-
脓毒症(sepsis)是由于宿主对细菌、真菌、病毒等感染的反应失调而引起的多器官功能障碍,具有很高的致死率,是感染致死的首要原因[1]。近年来,虽然人类在重症监护领域已经取得了长足的进步,但是严重脓毒症的总死亡率仍高达26.7%[2]。针对脓毒症的治疗,目前绝大多数仍是采用支持性疗法,临床可用的干预措施只有非常有限的几种,如液体复苏、应用抗生素和类固醇药物等。然而,这些措施往往收效甚微。因此,研发抗脓毒症新药, 改善患者预后,降低脓毒症死亡率,是目前亟待解决的问题。本文对近年来脓毒症治疗相关的研究进行综述,以期为今后抗脓毒症的研究提供思路。
HTML
[1] | SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock(sepsis-3)[J]. JAMA, 2016, 315(8):801-810. |
[2] | FLEISCHMANN-STRUZEK C, MELLHAMMAR L, ROSE N, et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis[J]. Intensive Care Med, 2020, 46(8):1552-1562. |
[3] | EVANS L, RHODES A, ALHAZZANI W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11):1181-1247. |
[4] | GOTTS J E, MATTHAY M A. Sepsis: pathophysiology and clinical management[J]. BMJ, 2016, 353(8059):i1585. |
[5] | OTTO G P, SOSSDORF M, CLAUS R A, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate[J]. Crit Care, 2011, 15(4):R183. |
[6] | BOOMER J S, TO K, CHANG K C, et al. Immunosuppression in patients who die of sepsis and multiple organ failure[J]. JAMA, 2011, 306(23):2594-2605. |
[7] | UNSINGER J, MCGLYNN M, KASTEN K R, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis[J]. J Immunol, 2010, 184(7):3768-3779. |
[8] | KASTEN K R, PRAKASH P S, UNSINGER J, et al. Interleukin-7(IL-7) treatment accelerates neutrophil recruitment through gamma delta T-cell IL-17 production in a murine model of sepsis[J]. Infect Immun, 2010, 78(11):4714-4722. |
[9] | VENET F, FORAY A P, VILLARS-MÉCHIN A, et al. IL-7 restores lymphocyte functions in septic patients[J]. J Immunol, 2012, 189(10):5073-5081. |
[10] | FRANCOIS B, JEANNET R, DAIX T, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial[J]. JCI Insight, 2018, 3(5):e98960. |
[11] | DAIX T, MATHONNET A, BRAKENRIDGE S, et al. Intravenously administered interleukin-7 to reverse lymphopenia in patients with septic shock: a double-blind, randomized, placebo-controlled trial[J]. Ann Intensive Care, 2023, 13(1):17. |
[12] | ZHANG Y, LI J B, LOU J S, et al. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients[J]. Crit Care, 2011, 15(1):R70. |
[13] | PATERA A C, DREWRY A M, CHANG K, et al. Frontline Science: Defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1[J]. J Leukoc Biol, 2016, 100(6):1239-1254. |
[14] | HOTCHKISS R S, COLSTON E, YENDE S, et al. Immune checkpoint inhibition in sepsis: a phase 1b randomized, placebo-controlled, single ascending dose study of antiprogrammed cell death-ligand 1 antibody(BMS-936559)[J]. Crit Care Med, 2019, 47(5):632-642. |
[15] | HOTCHKISS R S, COLSTON E, YENDE S, et al. Immune checkpoint inhibition in sepsis: a phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab[J]. Intensive Care Med, 2019, 45(10):1360-1371. |
[16] | INGERSOLL M A, PLATT A M, POTTEAUX S, et al. Monocyte trafficking in acute and chronic inflammation[J]. Trends Immunol, 2011, 32(10):470-477. |
[17] | KIM S, CHO W, KIM I, et al. Oxidized LDL induces vimentin secretion by macrophages and contributes to atherosclerotic inflammation[J]. J Mol Med, 2020, 98(7):973-983. |
[18] | DUAN Y L, LEAROYD J, MELITON A Y, et al. Inhibition of Pyk2 blocks airway inflammation and hyperresponsiveness in a mouse model of asthma[J]. Am J Respir Cell Mol Biol, 2010, 42(4):491-497. |
[19] | ZHU X D, BAO Y H, GUO Y C, et al. Proline-rich protein tyrosine kinase 2 in inflammation and cancer[J]. Cancers, 2018, 10(5):139. |
[20] | ALVES G F, AIMARETTI E, EINAUDI G, et al. Pharmacological inhibition of FAK-Pyk2 pathway protects against organ damage and prolongs the survival of septic mice[J]. Front Immunol, 2022, 13:837180. |
[21] | DING R Y, ZHAO D M, LI X X, et al. Rho-kinase inhibitor treatment prevents pulmonary inflammation and coagulation in lipopolysaccharide-induced lung injury[J]. Thromb Res, 2017, 150:59-64. |
[22] | SEYMOUR C W, KENNEDY J N, WANG S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis[J]. JAMA, 2019, 321(20):2003-2017. |
[23] | LEVI M, VAN DER POLL T. Coagulation and sepsis[J]. Thromb Res, 2017, 149:38-44. |
[24] | LYONS P G, MICEK S T, HAMPTON N, et al. Sepsis-associated coagulopathy severity predicts hospital mortality[J]. Crit Care Med, 2018, 46(5):736-742. |
[25] | LEVI M, VINCENT J L, TANAKA K, et al. Effect of a recombinant human soluble thrombomodulin on baseline coagulation biomarker levels and mortality outcome in patients with sepsis-associated coagulopathy[J]. Crit Care Med, 2020, 48(8):1140-1147. |
[26] | VINCENT J L, FRANCOIS B, ZABOLOTSKIKH I, et al. Effect of a recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy: the SCARLET randomized clinical trial[J]. JAMA, 2019, 321(20):1993-2002. |
[27] | VALERIANI E, SQUIZZATO A, GALLO A, et al. Efficacy and safety of recombinant human soluble thrombomodulin in patients with sepsis-associated coagulopathy: a systematic review and meta-analysis[J]. J Thromb Haemost, 2020, 18(7):1618-1625. |
[28] | DENIAU B, TAKAGI K, ASAKAGE A, et al. Adrecizumab: an investigational agent for the biomarker-guided treatment of sepsis[J]. Expert Opin Investig Drugs, 2021, 30(2):95-102. |
[29] | LATERRE P F, PICKKERS P, MARX G, et al. Safety and tolerability of non-neutralizing adrenomedullin antibody adrecizumab (HAM8101) in septic shock patients: the AdrenOSS-2 phase 2a biomarker-guided trial[J]. Intensive Care Med, 2021, 47(11):1284-1294. |