6): 2703-2712. doi: 10.1021/jacs.8b13193 [28] Virginia, CESARE D,. The MALDI-TOF E2/E3 ligase assay as universal tool for drug discovery in the ubiquitin pathway[J]. Cell Chem Biol, 2018, 25(9): 1117-1127. e4. [29] Ken, Katsuya,. High-throughput screening for linear ubiquitin chain assembly complex (LUBAC) selective inhibitors using homogenous time-resolved fluorescence (HTRF)-based assay system[J]. SLAS Discov, 2018, 23(10): 1018-1029. [30] Ken, Katsuya,. Small-molecule inhibitors of linear ubiquitin chain assembly complex (LUBAC), HOIPINs, suppress NF-κB signaling[J]. Biochem Biophys Res Commun, 2019, 509(3): 700-706. [31] STRICKSON S, CAMPBELL D G, EMMERICH C H, et al. The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system[J]. Biochem J, 2013, 451(3): 427-437. [32] AGUILAR-ALONSO F , et al. Biophysical and biological evaluation of optimized stapled peptide inhibitors of the linear ubiquitin chain assembly complex (LUBAC)[J]. Bioorg Med Chem, 2018, 26(6): 1179-1188. [33] RIVKIN E, ALMEIDA S M, CECCARELLI D F, et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis[J]. Nature, 2013, 498(7454): 318-324. doi: 10.1038/nature12296 [34] KEUSEKOTTEN K, ELLIOTT P R, GLOCKNER L, et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin[J]. Cell, 2013, 153(6): 1312-1326. doi: 10.1016/j.cell.2013.05.014 [35] STELLA RITORTO M, EWAN R, PEREZ-OLIVA A B, et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry[J]. Nat Commun, 2014, 5: 4763. doi: 10.1038/ncomms5763 [36] TANIGUCHI K, KARIN M. NF-κB, inflammation, immunity and cancer: coming of age[J]. Nat Rev Immunol, 2018, 18(5): 309-324. doi: 10.1038/nri.2017.142 [37] ELLIOTT P R, NIELSEN S V, MARCO-CASANOVA P, et al. Molecular basis and regulation of OTULIN-LUBAC interaction[J]. Mol Cell, 2014, 54(3): 335-348. doi: 10.1016/j.molcel.2014.03.018 [38] SCHAEFFER V, AKUTSU M, OLMA M H, et al. Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling[J]. Mol Cell, 2014, 54(3): 349-361. [39] KATRINE B, Fiil,. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling[J]. Mol Cell, 2013, 50(6): 818-830. [40] TAKIUCHI T, NAKAGAWA T, TAMIYA H, et al. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN[J]. Genes Cells, 2014, 19(3): 254-272. [41] DAMGAARD R B, JOLIN H E, ALLISON M E D, et al. OTULIN protects the liver against cell death, inflammation, fibrosis, and cancer[J]. Cell Death Differ, 2020, 27(5): 1457-1474. doi: 10.1038/s41418-020-0532-1 [42] HOSTE E, LECOMTE K, ANNUSVER K, et al. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity[J]. Nat Commun, 2021, 12(1): 5913. doi: 10.1038/s41467-021-25944-2 [43] WANG W, LI M Q, PONNUSAMY S, et al. ABL1-dependent OTULIN phosphorylation promotes genotoxic Wnt/β-catenin activation to enhance drug resistance in breast cancers[J]. Nat Commun, 2020, 11: 3965. doi: 10.1038/s41467-020-17770-9 -