留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

动脉粥样硬化高脂饲料对小鼠糖脂水平的作用研究

王品 齐齐 郑斯莉 徐浩展 缪朝玉

耿晨晨, 汪甜甜, 李翔, 王小彦, 姜云云. 天然环肽auyuittuqamide A的全合成研究[J]. 药学实践与服务, 2022, 40(1): 53-56, 61. doi: 10.12206/j.issn.1006-0111.202105087
引用本文: 王品, 齐齐, 郑斯莉, 徐浩展, 缪朝玉. 动脉粥样硬化高脂饲料对小鼠糖脂水平的作用研究[J]. 药学实践与服务, 2021, 39(2): 121-125. doi: 10.12206/j.issn.1006-0111.202012002
GENG Chenchen, WANG Tiantian, LI Xiang, Wang Xiaoyan, JIANG Yunyun. The total synthesis of natural cyclopeptide auyuittuqamide A[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(1): 53-56, 61. doi: 10.12206/j.issn.1006-0111.202105087
Citation: WANG Pin, QI Qi, ZHENG Sili, XU Haozhan, MIAO Chaoyu. Effect of atherosclerotic high-fat diet on the level of glucose and lipid in mice[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(2): 121-125. doi: 10.12206/j.issn.1006-0111.202012002

动脉粥样硬化高脂饲料对小鼠糖脂水平的作用研究

doi: 10.12206/j.issn.1006-0111.202012002
基金项目: 国家自然科学基金资助项目(81730098)
详细信息
    作者简介:

    王 品,硕士研究生,研究方向:动脉粥样硬化,Email:wpin2018@163.com

    通讯作者: 缪朝玉,教授,博士生导师,研究方向:心脑血管药理,Email:cymiao@smmu.edu.cn
  • 中图分类号: R965

Effect of atherosclerotic high-fat diet on the level of glucose and lipid in mice

  • 摘要:   目的  研究动脉粥样硬化高脂饲料对小鼠体重、血糖血脂水平及动脉粥样硬化斑块形成的作用,并且明确禁食时间对血脂检测结果的影响。  方法  对10周龄雄性ApoE基因敲除(ApoE-/-)小鼠分别给予高脂饲料及普通饲料,4个月后观察动脉粥样硬化斑块情况;对10周龄雄性C57BL/6J小鼠分别给予普通饲料4周、普通饲料2周+高脂饲料2周、高脂饲料4周,考察动物的体重、肝脏、血糖、血脂水平,并分析正常饮食条件下取材前禁食12、6 h及不禁食条件下对血脂检测结果的影响。  结果  给予高脂饲料的ApoE-/-小鼠动脉斑块面积显著增加(P<0.01);给予高脂饲料的C57BL/6J小鼠的体重增加(P<0.01),肝脏脂肪样变;血糖、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-c)、高密度脂蛋白胆固醇(HDL-c)水平显著升高(P<0.01),而三酰甘油(TG)水平明显下降(P<0.01)。相比于禁食12 h,禁食6 h及不禁食条件下检测到的三酰甘油水平明显升高(P<0.01)。  结论  动脉粥样硬化高脂饲料可加速ApoE-/-小鼠形成动脉粥样硬化斑块,显著升高血糖、TC及LDL-c水平,但明显降低TG值。禁食时间可影响血清TG的检测结果。
  • 近年来,随着肿瘤、器官移植和获得性免疫缺陷综合征(AIDS)等导致的免疫功能低下人群的增加,侵袭性真菌感染(IFIs)的发病率和病死率逐年上升[1-2]。念珠菌、隐球菌和曲霉菌是IFIs最主要的致病菌,并且造成的病死率超过90%[3]。在念珠菌属中,白念珠菌(Candida. albicans)是院内血液感染最常见的致病菌原体,其在重症监护病房(ICU)患者中致病率超过17%,病死率高达40%[4-5]。临床上治疗IFIs的抗真菌药物主要包括:多烯类(两性霉素B)、核酸类(5-氟胞嘧啶)、唑类(氟康唑)和棘白菌素类(卡泊芬净)药物(图1[6-7]。然而,由于临床上出现抗真菌药物严重的耐药性和毒副作用,IFIs的治疗效果相当有限。因此,迫切需要研发全新机制的抗真菌药物。

    图  1  临床上治疗IFIs的抗真菌药物

    组蛋白乙酰化修饰(包括组蛋白乙酰化和去乙酰化)是表观遗传学研究的重要组成部分。组蛋白去乙酰化酶(HDACs)将组蛋白和其他蛋白上的赖氨酸末端乙酰基去除,对染色体重塑和基因的表达起着重要作用[8-9]。目前HDAC抑制剂主要集中于抗肿瘤研究方向,且已有多个上市药物应用于肿瘤的治疗。据研究报道,真菌中的HDACs,如烟曲霉[10]、白念珠菌[11-12]、酿酒酵母[13]和新生隐球菌的HDACs[14-15]参与了毒力相关的过程和形态变化。因此,抑制真菌HDACs可能是治疗IFIs的有效策略。

    联合药物治疗是提高临床一线药物疗效并克服真菌耐药性的有效策略之一。真菌的耐药性涉及转录调节,其中染色体重塑和组蛋白修饰起主要作用。HDACs调节的组蛋白修饰在应激信号通路中起着至关重要的作用,这可能与真菌对各种环境(包括药物)的应激反应有关[16]。此外,已有研究报道,HDAC抑制剂与唑类药物联用具有协同增效作用[17-18]。例如,HDAC抑制剂MGCD290与氟康唑联用具有协同抗多种临床真菌分离株的作用[19]

    基于此,本研究首先对8个市售的HDAC抑制剂(图2)进行体外协同抗真菌活性测试,筛选结果显示化合物Rocilinostat与氟康唑联用具有优秀的体外协同抗耐药白念珠菌活性。后续考察其与不同唑类药物联用时对不同念珠菌属的体外协同抗真菌活性,以及对正常细胞的毒性作用,以期为抗真菌药物的研发提供依据。

    图  2  HDAC抑制剂的化学结构

    临床分离的6株唑类耐药白念珠菌(编号:9893,10061,10060,9173,4108和0304103),2株唑类耐药热带念珠菌(编号:5008,10086),1株光滑念珠菌(编号:9073)和1株耳道念珠菌(编号:0029)由海军军医大学附属长征医院提供。菌株活化首先从−80 ℃中挑取菌株冻存液至YEPD液体培养基活化24 h,然后取10 μl菌悬液至1 ml YEPD中,并在30 ℃、200 r/min下培养16 h后待用。HUVEC细胞来源于中国科学院上海细胞库,并在新鲜配置的DMEM完全培养基中培养。

    YEPD液体培养基:取10 g酵母浸膏、20 g葡萄糖、20 g蛋白胨溶解于1 000 ml三蒸水中,经高压蒸汽灭菌(121 ℃, 15 min)后,保存于4 ℃条件下备用。RPMI 1640培养基:取10 g RPMI 1640(Gibco)粉末、34.5 g吗啡啉丙磺酸、2 g NaHCO3、2.7 g NaOH溶解于1 000 ml三蒸水中,经0.22 μm的微孔滤膜过滤与灭菌后,置于4 ℃条件下保存和备用。DMEM完全培养基:按照89% DMEM基础培养基+10%胎牛血清+1%的双抗比例混匀制得,混匀后置于4 ℃条件下保存和备用。PBS缓冲液:10 × PBS 100 ml溶解于900 ml三蒸水中,经高压蒸汽灭菌(121 ℃, 15 min)后,置于4 ℃条件下保存和备用。

    THZ-92A气浴恒温振荡器(上海博迅医疗生物仪器股份有限公司)、MJ-150-I霉菌培养箱(上海一恒科学仪器有限公司)、LW100T生物显微镜(北京测维光电技术有限公司)、HDC-15K高速离心机(上海泰坦科技股份有限公司)、C170二氧化碳培养箱(BINDER GmbH)、infinite M200多功能酶标仪(Tecan Austria GmbH)、高压蒸汽灭菌锅、无菌洁净工作台。

    本实验参照美国临床和实验室标准协会(CLSI)公布的M27-A3方案中微量液基稀释法进行。首先,收集活化好的真菌细胞,PBS洗3次后用RPMI 1640培养基制成浓度为1×103 CFU/ml的菌悬液。按照每孔100 μl接种菌悬液至无菌96孔板中,1~9列加入倍半稀释的HDAC抑制剂,A~F行加入倍半稀释的氟康唑,其中G行只加氟康唑,第10列只加化合物,第11列为不加药的阴性对照组,后将96孔板置于35 °C条件下孵育48 h。测定每孔在630 nm处的吸光度A,依据公式:抑制率(%)=(A阳性对照孔A化合物孔)/(A阳性对照孔A阴性对照孔)× 100%,计算各孔对应的抑制率。如果某一孔和其左边孔对应的抑制率均大于80%,则该孔对应的化合物和FLC浓度分别作为FIC化合物和FIC氟康唑,利用协同指数公式:FICI =(FIC化合物./MIC80 化合物)+(FIC氟康唑/MIC80 氟康唑),计算各化合物对应的FICI。

    收集活化好的白念珠菌0304103稀释在RPMI 1640培养液中,保持菌浓度为1×105 CFU/ml。取5 ml稀释的菌悬液和不同浓度的待测药物加入50 ml的离心管中, DMSO组作为空白对照组和32 μg/ml FLC作为阳性对照。随后将50 ml的离心管置于30 °C条件下振荡培养(200 r/min),在多个时间点吸取不同药物组的真菌混悬液(100 μl)于96孔板上,测量A630值并使用GraphPad Prism 7作图。

    收集指数生长期的白念珠菌0304103细胞(湿重为100 mg),然后用3 mg snailase、12 μl 2-巯基乙醇和3 ml snailase反应缓冲液等新鲜配置的真菌裂解液来处理它们,以制备真菌原生质体。真菌原生质体分散在PBS(20 ml)中以获得混悬液,然后往96孔板每孔中加入100 μl的混悬液和不同浓度的化合物Rocilinostat,并在35 °C下培育12 h。接着往每个孔中加入30 μmol/L的HDAC底物,于37°C下孵育6 h。随后添加100 μl HDAC酶促终止溶液并在37°C下孵育2 h。最后,在每个孔中取出100 μl培养物添加到黑板中,用Ex=360 nm,Em=460 nm来监测荧光强度并记录下来用于计算HDAC酶的抑制率。

    表1列出了HDAC抑制剂单独使用或与氟康唑联合使用的体外抗真菌活性筛选结果。MIC80为抑制80%真菌细胞生长的最低药物浓度。实验结果表明,8个HDAC抑制剂单独使用对耐药白念珠菌均无直接的抗真菌活性(MIC80>64 μg/ml);而化合物Rocilinostat(FICI=0.039)和伏立诺他(FICI=0.125)与FLC联用时均表现出良好的协同抗真菌活性。其中,化合物Rocilinostat的协同活性最佳,值得进一步研究。

    表  1  单用HDAC抑制剂或者与氟康唑联用对白念珠菌0304103的体外抗真菌活性(μg/ml)
    抑制剂抑制剂氟康唑FICI
    单用联用单用联用
    伏立诺他>644>6440.125
    Rocilinostat>642>640.50.039
    T3516>6464>64642
    T6016>6464>64642
    T6421>6432>64321
    T2157>6432>64321
    T1726>6464>64642
    T3358>6432>64641.5
    注: FICI值≤ 0.5表示协同,FICI值> 4表示拮抗;0.5<FICI<4表示不相关。
    下载: 导出CSV 
    | 显示表格

    为进一步考察Rocilinostat是否具广谱的抗真菌作用,挑选9株临床分离的念珠菌属菌株进行协同抗真菌活性测试。如表2所示,Rocilinostat与FLC联合使用时,对两株耐FLC的白念珠菌(C. albicans 9173,FICI=0.094; C. albicans 4108, FICI=0.5)和对FLC敏感的光滑念珠菌(C. glabrata 9073)表现出协同增效作用,而对热带念珠菌(C. tropicis)和耳道念珠菌(C. auris)没有协同抗真菌活性。当Rocilinostat与伏立康唑(VRC)联用时,对耐VRC的白念珠菌(C. albicans 10060, FICI=0.033)表现出优异的协同抗真菌活性 (表3)。

    表  2  Rocilinostat与氟康唑单用或联用对多种念珠菌菌株的体外抗真菌活性[MIC80 (μg/ml)]
    菌株单用联用FICI
    Rocilinostat氟康唑Rocilinostat氟康唑
    9893>64>6464642
    10061>64>6464642
    10060>64>6464642
    9173>64>64420.094
    4108>64>6432320.5
    10186>64>6464642
    5008>64>646481.125
    90733243280.375
    00296432>64321
    下载: 导出CSV 
    | 显示表格
    表  3  Rocilinostat与伏立康唑单用或联用对白念珠菌菌株的体外抗真菌活性[MIC80 (μg/ml)]
    菌株单用联用FICI
    Rocilinostat伏立康唑Rocilinostat伏立康唑
    0304103>64>643220.531
    10061>64>64320.1250.502
    10060>64>64 20.1250.033
    下载: 导出CSV 
    | 显示表格

    为进一步考察化合物Rocilinostat的协同抗真菌活性,我们又开展了时间-生长曲线实验。从图3结果可以看出,高浓度的氟康唑或Rocilinostat单独使用对真菌生长无抑制作用,而Rocilinostat与不同浓度的氟康唑联用能够有效抑制真菌的生长,且呈浓度依赖趋势 (图3中抑制剂为Rocilinostat)。

    图  3  化合物Rocilinostat和氟康唑联用对白念珠菌的生长抑制作用

    采用HUVEC(人脐静脉内皮细胞)对化合物Rocilinostat进行细胞毒性的评价。结果如表4显示,化合物Rocilinostat对正常细胞表现出低毒性,IC50值为52.17 μmol/L (22.60 μg/ml),相当于其发挥协同抗耐药真菌(C. albicans 0304103)活性MIC80值的44倍,表明Rocilinostat对真菌细胞具有较强的选择性作用。此外,我们还测试了化合物Rocilinostat对真菌总HDAC酶的抑制活性,结果表明,Rocilinostat对真菌HDAC酶抑制活性(IC50=0.41 μmol/L)优于泛HDAC抑制剂伏立诺他(IC50=1.03 μmol/L)。

    表  4  Rocilinostat对正常细胞的毒性和真菌总HDAC酶活性IC50 (μmol/L)
    化合物HUVEC白念珠菌(总HDAC酶)
    Rocilinostat52.170.41
    伏立诺他1.03
    注: “—”表示没有测试。
    下载: 导出CSV 
    | 显示表格

    本研究从市售的8个HDAC抑制剂中筛选出协同活性最佳的化合物Rocilinostat。进一步研究发现Rocilinostat与氟康唑联用对白念珠菌和光滑念珠菌具有协同增效作用。此外,化合物Rocilinostat与伏立康唑联用对临床分离的耐药白念珠菌株同样具有优秀的抗真菌活性。更值得关注的是,化合物Rocilinostat对正常细胞表现出低毒性,其对真菌细胞具有很好的选择性。因此,HDAC抑制剂Rocilinostat可以作为一种低毒、有效的唑类抗真菌药物增效剂,为抗真菌药物的发展提供了新的研究基础。

  • 图  1  ApoE-/-小鼠经正常饮食和高脂饮食4个月后主动脉粥样斑块的形成情况

    A.主动脉油红O染色图;B.主动脉斑块相对面积比较;**P<0.01,与正常饮食组比较。

    图  2  C57BL/6J小鼠不同饮食后体重及肝脏变化情况(n=10)

    A.三组小鼠体重比较;B.高脂4周后小鼠肝脏形态(上)、HE染色(中)、油红O染色图(下)(200倍镜)**P <0.01,与正常组比较;##P<0.01,与高脂2周组比较。

    图  3  C57BL/6J小鼠不同饮食后血糖水平比较(n=10)

    **P <0.01,与正常饮食组比较;##P<0.01,与高脂2周组比较。

    图  4  高脂饮食不同时间对C57BL/6J小鼠血脂的影响(n=10)

    *P <0.05, **P <0.01, 与正常饮食组比较。

    图  5  正常饮食条件下C57BL/6J小鼠不同禁食时间对血脂的影响(n=10)

    **P<0.01,与禁食12 h组比较。

  • [1] HERRINGTON W, LACEY B, SHERLIKER P, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease[J]. Circ Res,2016,118(4):535-546. doi:  10.1161/CIRCRESAHA.115.307611
    [2] NAKAMURA T, UEMATSU M, YOSHIZAKI T, et al. Improvement of endothelial dysfunction is mediated through reduction of remnant lipoprotein after statin therapy in patients with coronary artery disease[J]. J Cardiol,2020,75(3):270-274. doi:  10.1016/j.jjcc.2019.08.006
    [3] KARR S. Epidemiology and management of hyperlipidemia[J]. Am J Manag Care,2017,23(9 suppl):S139-S148.
    [4] EMINI VESELI B, PERROTTA P, DE MEYER G R A, et al. Animal models of atherosclerosis[J]. Eur J Pharmacol,2017,816:3-13. doi:  10.1016/j.ejphar.2017.05.010
    [5] OPOKU S, GAN Y, FU W N, et al. Prevalence and risk factors for dyslipidemia among adults in rural and urban China: findings from the China National Stroke Screening and Prevention Project (CNSSPP)[J]. BMC Public Health,2019,19(1):1500. doi:  10.1186/s12889-019-7827-5
    [6] ROBINSON J G. Lipid management beyond the guidelines[J]. Prog Cardiovasc Dis,2019,62(5):384-389. doi:  10.1016/j.pcad.2019.10.004
    [7] WONG N D, ROSENBLIT P D, GREENFIELD R S. Advances in dyslipidemia management for prevention of atherosclerosis: PCSK9 monoclonal antibody therapy and beyond[J]. Cardiovasc Diagn Ther,2017,7(suppl 1):S11-S20.
    [8] MEYRELLES S S, PEOTTA V A, PEREIRA T M, et al. Endothelial dysfunction in the apolipoprotein E-deficient mouse: insights into the influence of diet, gender and aging[J]. Lipids Health Dis,2011,10:211. doi:  10.1186/1476-511X-10-211
    [9] 鲍和, 张昌龙, 苏娅萍, 等. 高脂饮食诱导建立小鼠高脂血症模型[J]. 西北药学杂志, 2019, 34(1):47-51. doi:  10.3969/j.issn.1004-2407.2019.01.012
    [10] 郝维佳, 杨秋实, 李静宜, 等. 高脂饲料中添加丙硫氧嘧啶对大鼠血脂、体质量及体脂的影响[J]. 首都医科大学学报, 2018, 39(3):385-392. doi:  10.3969/j.issn.1006-7795.2018.03.014
    [11] 戴贻权, 颜晓晓, 刘晓如, 等. 小鼠动脉粥样硬化模型的建立[J]. 中华实验外科杂志, 2020, 37(1):172-175. doi:  10.3760/cma.j.issn.1001-9030.2020.01.050
    [12] MÄRZ W, KLEBER M E, SCHARNAGL H, et al. HDL cholesterol: reappraisal of its clinical relevance[J]. Clin Res Cardiol,2017,106(9):663-675. doi:  10.1007/s00392-017-1106-1
    [13] RIGGS K A, ROHATGI A. HDL and reverse cholesterol transport biomarkers[J]. Methodist Debakey Cardiovasc J,2019,15(1):39-46.
    [14] DORAN B, GUO Y, XU J F, et al. Prognostic value of fasting versus nonfasting low-density lipoprotein cholesterol levels on long-term mortality[J]. Circulation,2014,130(7):546-553. doi:  10.1161/CIRCULATIONAHA.114.010001
    [15] LANGSTED A, NORDESTGAARD B G. Nonfasting versus fasting lipid profile for cardiovascular risk prediction[J]. Pathology,2019,51(2):131-141. doi:  10.1016/j.pathol.2018.09.062
    [16] NORDESTGAARD B G. A test in context: lipid profile, fasting versus nonfasting[J]. J Am Coll Cardiol,2017,70(13):1637-1646. doi:  10.1016/j.jacc.2017.08.006
    [17] TOUMA Z, GLADMAN D D, IBAÑEZ D, et al. Ability of non-fasting and fasting triglycerides to predict coronary artery disease in lupus patients[J]. Rheumatology (Oxford),2012,51(3):528-534. doi:  10.1093/rheumatology/ker339
    [18] LI Y L, HE J X, ZENG X L, et al. Non-fasting lipids detection and their significance in pregnant women[J]. Lipids Health Dis,2019,18(1):96. doi:  10.1186/s12944-019-1038-z
  • [1] 彭莹, 刘欣, 聂依文, 王歆荷, 年华, 朱建勇.  三种狼毒乙醇提取物对咪喹莫特诱导的银屑病小鼠防治作用研究 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202406029
    [2] 郭灵怡, 刘艳超, 高路, 刘瑞瑶, 吕权真, 俞媛.  醋酸卡泊芬净单硬脂酸甘油酯纳米粒抗白色念珠菌感染的增效作用研究 . 药学实践与服务, 2025, 43(3): 136-142, 150. doi: 10.12206/j.issn.2097-2024.202310043
    [3] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [4] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [5] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [6] 杨嘉宁, 赵一颖, 肖伟.  七味脂肝方对非酒精性脂肪性肝炎动物模型的药效学评价 . 药学实践与服务, 2024, 42(9): 389-398. doi: 10.12206/j.issn.2097-2024.202404096
    [7] 徐飞, 刘盈, 殷佳, 诸国樑, 练鲁英.  上海某三级公立医院药品管理内部控制评价实践研究 . 药学实践与服务, 2024, 42(12): 542-548. doi: 10.12206/j.issn.2097-2024.202402003
    [8] 张修平, 田家盛, 王道鑫, 李佳鑫, 王品, 缪朝玉.  MT-1207对小鼠血糖、血脂和动脉粥样硬化的作用 . 药学实践与服务, 2024, 42(11): 487-494. doi: 10.12206/j.issn.2097-2024.202306011
  • 加载中
图(5)
计量
  • 文章访问数:  6707
  • HTML全文浏览量:  4739
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2021-01-24
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2021-03-25

动脉粥样硬化高脂饲料对小鼠糖脂水平的作用研究

doi: 10.12206/j.issn.1006-0111.202012002
    基金项目:  国家自然科学基金资助项目(81730098)
    作者简介:

    王 品,硕士研究生,研究方向:动脉粥样硬化,Email:wpin2018@163.com

    通讯作者: 缪朝玉,教授,博士生导师,研究方向:心脑血管药理,Email:cymiao@smmu.edu.cn
  • 中图分类号: R965

摘要:   目的  研究动脉粥样硬化高脂饲料对小鼠体重、血糖血脂水平及动脉粥样硬化斑块形成的作用,并且明确禁食时间对血脂检测结果的影响。  方法  对10周龄雄性ApoE基因敲除(ApoE-/-)小鼠分别给予高脂饲料及普通饲料,4个月后观察动脉粥样硬化斑块情况;对10周龄雄性C57BL/6J小鼠分别给予普通饲料4周、普通饲料2周+高脂饲料2周、高脂饲料4周,考察动物的体重、肝脏、血糖、血脂水平,并分析正常饮食条件下取材前禁食12、6 h及不禁食条件下对血脂检测结果的影响。  结果  给予高脂饲料的ApoE-/-小鼠动脉斑块面积显著增加(P<0.01);给予高脂饲料的C57BL/6J小鼠的体重增加(P<0.01),肝脏脂肪样变;血糖、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-c)、高密度脂蛋白胆固醇(HDL-c)水平显著升高(P<0.01),而三酰甘油(TG)水平明显下降(P<0.01)。相比于禁食12 h,禁食6 h及不禁食条件下检测到的三酰甘油水平明显升高(P<0.01)。  结论  动脉粥样硬化高脂饲料可加速ApoE-/-小鼠形成动脉粥样硬化斑块,显著升高血糖、TC及LDL-c水平,但明显降低TG值。禁食时间可影响血清TG的检测结果。

English Abstract

耿晨晨, 汪甜甜, 李翔, 王小彦, 姜云云. 天然环肽auyuittuqamide A的全合成研究[J]. 药学实践与服务, 2022, 40(1): 53-56, 61. doi: 10.12206/j.issn.1006-0111.202105087
引用本文: 王品, 齐齐, 郑斯莉, 徐浩展, 缪朝玉. 动脉粥样硬化高脂饲料对小鼠糖脂水平的作用研究[J]. 药学实践与服务, 2021, 39(2): 121-125. doi: 10.12206/j.issn.1006-0111.202012002
GENG Chenchen, WANG Tiantian, LI Xiang, Wang Xiaoyan, JIANG Yunyun. The total synthesis of natural cyclopeptide auyuittuqamide A[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(1): 53-56, 61. doi: 10.12206/j.issn.1006-0111.202105087
Citation: WANG Pin, QI Qi, ZHENG Sili, XU Haozhan, MIAO Chaoyu. Effect of atherosclerotic high-fat diet on the level of glucose and lipid in mice[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(2): 121-125. doi: 10.12206/j.issn.1006-0111.202012002
  • 动脉粥样硬化以慢性血管炎症及大中动脉内皮下脂质斑块形成为主要特征,内皮细胞、平滑肌细胞、免疫细胞等均参与动脉粥样硬化的过程,随着斑块的积累,累及多种器官导致其病变[1]。动脉粥样硬化是由多种因素共同作用而形成,由脂质代谢紊乱所引起的血脂异常发挥着重要的作用,其中低密度脂蛋白胆固醇(LDL-c)升高已被证实是动脉粥样硬化的独立危险因素,低密度脂蛋白氧化后可诱导内皮细胞激活和功能障碍,促进泡沫细胞形成等[2]。随着现代生活方式及膳食营养结构的改变,高脂血症的发病率呈逐年上升,并加重了动脉粥样硬化等心脑血管疾病的进展[3]。因此,进一步研究高脂饮食所引起的动脉粥样硬化性心血管疾病具有极其重要的意义。与以人体为研究对象相比,动物具有易于管理、饮食和环境危险因素可控的优点。动脉粥样硬化的动物模型是基于高脂饮食,同时操纵胆固醇代谢的相关基因,并且引入动脉粥样硬化的额外危险因素,加速动脉斑块形成。各种动物模型现均已被用于动脉粥样硬化研究,其中鼠类和兔子的模型使用最多,其次是猪和非人灵长类动物,每种模型都有优点和局限性。由于小鼠繁殖速度快、经济成本较低以及较为容易监测动脉粥样硬化的发生,它已成为研究动脉粥样硬化的优势物种[4]。目前,高脂饲料已被广泛用于包括肥胖症、糖尿病等多种代谢性疾病的研究中,高脂饮食也可造成高脂血症,进而促进脂质在血管内膜堆积形成动脉粥样硬化。市场上存在着不同配方的高脂饲料,造模效果参差不齐,主要作用需进一步探讨。我们首先验证了一种较为常用的由普路腾公司生产的动脉粥样硬化高脂饲料对ApoE-/-小鼠动脉斑块形成的作用,并且在正常C57BL/6J小鼠上研究其对血糖血脂的影响,最后分析了不同禁食时间对正常饮食条件下血脂检测结果的影响。通过对高脂饲料对血糖血脂作用的深入研究,为小鼠动脉粥样硬化模型提供理论基础。

    • SPF级10周龄雄性C57BL/6J及ApoE-/-小鼠,购于西普尔-必凯实验动物有限公司。动物自由饮水进食,在明暗交替、温度(25±1)℃、相对湿度40%~60%、噪音≤60 dB的环境饲养。动物实验方案与操作均按照国家规定进行,符合动物福利及“3R”原则。

      国产鼠用动脉粥样硬化高脂饲料购于普路腾公司,配方:基础饲料(58.1%)、猪油(16.6%)、蔗糖(10.6%)、麦芽糖糊精(3%)、胆固醇(1.3%)、胆盐(0.3%)、预混料(1.6%)。

      正常鼠用饲料配方:水分(≤10%)、蛋白质(≥20.5%)、粗脂肪(≥4%)、蛋氨酸+胱氨酸(≥0.78%)、精氨酸(≥1.32%)、钙(1.0%~1.8%)、粗纤维(≥5%)、粗灰分(≤8%)、磷(0.6%~1.2%)、氯化钠(0.4%)。

    • 取雄性ApoE-/-小鼠8只,分为2组,每组4只,分别给予动脉粥样硬化高脂饲料和普通饲料喂养,4个月后观察动脉粥样硬化斑块形成情况。

    • 取雄性C57BL/6J小鼠50只,随机分为5组,每组10只,即:①普通饲料4周,不禁食组;②普通饲料4周,禁食6 h(8:00至14:00)组;③普通饲料4周,禁食12 h(20:00至次日8:00)组;④高脂饲料2周(HFD 2W)组,先以普通饲料喂食2周,再喂食高脂饲料2周,禁食12 h(20:00至次日8:00)⑤高脂饲料4周(HFD 4W)组,以高脂饲料喂食4周,禁食12 h(20:00至次日8:00)。分别考察禁食时间对正常饮食(ND)条件下血脂检测结果的影响,以及高脂饲料饮食(HFD)对小鼠体重、肝脏及血糖血脂水平的影响。

    • ①主动脉分离:小鼠称量体重(g),1%戊巴比妥钠(100 mg/kg)腹腔注射完全麻醉,打开胸腔,暴露心脏,用1 ml注射器自上下腔静脉汇合处缓慢抽取血液。冰水混合物灌流心脏,分离主动脉及与其相连的心脏和双肾,用直径0.2 mm的不锈钢针固定于装满冰浴PBS的硅胶皿中,剪去心脏和双肾及多余脂肪组织。

      ②主动脉油红O染色:取两根钢针固定住头尾,开始慢慢地沿主动脉纵向剪开,边剪边增加固定钢针,最终使主动脉整个内腔面平铺朝上。用现配好的油红O溶液对主动脉内腔面进行染色:倒掉皿中PBS溶液,加入油红O溶液浸没主动脉,静置15 min,倒掉油红O溶液,加入75%乙醇浸没主动脉,再静置10~15 min,倒掉75%乙醇,用数码相机拍摄图像。使用ImageJ软件测量整个主动脉内腔面的面积和斑块面积。每个样品的粥样斑块比例=粥样斑块总面积/主动脉内腔面积×100%。

    • 实验前将动物单笼饲养于安静无打扰的环境中,自由活动,2 h后开始禁食(可自由饮水),禁食时间为12 h(20:00至次日8:00)。测血糖时,剪去尾巴末端1~2 mm,轻轻挤出两滴血,采用GA-3型血糖仪及试纸条进行血糖测定,取两次测量的平均值。

    • 麻醉方法同上,打开胸腔,用1ml注射器自上下腔静脉汇合处缓慢抽取血液收集至EP管中,血液室温静置2 h后,离心取血清。用干冰冻存送至武汉塞维尔生物科技有限公司,应用Chemray240全自动生化分析仪检测三酰甘油(TG)、血清总胆固醇(TC)、低密度脂蛋白(LDL-c)、高密度脂蛋白(HDL-c)、游离脂肪酸(NEFA)水平。

      打开腹腔,取小块肝组织用4%多聚甲醛溶液固定,固定好的肝组织用于制作冰冻切片,分别进行HE及油红O染色。

    • 使用GraphPad Prism-5软件对数据进行统计分析。所有的计量资料均以$\bar x \pm s$表示,两样本均数的比较采用t检验,P<0.05为差异有统计学意义。

    • 图1所示,ApoE-/-小鼠在高脂饮食4个月后,其主动脉产生的粥样斑块面积比例明显高于正常饮食组(P<0.01),说明高脂饮食可显著加速ApoE-/-小鼠动脉粥样硬化斑块的形成。

      图  1  ApoE-/-小鼠经正常饮食和高脂饮食4个月后主动脉粥样斑块的形成情况

    • 图2所示,C57BL/6J小鼠高脂饮食2周及4周后,其体重高于正常饮食组(P<0.01),相比于高脂2周组,高脂4周后体重显著升高(P<0.01)。高脂4周后肝脏外观呈脂肪样变,有油腻感,镜下显示肝细胞内充满脂肪空泡。表明高脂饲料可以升高小鼠体重并造成肝脏脂肪堆积。

      图  2  C57BL/6J小鼠不同饮食后体重及肝脏变化情况(n=10)

    • 图3所示,C57BL/6J小鼠在高脂饮食2周后,其空腹血糖高于正常饮食组(P<0.01)。相比于高脂饮食2周组,高脂饮食4周后空腹血糖显著升高(P<0.01)。表明动脉粥样硬化高脂饲料具有一定的升血糖作用。

      图  3  C57BL/6J小鼠不同饮食后血糖水平比较(n=10)

    • 图4所示,小鼠经过高脂饮食2周及4周后,其血清总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-c)、高密度脂蛋白胆固醇(HDL-c)水平均明显高于正常饮食组(P<0.01),但三酰甘油(TG)水平均明显下降(P<0.05),而游离脂肪酸(NEFA)均未见明显改变(P>0.05)。此外,相比于高脂饮食2周组、高脂饮食4周组的血清TG、TC、LDL-c、HDL-c、NEFA均未见明显改变(P>0.05)。以上结果表明,动脉粥样硬化高脂饲料主要提高血清胆固醇的含量,但同时降低血清TG水平。

      图  4  高脂饮食不同时间对C57BL/6J小鼠血脂的影响(n=10)

    • 图5所示,在正常饮食条件下,取材前禁食6 h组及不禁食组的血清TG值明显高于取材前禁食12 h组(P<0.01),其余指标均无统计学差异(P>0.05)。另外,相比于禁食6 h组,不禁食组的血脂水平无明显差别(P>0.05),这表明取材前禁食时间可影响血清TG水平。

      图  5  正常饮食条件下C57BL/6J小鼠不同禁食时间对血脂的影响(n=10)

    • 血脂异常是心血管疾病常见的致病危险因素。调查我国北方农村人口血脂异常患病率发现,血脂异常患病率约占45.8%,高胆固醇血症的存在主要与动脉粥样硬化相关,而三酰甘油的异常主要与非酒精性脂肪肝、糖尿病相关[5]。他汀类降脂药可抑制体内胆固醇生物合成,是预防和治疗高脂血症患者导致的动脉粥样硬化的一线药物,已被证实可以稳定甚至逆转已建立的动脉斑块,其主要目的已经由单纯降低LDL-c转向关注心血管风险[6]。在动物模型中,由于C57BL/6J小鼠血浆不含血浆胆固醇酯转移蛋白,自然生长条件下不能形成动脉粥样硬化[7]。随着基因工程动物的进展,具有动脉粥样硬化易感性的载脂蛋白E (ApoE)敲除小鼠逐渐被广泛应用。ApoE基因敲除小鼠可以自发升高血脂水平,约在8~10周龄时可见泡沫细胞形成,15~20周龄可见自发性的动脉粥样硬化斑块,通过高脂饲料喂养,可大大加速斑块形成过程[8]

      高脂饲料通常是在基础饲料上添加不同成分的辅食逐渐发展而来,添加胆汁酸可以促进胆固醇的吸收,添加丙硫氧嘧啶可以有效地抑制甲状腺的功能,升高血浆TC和LDL-c浓度,但是会造成肝脏、淋巴损伤等副作用,使用需谨慎[9-10]。根据实验目的不同,所造成的动物模型的高脂饲料配方也不同,如肥胖模型使用的超高脂饲料猪油占较高比例,能够大大增加动物体重并造成体脂堆积,富含高糖类的高脂饲料则可造成糖尿病动物模型。本实验中使用的动脉粥样硬化高脂饲料轻微升高动物体重及血糖。在动脉粥样硬化高脂饲料的发展过程中,Paige等[11]首先发明了“西方型”饮食饲料,随着制作工艺的不断完善,逐渐制作出1.25%高胆固醇饲料,用于动脉粥样硬化的动物模型制备。实验用高脂饲料为42%脂肪供能,从上述结果可以看出,该高脂饲料的主要特点是造成高胆固醇血症,尤其是提高LDL-c浓度,这种作用在短时间内(2周)即可形成显著性差异。随着高脂时间的逐渐延长,可使小鼠血清LDL-c稳定在高水平。但是动脉粥样硬化高脂饲料会使TG值显著下降,有研究认为这可能是由于小鼠三酰甘油被高胆固醇饲料造成的大量外来胆固醇摄入所抑制,并且导致了肝脏来源的三酰甘油被抑制,从而导致血清三酰甘油水平降低[9]。此外,高脂饮食2周及4周后C57BL/6J小鼠HDL-c水平显著升高,目前许多研究认为HDL-c水平与心血管风险呈负相关,经典学说中HDL-c的保护作用主要机制是与胆固醇的逆向转运有关 [12]。但是最近的研究对HDL-c水平和心血管疾病之间的负相关的假设提出了质疑,认为两者之间的关系是U型的,血清高HDL-c不再被认为具有保护作用,来自动脉粥样硬化患者的HDL不仅表现出保护动脉粥样硬化的功能受损,而且还有促动脉粥样硬化的作用,与此相一致的是,以提高HDL-c浓度的治疗方法的药物临床试验并不能显示心血管疾病的降低[13]

      通常情况下,临床检测血脂要求在空腹情况下进行,即禁食10~12 h。随着临床研究的不断深入,越来越多的专家共识和建议表明,血脂检测可能无需空腹进行[14]。更多的证据表明,在一般人群中,正常的食物摄入对脂质水平影响较小,可能主要对三酰甘油有所影响,但对胆固醇影响较小[15]。多项实验表明虽然非空腹TG水平在统计学上高于空腹TG水平,但这种差异的临床意义尚不清楚,到目前为止,在评估血脂预测心血管风险时,没有可靠的科学证据表明禁食优于不禁食,选择非空腹血脂谱是一种简化测量手段,对心血管疾病的诊断和治疗没有任何负面影响[16]。有研究指出禁食与非禁食状态下的TG水平均可以预测红斑狼疮患者的心血管疾病风险以及可用非空腹血脂检测结果评估孕妇等特殊群体的脂质代谢等[17-18]。脂质的变化需要一定的时间,通常是在早餐前几小时,相比较而言,非空腹状态条件主导大部分时间,更能反映真实的生理状态。对于临床医生与患者来说,非禁食样本比禁食样本有许多明显的优势,比如简化实验室的血液采样,避免了空腹的不便,有效避免糖尿病患者因禁食所造成的低血糖等。随着研究的不但深入,未来一旦制定相应的标准,非禁食状态下的血脂检测也必将得到越来越多的认可,从而大大方便医生及患者。

参考文献 (18)

目录

/

返回文章
返回