-
糖皮质激素(glucocorticoid, GC)是一种在临床上广泛应用于治疗类风湿性关节炎、胃肠道疾病及自身免疫疾病的药物[1]。然而,研究显示,有超过50%的患者在长期接受GC的治疗过程中会发生骨质疏松症[2]。目前,糖皮质激素诱导的骨质疏松(glucocorticoid-induced osteoporosis, GIOP)已成为病理性骨丢失的第三大常见病症,仅次于老年性骨质疏松症和绝经后骨质疏松症。与此同时,GIOP由于其高致残率和高发病率给社会和家庭生活造成了极大的负担,因此,如何预防和治疗GIOP成为医学上关注的热点。
啤酒花(Humulus lupulus L.)为桑科葎草属多年生草质蔓生藤本植物,其雌性带花果穗不仅是酿造啤酒的添加原料,也是全球广泛应用的药物品种,并在欧洲广泛用于缓解更年期潮热及绝经后骨质疏松症[3]。黄腐酚(xanthohumol, XN)为啤酒花中的代表性成分,具有抗氧化、抗肿瘤、抗菌等活性[4]。课题组前期研究发现,啤酒花提取物及黄腐酚可显著改善去卵巢小鼠的骨丢失,防治绝经后骨质疏松症。此外,两者还可显著调节成骨细胞与破骨细胞的活性,维持骨稳态[5-6]。然而,目前对于啤酒花及黄腐酚抗GIOP的作用机制尚不明确。故笔者拟以地塞米松(DEX)诱导的骨质疏松小鼠及其损伤的成骨细胞为模型,采用Micro-CT及体外活性检测等方法,对啤酒花及黄腐酚抗GIOP的作用进行探究。
-
啤酒花(PJH-01),产地新疆,购自河北安国中药材市场,经海军军医大学药学院生药学教研室辛海量副教授鉴定,密封存放于干燥阴凉处。称取啤酒花药材粉末70 g,加入料液比为1∶15的75%乙醇,回流提取3次,减压浓缩干燥成浸膏,HPLC测定得浸膏中黄腐酚含量为0.55%[5]。使用前配制成相应浓度的提取液。
其他试剂及购买厂家:黄腐酚(纯度≥98%,上海历鼎);地塞米松(大连美仑);阿仑膦酸钠(上海国药);I型胶原C端肽(CTX-I)及骨钙素(BGP)Elisa试剂盒(南京建成);碱性磷酸酶(ALP)及抗酒石酸酸性磷酸酶(TRAP)试剂盒(南京建成);胎牛血清(Gibco,美国);α-MEM培养基等细胞培养试剂(天津灏洋);骨形成蛋白2(BMP-2)及成骨特异性转录因子(Runx-2)抗体(Abcam,英国);Micro-CT(eXplore Locus SP,GE,美国)。
-
3月龄ICR小鼠,体重(20 ± 2)g,购自上海斯莱克实验动物有限公司[实验动物质量合格证号:2013001831722;实验动物使用许可证号:SYXK(沪)2017-0004]。小鼠饲养于海军军医大学药学院实验动物中心清洁级动物房,室温(24 ± 0.5)℃,每日12 h光照/12 h黑暗,自由饮食饮水,适应1周后开始动物实验。
-
取自新生24 h Wistar大鼠(上海斯莱克实验动物有限公司)。所有动物实验均符合实验动物伦理学要求。
-
将56只大鼠按体重以随机区组设计分为7组(n=8):空白对照组(CON),DEX模型组(MOD, 2.5 mg/kg),阿仑膦酸钠阳性对照组(ALN, 1 mg/kg),啤酒花提取物低剂量组(HLE-L, 1 g/kg),啤酒花提取物高剂量组(HLE-H, 3 g/kg),黄腐酚低剂量组(XN-L, 30 mg/kg),黄腐酚高剂量组(XN-H, 90 mg/kg)。除空白组外,所有组别小鼠腹腔注射DEX注射液,空白对照组小鼠注射同体积的生理盐水,每周3次;与此同时,予相应药物灌胃,空白对照组和模型组小鼠灌胃相同体积生理盐水。每周灌胃给药6次,连续给药12周。每周称量体重,按体重0.1 ml/10 g调整给药体积。末次给药后,小鼠禁食、不禁水过夜,摘除眼球取血,静置离心取血清,储存于−80 ℃冰箱中用于生化指标检测,剥离小鼠后肢右侧股骨用于Mirco-CT测定。
-
取组织固定液中的小鼠右侧股骨,剔除其表面附着的结缔组织,用高分辨率Micro-CT对股骨远端进行扫描。计算骨密度(BMD)、骨表面积/骨体积(BS/BV)、相对骨体积(BV/TV)、骨小梁数目(Tb.N.)及骨小梁分离度(Tb.Sp.)。
-
按照试剂盒说明书步骤,对小鼠血清中ALP、TRAP及CTX-I水平进行检测。
-
采用二次消化法从新生大鼠颅盖骨分离得到原代成骨细胞[7],用含10%胎牛血清的α-MEM培养液进行培养,取3~4代成骨细胞进行增殖、分化以及Western blot分析。
-
取3~4代成骨细胞计算其数目,配制成细胞浓度为1×104 个/ml细胞悬液接种于96孔板。24 h后分别更换为含药培养液(DEX: 10 μmol/L;HLE: 100、20 μg/ml;XN: 5、1 μmol/L),除空白组外均给予DEX损伤。给药48 h后采用MTT法检测成骨细胞的增殖情况。
取3~4代成骨细胞计算其数目,配制成细胞浓度为5×104 个/ml细胞悬液接种于24孔板。24 h后分别更换为含药培养液(给药浓度同上)。培养过程中每3 d更换1次含药培养液。第8天裂解细胞,收集细胞裂解液,于4 ℃、13 800×g 离心5 min。用对硝基苯磷酸二钠法测定细胞 ALP活性[8]。
-
将3~4代的成骨细胞裂解,提取细胞总蛋白,根据BCA试剂盒进行蛋白定量。采用ELISA试剂盒对成骨细胞BGP含量进行检测,采用Westernblot技术[9]对BMP-2及Runx-2水平进行检测。
-
实验结果以(
$\bar x \pm s$ )表示。采用SPSS 22.0软件进行数据分析,选用单因素方差分析(One-Way ANOVA)进行组间变量的比较分析。检验水准(α)为 0.05。 -
模型组小鼠股骨的骨组织形态与空白组相比,出现明显空洞,见图1;药物治疗后,HLE及XN显著改善DEX小鼠的骨组织形态及骨微结构,防止骨质空洞。
模型组小鼠BMD、BS/TV、BV/TV及Tb.N.水平较空白组显著降低,Tb.Sp.水平显著升高(图2)。药物治疗后,HLE及XN显著逆转了DEX小鼠BMD及骨小梁参数的异常,防治骨质疏松。
-
小鼠注射DEX后,其血清ALP水平显著降低,TRAP及CTX-I水平显著升高。药物治疗后,HLE及XN可显著提高小鼠血清ALP水平,并降低TRAP及CTX-I的高表达,调节骨代谢,且药物高剂量组治疗效果更佳(图3)。
-
如图4A-B所示,DEX损伤成骨细胞后,其增殖能力及ALP活性显著降低。药物治疗后,HLE及XN可显著促进DEX损伤成骨细胞的增殖,提高ALP活性,促进成骨细胞的分化。
在骨形成相关蛋白的表达方面,HLE及XN可显著促进DEX损伤成骨细胞中BGP及BMP-2的表达,XN还可显著促进成骨细胞Runx-2的表达(图4C-E),促进成骨细胞骨形成。
-
DEX作为临床上常用的一种合成糖皮质激素,在抗炎抗免疫反应方面均具有良好的疗效。与其他糖皮质激素类似,长期使用DEX会引起严重的不良反应,尤其是对骨骼的影响,可大大增加骨质疏松及生理性骨折的发病风险[10]。本研究中,小鼠注射DEX后,其股骨的骨微结构显著破坏,骨质明显空洞,骨密度及骨小梁参数显著降低,且血清骨生化指标异常,提示小鼠处于典型的骨质疏松状态。药物治疗后,啤酒花提取物及黄腐酚均可显著改善GIOP小鼠的骨微结构破坏,增强骨密度,改善骨小梁参数,防治骨质疏松。ALP和TRAP分别为评价骨形成与骨吸收的常用指标,而CTX-I为成熟胶原降解的标志物,其活性水平与骨密度呈显著的负相关[11]。本研究中,啤酒花提取物及黄腐酚可显著提高ALP含量,抑制TRAP及CTX-I的高表达,表明两者可通过调节骨代谢的平衡防治骨丢失。
在GIOP细胞层面的发病机制中,GC对成骨细胞的影响占主导地位[12]。在成骨细胞活性检测中,MTT值及ALP活性分别代表成骨细胞的增殖及分化水平。其中,ALP合成于骨基质成熟阶段,利于骨基质矿化[13]。本研究中,DEX损伤成骨细胞后,其MTT值及ALP活性均显著下降,表示糖皮质激素抑制了成骨细胞的增殖及分化。药物治疗后,啤酒花提取物及黄腐酚可显著提高损伤成骨细胞的MTT值及ALP活性,有效促进了细胞的增殖与分化,提高成骨细胞活性。BGP、BMP-2及Runx-2均为典型的骨形成相关蛋白,其中BGP是由非增殖期的成骨细胞特异合成并分泌的非胶原蛋白[14],BMP-2是参与成骨细胞分化阶段的主要蛋白[15],而Runx-2是早期成骨细胞分化的调节因子,三者在骨骼形态发生阶段均起着关键作用[16]。本研究发现,啤酒花提取物及黄腐酚可显著促进DEX损伤成骨细胞中BGP、BMP-2及Runx-2的表达,进一步证实了其可通过促进成骨细胞的骨形成对抗GIOP。以上研究为深入探讨啤酒花及其活性成分黄腐酚抗骨质疏松的作用机制以及相关药物的研发奠定了基础。
Effects of Humulus lupulus L. and its active ingredient xanthohumol on preventing glucocorticoid-induced osteoporosis
-
摘要:
目的 研究对啤酒花及其活性成分黄腐酚抗糖皮质激素性骨质疏松(GIOP)作用。 方法 腹腔注射地塞米松(DEX)造模,并结合Micro-CT及Elisa试剂盒检测等方法,对小鼠股骨的骨微结构、骨密度及血清骨生化指标进行评价。同时,采用DEX损伤成骨细胞,对其增殖、分化水平及骨形成相关蛋白的表达进行评价。 结果 啤酒花提取物及黄腐酚可显著改善GIOP小鼠的骨微结构破坏,增强骨密度,改善骨小梁参数。在成骨细胞水平上,啤酒花及黄腐酚既可促进DEX损伤成骨细胞的增殖、分化,又可提高骨钙素(BGP)、骨形成蛋白2(BMP-2)以及成骨特异性转录因子(Runx-2)的表达水平,促进骨形成。 结论 该研究首次明确了啤酒花及黄腐酚具有抗GIOP作用,为抗骨质疏松药物的开发提供了新资源。 -
关键词:
- 啤酒花 /
- 黄腐酚 /
- 糖皮质激素性骨质疏松 /
- 地塞米松 /
- 成骨细胞
Abstract:Objective To explore the effects of Humulus lupulus L. extract (HLE) and xanthohumol (XN) on preventing glucocorticoid-induced osteoporosis (GIOP). Methods The GIOP model was established by intraperitoneal injection of dexamethasone (DEX). Bone microstructure, bone mineral density and serum biochemical indexes were evaluated by Micro-CT and ELISA kits. The levels of cells proliferation and ALP activity, and the expression of bone formation related proteins were assayed with primary osteoblasts injured by DEX. Results HLE and XN significantly alleviated the bone microstructure damage, enhanced the bone mineral density, and improved the trabecular parameters in GIOP mice. In vitro experiments showed that HLE and XN can prevent bone loss not only by improving cell proliferation and ALP activity, but also through increasing the expression of bone γ-glutamic acid-containing proteins (BGP), bone morphogenetic protein 2 (BMP-2) and runt-related transcription factor 2 (Runx-2). Conclusion This study confirmed that HLE and XN had anti-GIOP effects for the first time. It provides a new resource for the development of anti-osteoporosis medications. -
Key words:
- Humulus lupulus L. /
- xanthohumol /
- glucocorticoid-induced osteoporosis /
- dexamethasone /
- osteoblast
-
随着社会经济发展和饮食结构改变,功能性便秘(FC)发生率逐年攀升,并具有顽固性、复发性的特点,无根治特效药[1],目前临床上对于便秘的干预措施主要包括药物、按摩、膳食调理等,但都存在依从性低、副作用明显、疗效不可靠等弊端[2],新型抗便秘产品的研发具有迫切需求。黑蒜是一种发酵大蒜,在高温高湿条件下发酵一定时间制得[3]。黑蒜主要化学成分包括多糖、类黑精、蛋白质、多酚、含硫化合物等[4],研究表明其具有显著的抗氧化、抗炎、抗肿瘤、抗肥胖[5-9]等作用,近年,黑蒜在通便相关的药食同源产品研发领域应用较多,但关于黑蒜抗便秘作用的研究较少,抗便秘功效成分更不明确,相关产品进一步研发与推广缺乏足够的科学依据。且黑蒜用于抗便秘每日需服用20 g以上[10],易导致依从性差,难以长期坚持等问题。有研究发现大蒜多糖具有一定抗便秘作用[11],而大蒜在加工成黑蒜的过程中糖类物质含量可增加数倍[12-13],可合理推测黑蒜多糖可能具有更显著的抗便秘作用,是黑蒜抗便秘作用的物质基础之一,但目前还没有相关的研究。因此,本文建立复方地芬诺酯(CO.D)诱导的小鼠FC模型,探究黑蒜多糖的抗便秘作用,为新型抗便秘产品的研发提供科学依据。
1. 材料与仪器
1.1 实验材料
黑蒜(批号:20231030,上海明可名生物科技有限公司);乳果糖口服液(规格:667 mg/ml,批号:22110047,北京韩美药品有限公司);复方地芬诺酯片(2.5 mg/片,批号:210804,仁和堂医药连锁股份有限公司)。
1.2 实验试剂
D-无水葡萄糖(批号:S22J12H137237,源叶生物);无水乙醇(批号:P2708277,泰坦科技);生理盐水(批号:230327042,雷根生物);4%多聚甲醛(批号:HP184401,博光生物);浓硫酸(批号:
20230420)、 丙酮(批号:20230807 )、石油醚(批号:20220507 )均购自国药集团;三氯乙酸(批号:C14990699)、活性炭粉(批号:C14853603)、阿拉伯树胶粉(批号:C15109301)、苯酚(批号:C15031044)均购自麦克林生化;所有水均为超纯水机所制一级水。1.3 实验仪器
鼓风干燥箱DAG-924(满贤经贸);循环水式多用真空泵SHB-III(明杰仪器);万分之一天平JA1003(恒平仪器);电热恒温水浴锅HWS-12(一恒仪器);高速离心机M18G(创宜生物);旋转蒸发器RE-52AA(亚荣仪器);超纯水机Smart-S(和泰仪器)。
1.4 实验动物
SPF级C57雄性小鼠,体重18 ~22 g,许可证号: SCXK(浙)2019-00004,杭州子源实验动物科技有限公司。
2. 方法
2.1 黑蒜多糖的提取
取10 g黑蒜,按下列步骤处理: ①脱脂:剥去外壳,研磨成泥,85%乙醇水溶液(V/V)浸渍,常温静置8 h,抽滤,滤渣用85%乙醇水溶液洗涤2次,置于烘箱60℃挥干至无醇味,充分研磨获得脱脂黑蒜粉。②水提:所得脱脂黑蒜粉用80℃热水浸提1 h,料液比为1∶50,抽滤,滤液减压浓缩至原体积1/2。③脱蛋白:在浓缩液中加入等体积10%三氯乙酸水溶液,充分混匀,4℃静置10 h,离心取上清液。④醇沉:上清液加入无水乙醇,调节乙醇水溶液浓度为80%,充分混匀,4℃静置12 h,离心取沉淀。⑤干燥:挥干有机溶剂,烘箱60℃干燥,去除残留溶剂,得黑蒜多糖干燥粉末。
2.2 多糖含量的测定
采用苯酚-硫酸法[14]测定多糖含量。
2.2.1 葡萄糖标准曲线绘制
精密称取D-无水葡萄糖适量,配置为0.05、0.1、0.2、0.3、0.4、0.5 mg/ml的葡萄糖标准溶液,分别吸取250 μl于离心管中,依次加入6%苯酚溶液150 μl、浓硫酸625 μl,迅速振摇,静置反应30 min,吸取200 μl于96孔板,设置3个复孔,测量490 nm处吸光度。绘制葡萄糖标准曲线,求得回归方程。
2.2.2 样品测定
精密称取适量黑蒜多糖干燥粉末,加入蒸馏水配制成一定浓度的多糖溶液,根据酶标仪检测范围进行稀释。吸取250 μl多糖溶液于96孔板中,按照2.2.1项下方法进行测定,计算样品中多糖的含量,进一步计算黑蒜多糖的得率和纯度。
计算公式:黑蒜多糖得率(%)=
$ \dfrac{W2}{W1}\times 100\text{%} $ 黑蒜多糖纯度(%)=
$ \dfrac{C\times V\times D}{W2}\times 100\text{%} $ 式中:
$ W $ 1为黑蒜质量(g);$ W $ 2为黑蒜多糖粉末质量;$ C $ 为样品中多糖的质量浓度(mg/ml);$ V $ 为提取溶剂体积(ml);$ D $ 为样品稀释倍数。2.3 动物实验给药剂量及配置
乳果糖口服液:乳果糖含量为667 mg/ml,正常成人用药量15 ml/d[15],换算可得小鼠的用药剂量为4 g/(kg·d)。量取乳果糖口服液6 ml,加蒸馏水14 ml,配置成200 mg/ml的乳果糖口服液。
CO.D混悬液:参考贾红慧等[16]研究结果,选用5 mg/kg剂量CO.D造模,模型稳定、灵敏。取CO.D 4片,研磨成细粉,加蒸馏水20 ml,配置成0.5 mg/ml的 CO.D混悬液,使用前需充分混匀。
黑蒜多糖低、中、高剂量溶液:参考胡淼等[17]研究结果,黑蒜多糖低、中、高剂量组剂量分别选用0.25、0.5、1 g/kg。称取0.5、1、2 g黑蒜多糖干燥粉末,分别加蒸馏水20 ml,配置成25、50、100 mg/ml的黑蒜多糖溶液。
墨汁[18]:阿拉伯树胶于蒸馏水中加热至完全溶解,料液比为1∶8。加入5 g活性炭粉末,混合均匀,重复煮沸3次,冷却后定容至100 ml,使用前需充分混匀。
含药墨汁:取适量受试药,加入墨汁,配制成与上述受试药剂量相同的含药墨汁。
2.4 实验动物分组及给药方法
2.4.1 小鼠小肠墨汁推进实验
小鼠60只,适应性饲养1周,正常饮食饮水。给药前按照体重随机分为空白组、模型组、阳性组、黑蒜多糖低、中、高剂量组,每组10只。
按照0.1 ml/10 g灌胃给药。①给药:空白组和模型组小鼠给予蒸馏水,阳性组和黑蒜多糖组小鼠分别给予乳果糖口服液和黑蒜多糖溶液。1次/d,连续给药1周,观察并记录小鼠体重变化及一般状态。②造模:末次给药后禁食12 h,自由饮水,空白组小鼠灌胃蒸馏水,其余各组小鼠灌胃CO.D溶液。③给药:30 min后空白组、模型组灌胃墨汁,其它组小鼠灌胃相应含药墨汁。25 min后处死,剖取小鼠小肠(幽门至盲肠上端),平铺成直线,测量小肠总长度和墨汁推进距离,避免拉伸小肠,影响实验结果。
计算公式:小肠墨汁推进率(%)=墨汁推进距离(cm)/小肠总长度(cm)×100%
2.4.2 小鼠排便实验
分组、给药剂量及方法同“2.4.1”项下实验方法,给药后,记录每只小鼠首次排出黑便的时间、6 h内排出黑便的数量及重量,并进行粪便含水量测定,同时观察粪便性状。含水量测定方法为:将小鼠新鲜粪便置于提前干燥、称重的容器中,称重,于烘箱中干燥至重量不再变化,计算粪便含水量。
计算公式:粪便含水量(%)=
$ \dfrac{M1-M2}{M1}\times 100\text{%} $ 式中:M1为干燥前粪便质量(g),M2为干燥后粪便质量(g)。
2.5 统计学方法
采用SPSS 24统计软件进行数据分析,以均数±标准差(
$ \bar{X} $ ±S)表示计量资料。两两比较采用LSD-t检验,多组比较采用单因素方差分析,P<0.05表示差异有统计学意义,P<0.01表示差异显著,P<0.001表示差异极显著。3. 结果与分析
3.1 黑蒜多糖的得率和纯度
精密称量所得黑蒜多糖干燥粉末质量为0.832 g,代入公式计算可得黑蒜多糖的得率为8.32%。以葡萄糖浓度(mg/ml)为横坐标,吸光度为纵坐标,可得回归方程为Y=
2.2829 X+0.0764 ,相关系数r=0.9982 ,线性关系较好,代入回归方程计算可得黑蒜多糖的纯度为58.23%。3.2 黑蒜多糖对小鼠体重的影响
从表1可以看出,与空白组相比,各组小鼠体重均正常增长,无显著性差异,表明黑蒜多糖不会对正常小鼠体重产生影响。实验过程中,各组小鼠饮食正常,状态良好,无腹泻等不良反应,为后续实验提供前提保证。
表 1 黑蒜多糖对小鼠体重的影响组别 小鼠小肠墨汁推进实验 排便实验 初始体重
(m/g)最终体重
(m/g)初始体重
(m/g)最终体重
(m/g)空白组 21.28±1.15 22.23±1.19 21.80±1.02 22.90±0.61 模型组 21.20±1.36 22.24±1.22 21.58±1.00 22.64±0.84 阳性组 21.17±1.18 22.31±1.28 21.42±1.01 22.81±0.91 黑蒜多糖
低剂量组21.44±1.32 22.38±1.54 21.98±1.20 23.02±1.20 黑蒜多糖
中剂量组21.06±1.13 22.16±0.77 21.59±1.10 22.38±1.08 黑蒜多糖
高剂量组21.42±1.15 22.54±1.26 21.79±1.29 22.85±0.98 3.3 黑蒜多糖对小鼠小肠墨汁推进的影响
从表2可以看出,与空白组相比,模型组墨汁推进率极显著减小,表明本实验小鼠FC模型造模成功。与模型组相比,黑蒜多糖组小鼠墨汁推进率均显著增大,分别增大了24.75%、56.95%、95.25%,表明黑蒜多糖对FC模型小鼠小肠运动具有促进作用,且成剂量依赖性。
表 2 黑蒜多糖对小鼠小肠墨汁推进的影响组别 碳末推进距离
(l/cm)小肠总长度
(l/cm)墨汁推进率
(%)空白组 28.86±3.25 34.87±1.60 82.90±9.97 模型组 9.60±0.73*** 34.09±2.31 29.50±1.35*** 阳性组 26.94±3.55### 34.15±1.60 79.00±9.92### 黑蒜多糖
低剂量组12.58±1.15### 34.35±1.67 36.80±4.42# 黑蒜多糖
中剂量组16.01±2.06### 34.48±3.18 46.30±4.19### 黑蒜多糖
高剂量组19.95±1.60### 34.66±1.96 57.60±4.06### 注:*P<0.05,**P<0.01,***P<0.001,与空白组比较;#P<0.05,##P<0.01, ###P<0.001,与模型组比较。 3.4 黑蒜多糖对小鼠排便的影响
从表3可看出,与空白组相比,模型组小鼠首次排出黑便时间极显著延长,6 h排便粒数显著减少,6 h排便重量极显著减少,粪便含水量极显著降低,粪便呈球形或短椭圆形,部分串联,质地干硬,颜色普遍偏黑,表明本实验小鼠FC模型造模成功。与模型组相比,黑蒜多糖组小鼠首次排出黑便时间均极显著缩短,分别缩短了42.55%、44.99%、45.81%;6 h排便重量显著增加,分别增加了68.42%、78.95%、78.95%;粪便含水量极显著增大,分别增大了29.96%、32.78%和35.82%,粪便呈长椭圆形,质地较软,颜色为深棕色,无腹泻现象;除黑蒜多糖低剂量组外,中、高剂量组小鼠6 h排便粒数有统计学差异,分别增加了31.45%和32.52%。表明黑蒜多糖可能通过增大FC模型小鼠粪便含水量发挥促排便作用,各剂量组间效果差异不明显。
表 3 黑蒜多糖对小鼠排便及粪便含水量的影响组别 首黑便时间
(t/min)6 h排便数
(粒)6 h排便湿重
(m/g)6 h排便干重
(m/g)含水量
(%)空白组 111.50±8.98 16.50±3.51 0.46±0.10 0.22±0.04 52.16±2.53 模型组 241.50±19.54*** 11.13±2.75** 0.19±0.02*** 0.13±0.01*** 32.58±2.35*** 阳性组 121.50±110.81### 15.13±4.09# 0.41±0.12### 0.20±0.06## 50.06±1.83### 黑蒜多糖低剂量组 138.75±10.79### 13.75±2.71 0.32±0.08## 0.19±0.42# 42.34±2.27### 黑蒜多糖中剂量组 132.88±8.34### 14.63±3.66# 0.34±0.10## 0.19±0.05## 43.26±2.68### 黑蒜多糖高剂量组 130.88±9.09### 14.75±3.73# 0.34±0.12## 0.19±0.05## 44.25±6.72### 注:*P<0.05,**P<0.01,***P<0.001,与空白组比较;#P<0.05,##P<0.01,###P<0.001,与模型组比较。 4. 讨论
CO.D是一种止泻药,可通过抑制肠道平滑肌上的肠黏膜感受器抑制肠道运动,减慢排便进程,减少排便次数,同时肠内容物与肠粘膜接触时间延长,可促进肠内容物水分的重吸收,降低粪便含水量,是常用的FC小鼠模型造模药[19]。因此,本研究建立CO.D诱导的小鼠FC模型,探究黑蒜多糖的抗便秘作用。实验结果表明,黑蒜多糖可显著促进CO.D诱导的FC模型小鼠小肠蠕动,缩短排便时间,增加粪便含水量,从而发挥抗便秘作用。有研究显示成人每日服用约2 g黑蒜多糖便可达到较好疗效,用量仅为黑蒜的1/10[10]。给药期间小鼠状态良好、体重正常,未产生腹泻等副作用。因此,黑蒜多糖用于FC治疗可有效规避依从性差、副作用明显、疗效不可靠等弊端,前景广阔。此外,有相关研究发现,采用CO.D 10 mg/kg和15 mg/kg灌胃造模(大鼠)都存在停药后恢复的情况[20],提示我们使用CO.D进行慢性便秘造模,在造模成功后的治疗给药阶段也需要持续用药,以维持药效。目前该便秘模型的建立没有统一标准,后续可对造模时间、造模剂量进行优化,为更深入的黑蒜多糖抗便秘机制研究提供基础。
FC是典型的胃肠动力障碍性疾病,现代研究普遍认为,其发病机制主要与卡哈尔间质细胞(ICCs)数量、功能以及分布异常、肠神经递质水平异常、水通道蛋白表达异常、氧化应激指标失衡、肠道菌群紊乱等有关[21-22]。大蒜多糖主要为果聚糖,占干重的65%,在发酵生成黑蒜的过程中,果聚糖因高温作用大量降解为低聚果糖(FOS)、果糖等小分子糖[23]。FOS在国际营养学界被称作“具有优良难消化性的水溶性膳食纤维”,还是典型的“超强双歧因子”。因其无法被肠道吸收,可被双歧杆菌等益生菌分解利用,短时间内促进双歧杆菌增殖10~100倍,分解生成的有机酸,可有效调节肠道pH,刺激肠道蠕动,促进排便[24]。双歧杆菌还可抑制有害肠道病菌生长、抵抗病原菌感染、产生维生素并促进矿物质吸收以维持肠道健康,有研究表明人体双歧杆菌含量随年龄增长逐渐减少,是老年人易发生便秘的主要原因[25]。因此,需要进一步明确黑蒜多糖的单糖组成、相对分子质量以及结构,为后续抗便秘机制研究提供依据。此外,便秘成因复杂,可结合具体的证型如脾虚、血虚、阳虚、津亏等便秘模型进一步探究黑蒜多糖抗便秘作用的有效性。
-
[1] CAIN D W, CIDLOWSKI J A. Immune regulation by glucocorticoids[J]. Nat Rev Immunol,2017,17(4):233-247. doi: 10.1038/nri.2017.1 [2] IOANNIDIS G, PALLAN S, PAPAIOANNOU A, et al. Glucocorticoids predict 10-year fragility fracture risk in a population-based ambulatory cohort of men and women: Canadian Multicentre Osteoporosis Study (CaMos)[J]. Arch Osteoporos,2014,9:169. doi: 10.1007/s11657-013-0169-5 [3] AGHAMIRI V, MIRGHAFOURVAND M, MOHAMMAD-ALIZADEH-CHARANDABI S, et al. The effect of Hops (Humulus lupulus L.) on early menopausal symptoms and hot flashes: a randomized placebo-controlled trial[J]. Complement Ther Clin Pract,2016,23:130-135. doi: 10.1016/j.ctcp.2015.05.001 [4] LIU M, HANSEN P E, WANG G Z, et al. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus)[J]. Molecules,2015,20(1):754-779. doi: 10.3390/molecules20010754 [5] XIA T S, LIN L Y, ZHANG Q Y, et al. Humulus lupulus L. extract prevents ovariectomy-induced osteoporosis in mice and regulates activities of osteoblasts and osteoclasts[J]. Chin J Integr Med,2021,27(1):31-38. doi: 10.1007/s11655-019-2700-z [6] 林柳悦, 夏天爽, 蒋益萍, 等. 啤酒花活性成分黄腐酚抗骨质疏松作用研究[J]. 药学实践杂志, 2018, 36(3):219-223. doi: 10.3969/j.issn.1006-0111.2018.03.006 [7] GU G, HENTUNEN T A, NARS M, et al. Estrogen protects primary osteocytes against glucocorticoid-induced apoptosis[J]. Apoptosis,2005,10(3):583-595. doi: 10.1007/s10495-005-1893-0 [8] 张乃丹. 基于分子对接策略的熟地黄防治糖尿病性骨质疏松症有效成分及其作用机制研究[D]. 上海: 第二军医大学, 2016. [9] 夏天爽, 林柳悦, 蒋益萍, 等. 苦味酸类成分蛇麻酮和葎草酮对大鼠成骨细胞和破骨细胞的干预作用[J]. 第二军医大学学报, 2019, 40(1):25-30. [10] CAMOZZI V, BETTERLE C, FRIGO A C, et al. Vertebral fractures assessed with dual-energy X-ray absorptiometry in patients with Addison's disease on glucocorticoid and mineralocorticoid replacement therapy[J]. Endocrine,2018,59(2):319-329. doi: 10.1007/s12020-017-1380-8 [11] 张萌萌. 中国老年学学会骨质疏松委员会骨代谢生化指标临床应用专家共识[J]. 中国骨质疏松杂志, 2014, 20(11):1263-1272. [12] BERENDSEN A D, OLSEN B R. Osteoblast-adipocyte lineage plasticity in tissue development, maintenance and pathology[J]. Cell Mol Life Sci,2014,71(3):493-497. doi: 10.1007/s00018-013-1440-z [13] XIA T S, DONG X, LIN L Y, et al. Metabolomics profiling provides valuable insights into the underlying mechanisms of Morinda officinalis on protecting glucocorticoid-induced osteoporosis[J]. J Pharm Biomed Anal,2019,166:336-346. doi: 10.1016/j.jpba.2019.01.019 [14] 阙文君, 冯正平. 骨转换生化标志物的研究进展[J]. 中国骨质疏松杂志, 2014, 20(5):575-579. doi: 10.3969/j.issn.1006-7108.2014.05.025 [15] NGUYEN H T, ONO M, OIDA Y, et al. Bone marrow cells inhibit BMP-2-induced osteoblast activity in the marrow environment[J]. J Bone Miner Res,2019,34(2):327-332. doi: 10.1002/jbmr.3598 [16] XIA T S, DONG X, JIANG Y P, et al. Metabolomics profiling reveals rehmanniae Radix preparata extract protects against glucocorticoid-induced osteoporosis mainly via intervening steroid hormone biosynthesis[J]. Molecules,2019,24(2):E253. doi: 10.3390/molecules24020253 -