留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

表面增强拉曼光谱对结构类似物黄嘌呤、茶碱、可可碱的鉴别

崔晓林 陆峰

陈昕璐, 高原, 李鹃鹃, 郭欢欢, 王卓, 高申. mRNA脂质纳米粒载药系统的构建及体外评价[J]. 药学实践与服务, 2023, 41(5): 291-295. doi: 10.12206/j.issn.2097-2024.202302026
引用本文: 崔晓林, 陆峰. 表面增强拉曼光谱对结构类似物黄嘌呤、茶碱、可可碱的鉴别[J]. 药学实践与服务, 2020, 38(3): 227-231, 258. doi: 10.12206/j.issn.1006-0111.202001005
CHEN Xinlu, GAO Yuan, LI Juanjuan, GUO Huanhuan, WANG Zhuo, GAO Shen. Construction and in vitro evaluation of an LNP system for mRNA delivery[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(5): 291-295. doi: 10.12206/j.issn.2097-2024.202302026
Citation: CUI Xiaolin, LU Feng. Identification of structural analogues xanthine, theophylline and theobromine by surface-enhanced Raman spectroscopy[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(3): 227-231, 258. doi: 10.12206/j.issn.1006-0111.202001005

表面增强拉曼光谱对结构类似物黄嘌呤、茶碱、可可碱的鉴别

doi: 10.12206/j.issn.1006-0111.202001005
基金项目: 国家重大新药创制科技重大专项(2018ZX09J18112)
详细信息
    作者简介:

    崔晓林,硕士研究生,Email:15021568203@163.com

    通讯作者: 陆 峰,教授,博士生导师,研究方向:药物分析,Email:fenglufeng@hotmail.com
  • 中图分类号: R284.1

Identification of structural analogues xanthine, theophylline and theobromine by surface-enhanced Raman spectroscopy

  • 摘要:   目的  采用表面增强拉曼光谱技术对结构类似物黄嘌呤、茶碱、可可碱进行区分。  方法  通过制备浓缩的银胶增强试剂作为拉曼基底,增加单位面积内的“热点”数目,从而提高表面增强拉曼光谱的灵敏度,增强待测样品的信号强度,实现对结构类似物进行有效区分的目的。同时,通过测定包含3种混合物的血清样品,验证表面增强拉曼光谱在实际应用中的可行性。  结果  浓缩后的银胶极大地提高了3种结构类似物的信号强度,分别得到3种物质各自的特征光谱图,以及混合物在血清体系下的光谱图。3种物质水溶液的检测限依次为:0.005、0.01、0.005 μmol/L。  结论  表面增强拉曼光谱是一种很好的用于区分结构类似物的分析方法,具有简便快捷、灵敏度高、对样品无损等特点,可广泛应用于检测、分析、临床治疗和诊断等领域。
  • 溃疡性结肠炎(ulceractive colitis, UC)属于炎症性肠病的一种,有着较高的发病率,其特征为损伤性炎症,近年来有关其病因及发病机制的研究受到广泛关注,但至今仍不明确[1]。对于溃疡性结肠炎的治疗目前多采用手术、抗感染、糖皮质激素及免疫抑制剂等治疗,但上述治疗手段均为对症治疗,且药物长期使用的不良反应很容易造成疾病复发[2]。因此,探究溃疡性结肠炎的发病机制,将为今后治疗药物的研发提供理论基础。

    Metrnl(Meteorin-like)是近年来新发现的神经营养因子,也叫Cometin, Subfatin或是IL-39[3-4]。 Jorgensen等[4]在2012年将Metrnl描述为类似于Meteorin(Metrn)的神经营养因子。Metrnl基因开放阅读框包含4个外显子,由936个碱基对编码311个氨基酸。Metrnl蛋白包含45个N端信号肽序列,切除信号肽后的266个氨基酸构成分子量约为30 000的成熟蛋白分子,整个蛋白分子没有穿膜区域,是一种分泌蛋白。到目前为止,关于Metrnl功能的研究较少,我们前期针对该蛋白相关研究确认Metrnl为一种新的细胞因子,阐明了Metrnl通过PPARγ信号通路介导胰岛素的增敏作用的重要机制[5]。 Jorgensen等[4]报道了Metrnl在神经突触生长和成神经细胞迁移中的神经营养活性。Watanabe等[6]报道,Metrnl是潜伏过程(Latent process,LP)基因,可用于细胞分化和神经突触延伸。脂肪组织Metrnl能促进脂肪细胞分化、改善代谢、抑制炎症从而调节脂肪功能,对抗肥胖引起的胰岛素抵抗[7]。通过检测Metrnl在各种组织中的表达,我们发现Metrnl在人和小鼠胃肠组织中,特别是在肠上皮细胞中都高度表达,并发现肠上皮Metrnl敲除后可以通过抑制肠上皮细胞的自噬而加重溃疡性结肠炎,提示 Metrnl是溃疡性结肠炎的治疗靶点[8]

    肠道微环境形成了良好的微生物群栖息地,肠道微生物群被认为是人体的重要器官,越来越多的研究将这种微生物环境与胃肠道疾病联系起来。肠道菌群在溃疡性结肠炎中起着重要作用,如在无菌状态下,无法制备出某些小鼠结肠炎模型(如IL-10缺陷型小鼠等)[9-10]。也有研究报道,在治疗溃疡性结肠炎患者时,联合使用抗生素也显示出了较好疗效[11]。此外,与健康人群相比,溃疡性结肠炎患者的肠道菌群组成也发生了显著变化[12]。但由于人类肠道菌群的复杂性和多样性,目前尚未清楚某些特定菌属与溃疡性结肠炎发病机制的关系。

    因此,本研究聚焦溃疡性结肠炎,从肠道微生态角度出发,探究肠上皮Metrnl对于溃疡性结肠炎的作用以及对肠道菌群调节机制的影响。

    雄性C57小鼠(8周龄,20只,16~20 g),上海西普尔-必凯实验动物有限公司(生产许可证号:SCXK(沪)2013-0016)。Villin-cre小鼠[B6.Cg-Tg(Vil1in-cre)1000Gum/J,021504],2只,16~20 g,美国JAX公司(北京澄天生物科技有限公司代理),生产许可证号:SYXK(京)2018-0016),用于产生肠上皮细胞特异性Metrnl基因敲除小鼠(Metrnl(-/-))。所有小鼠饲养于相对洁净环境下,使用独立通风系统(individual ventilated cages, IVC)动物房,温度恒定(22~26 ℃),室内明暗交替12 h(08:00至20:00照明),相对湿度为40%~70%,笼内维持正压20~25 Pa,每小时换气60~70次。所有实验动物的使用,都经过海军军医大学动物管理机构的同意和认证,符合实验动物饲养及相关管理规定。所有动物实验均按照美国国家卫生研究院实验动物的护理和使用指南进行,并得到海军军医大学动物伦理委员会的批准。IVC系统购自上海鸣励实验室科技发展有限公司。TRIzol试剂(15596026),美国Invitrogen公司;葡聚糖硫酸钠盐(dextran sodium sulfate,DSS),MFCD00081551,分子量36 000~50 000,美国MP公司,引物,生工生物工程有限公司;包埋机(JB- L5,德国徕卡有限公司);切片机(RM2126,德国徕卡有限公司);RT-PCR仪器(ABI 7500系统,美国赛默飞公司);粪便DNA提取试剂盒(QIAamp Fast DNA Stool Mini Kit,Qiagen, Hilden, 德国);紫外微量分光光度计(NanoDrop 2000,Thermo Scientific, 美国);DNA凝胶回收试剂盒(AxyPrep DNA GelExtraction Kit,Axygen Biosciences, 美国);微型荧光计(QuantiFluor-ST,Promega, 美国);测序仪(Illumina MiSeq,Illumina, 美国)。

    首先按照本课题组已报道的方法[5]制备Metrnlloxp/loxp小鼠。根据报道的Metrnl(-/-)小鼠的繁殖策略[13],即将Metrnlloxp/loxp小鼠与购买的Villin-Cre小鼠进行交配,产下后代小鼠基因型为Metrnlloxp/wtVillin-Cre。将Metrnlloxp/wtVillin-Cre小鼠和Metrnlloxp/loxp小鼠交配,产生下一代Metrnlloxp/loxpVillin-Cre小鼠。继续与Metrnlloxp/loxp交配,产下的后代,经基因型鉴定分别为Metrnlloxp/loxpVillin-Cre(Metrnl(-/-))和Metrnlloxp/loxp(Metrnl(+/+))。

    按照本课题组已报道的方法[3],使用TRIzol试剂从肠道组织中提取总RNA,并使用ABI 7500系统进行RT-PCR。最终的20 μl反应混合物包括10 μl SYBR Green,2 μl cDNA模板和1 μl引物。通过重复反应确定平均阈值循环(Ct),将靶基因表达标准化为GAPDH,并使用ΔΔCT方法获得定量测量结果。Metrnl上游引物(F)CTGGAGCAGGGAGGCTTATTT,下游引物(R)GGACAACAAAGTCACTGGTACAG;GAPDH上游引物(F)GTATGACTCCACTCACGGCAAA,下游引物(R)GGTCTCGCTCCTGGAAGATG。

    雄性C57小鼠(8周龄)于实验室适应2周后,按照本课题组已报道的方法进行模型制备[7],将DSS溶于水中,分别至终浓度为3%和1%,让小鼠自由饮用。

    小鼠溃疡性结肠炎疾病程度评分,按照我们之前已报道的的评分标准进行评分[8],对体重下降程度、大便性状、血便情况共3部分分别进行评分,然后进行加和,计算总分数。具体评分标准如下(表1)。

    表  1  小鼠溃疡性结肠炎疾病程度评分表
    疾病评分体重下降 (%)大便性状大便潜血
    0<1正常阴性
    1≥1-5-+
    2≥5-10++
    3≥10-15-+++
    4≥15腹泻++++
    注:“-” 无此性状;“+” 潜血程度。
    下载: 导出CSV 
    | 显示表格

    小鼠处死后,取整个结肠部位,测量长度进行比较。然后将结肠下段部位组织用4%多聚甲醛固定,石蜡包埋,切片机切至4 μm的切片,按照之前的实验方法[14],进行HE染色,染色后在光学显微镜下观察炎症细胞浸润情况,组织损伤情况并拍照记录。

    使用16S核糖体RNA基因测序技术检测肠道菌群。为了进行样品收集和DNA提取,从实验小鼠中收集粪便样品,并在取样后3h内将其冷冻在−80°C下。使用QIAamp Fast DNA Stool Mini Kit进行DNA提取。使用NanoDrop 2000测量细菌DNA的浓度。然后,将16S核糖体RNA基因测序用于检测细菌DNA。基因的V3-V4区域使用FastPfu聚合酶通过条形码索引引物(338F和806R)进行PCR扩增。然后通过AxyPrep DNA GelExtraction Kit,凝胶提取纯化扩增子,并使用QuantiFluor-ST进行定量。将纯化的扩增子以等摩尔浓度合并,并使用Illumina MiSeq仪器进行末端配对测序。

    16S rRNA测序数据由Quantitative Insights Into Microbial Ecology平台(V.1.9.1)处理,并进行了MegaBLAST搜索,将生物分类单位的读数(OTU)与国家生物技术信息中心16S rRNA数据库中的参考序列比对。按照文献报道的方法[15]进行宏基因组学分析,从16S rRNA序列推算肠道微生物组的基因组,并且对每个样品的基因含量进行了预测。

    本实验结果数据以($\bar x $±s)表示,使用SPSS18.0软件进行统计分析。多组以上比较采用单因素方差分析(One-way ANOVA),各组与正常对照组比较采用Dunnett t检验法,两组比较采用独立样本t检验。以P<0.05为差异具有统计学意义。

    我们构建了肠上皮细胞特异性Metrnl基因敲除(Metrnl(-/-))小鼠,并检测了Metrnl mRNA在大肠和小肠组织中的表达。结果表明,Metrnl(-/-)小鼠中Metrnl mRNA的表达在结肠和小肠组织中极低(图1A)。 HE结肠切片显示Metrnl(-/-)和Metrnl(+/+)小鼠之间均无组织损伤和炎症细胞浸润(图1B)。以上结果表明,肠上皮细胞特异性Metrnl基因敲除后不会诱发溃疡性结肠炎。

    图  1  Metrnl(-/-)小鼠未表现出结肠炎表型
    A. Metrnl mRNA在结肠和小肠中的表达;B.结肠HE染色P<0.05,与Metrnl(+/+)组小鼠比较。

    在建立DSS诱发的溃疡性结肠炎模型之前,为了选择最佳的观察时间和DSS给药浓度,我们分别选择3%DSS和1%DSS进行造模,并观察了不同DSS浓度下C57小鼠的存活时间。结果显示,在3%DSS组的第6天,出现了小鼠死亡;直至给药10 d,全部小鼠死亡(图2A)。在1%DSS组中,未观察到小鼠死亡。与对照组相比,3%DSS组的小鼠体重在第5天时显著性降低(P<0.05),而1%DSS组的体重并无显著改变(图2B)。同样,与对照组相比,3%DSS组小鼠DAI增加(P<0.05),结肠长度显著性缩短(P<0.05),而1%DSS组在疾病活动指数、结肠长度方面均无明显变化(图2C-D)。 组织形态学方面,3%DSS组表现出结肠炎表型,具有明显的组织损伤,而对照组并无明显变化(图2E)。因此,我们选择3%DSS和5 d的给药时间作为后续实验条件。

    图  2  溃疡性结肠炎模型条件的选择
    A.生存曲线;B.体重;C.疾病评分;D.结肠长度;E.结肠组织的HE染色P<0.05,与对照组小鼠比较。

    给予Metrnl(-/-)和Metrnl(+/+)小鼠3%DSS后,两组小鼠均表现出溃疡性结肠炎症状,其特征为持续的体重减轻、疾病活动指数增加、血性腹泻、结肠长度缩短以及结肠炎症(图3)。在此过程中,在给药后第5天时,与Metrnl(+/+)小鼠体重减轻(−8.27± 1.32)%相比,Metrnl(-/-)小鼠的体重减轻(−14.92±1.05)%,具有统计学差异(P<0.05,图3A);与Metrnl(+/+)小鼠的疾病活动指数(6.00±1.63)相比,Metrnl(-/-)小鼠显著增加至(9.67±1.38)(P<0.05,图3B);与Metrnl(+/+)小鼠结肠长度(7.08±0.89 cm)相比,Metrnl(-/-)小鼠结肠更短(5.77±0.58 cm)(P<0.05)(图3D);为了排除上述差异不是由小鼠摄入不同量的3%DSS引起的,我们还检测了两组小鼠的饮水量。结果显示两组小鼠饮水量之间并无显着差异(图3C)。

    图  3  Metrnl敲除后对DSS诱导的溃疡性结肠炎的影响
    A. 体重;B.疾病评分;C.水摄入量;D.结肠长度;E.结肠组织HE染色P<0.05,与DSS-Metrnl(+/+)组比较。

    我们通过高通量16S rRNA基因测序,检测了Metrnl对DSS诱导的溃疡性结肠炎小鼠模型中肠道菌群的影响。应用Chao1 丰度估计量(chao1 richness estimator),香农多样性指数(shannon diversity index),辛普森多样性指数(simpson diversity index)三种指标评价各组小鼠中菌群的Alpha多样性(图4A-C)。结果显示,在未进行DSS造模之前,Metrnl(-/-)和Metrnl(+/+)小鼠的Alpha多样性并无显著差异;而进行3%DSS造模后,Metrnl(-/-)和Metrnl(+/+)小鼠出现了差异,其中Metrnl(-/-)小鼠多样性显著下降(图4A-C)。主成分分析显示,在给予3%DSS造模后的Metrnl(-/-)和Metrnl(+/+)小鼠之间微生物的组成显著不同(图4D)。检测小鼠粪便微生物组成,结果显示,在“门”这一层面,给予3%DSS后拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)和变形杆菌门(Proteobacteria)在Metrnl(-/-)和Metrnl(+/+)小鼠间存在显著的不同(图4E)。在Metrnl(-/-)小鼠中,BacteroidetesProteobacteria显著降低,而Firmicutes显著升高。在“纲”这一层面,发现给予DSS后,Metrnl(-/-)和Metrnl(+/+)小鼠间拟杆菌纲(Bacteroidia)和梭菌纲(Clostridia)具有显著差异。值得注意的是,拟杆菌纲(Bacteroidia)属于拟杆菌门(Bacteroidetes梭菌纲(Clostridia)属于厚壁菌门(Firmicutes)(图4F)。为了进一步探究影响给予DSS后造成Metrnl(-/-)和Metrnl(+/+)小鼠间状态的原因,我们又在“目”层面进行了检测,结果显示(图4G),拟杆菌目(Bacteroidales),属于杆菌纲(Bacteroidia);梭菌目(Clostridiales),属于梭菌纲(Clostridia)发生了显著改变。

    图  4  肠上皮Metrnl 敲除对DSS诱导的溃疡性结肠炎小鼠肠道菌群动态平衡的影响
    A. Chao1丰度估计量;B.香农多样性指数;C.辛普森多样性指数;D.主成分分析;E.门水平上的丰度;F.纲水平上的丰度;G.目水平上的丰度P<0.05,与DSS-Metrnl(+/+)组比较。

    本研究用DSS诱导溃疡性结肠炎小鼠模型并从对肠道微生物影响的角度出发,探究肠上皮Metrnl特异性敲除对于肠道菌群调节的影响以及对溃疡性结肠炎的作用。发现Metrnl在溃疡性结肠炎小鼠模型中具有保护的功能,该效应可能是Metrnl通过对肠道菌群的调节所致。

    近期有一篇关于Metrnl改善克罗恩氏病(CD)的报道,该研究表明肠系膜脂肪组织与肠道存在交互作用,发现小鼠在给予Metrnl后,可通过激活STAT5/PPARγ信号通路,从而达到促进脂肪细胞分化来减轻肠系膜脂肪组织病变的作用[16]。该研究表明Metrnl确实可以影响炎症性肠病的发生发展。除此以外,我们进一步证实了,肠上皮特异性Metrnl敲除后可以加重DSS诱导的溃疡性结肠炎,并且该作用是通过抑制AMPK-mTOR-p70S6K通路,下调了肠上皮细胞自噬水平产生的[7]

    肠道微环境形成了合适的微生物群栖息地,已证明会影响多种消化系统疾病的发生[17]。肠道菌群稳态的紊乱已被广泛认为与炎症性肠病的发病机制和进展密切相关[8]。肠道菌群主要有三种功能,分别是代谢作用,保护作用和营养作用[18-19]。正常人肠道中在“门”这一层面,主要有四类微生物群,包括拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和变形杆菌门(Proteobacteria[20-21]

    溃疡性结肠炎的主要特征是有益细菌的减少。拟杆菌门(Bacteroidetes)是革兰阴性厌氧细菌,构成了哺乳动物胃肠道中主要微生物群[22]。目前认为,拟杆菌门可以通过免疫调节和维持体内平衡而对宿主发挥有益作用。据报道,拟杆菌门可以通过分泌多糖A(polysaccharide A, PSA)来增强抗炎因子IL-10的mRNA表达[23-24]。本研究结果显示出类似趋势,在给予3%DSS进行溃疡性结肠炎造模后,Metrnl(-/-)小鼠症状更加严重,与Metrnl(+/+)小鼠相比,其拟杆菌门的成分显著下降。然而,拟杆菌门在溃疡性结肠炎中并不完全有益。有报道显示,拟杆菌门可以侵入肠道组织并引起个别患者的肠道损伤[25]。因此针对该类菌属的作用还有待进一步验证。除此以外,由于SCFA具有增强肠壁屏障和免疫系统的作用,从而有助于抵抗病原体,因此产生SCFA的菌群目前认为对人体是有益的,例如Faecalibacterium prausnitziiRoseburiaEubacterium[26-28]。放线菌门(Actinobacteria)中的双歧杆菌属(Bifidobacterium)也是有益菌群[29-30]。然而,在该属中发现了有争议的结果,因为有研究报道显示,与对照组相比,溃疡性结肠炎患者的Bifidobacterium增加了[31- 32],其原因可能是疾病程度的造成的。因此,需要进一步的研究来阐明该有益菌群在溃疡性结肠炎中的作用。

    相反的,目前很多研究显示菌群在溃疡性结肠炎中显著增加,如变形杆菌门(Proteobacteria)下的黏附侵入性大肠杆菌属(adherent-invasive Escherichia coli)和巴斯德杆菌属(Pasteurellaceae),厚壁菌门(Firmicutes)下的韦荣氏球菌属(Veillonellaceae)和瘤胃球菌属(Ruminococcus gnavus),梭杆菌属(Fusobacterium)。我们的研究结果也显示出类似趋势,在给予DSS后,与Metrnl(+/+)小鼠相比,Metrnl(-/-)小鼠的厚壁菌的成分显著上升。除此以外,以下菌属也被认为具有潜在致病性,如大肠杆菌属(Escherichia),沙门菌属(Salmonella),耶尔森菌属(Yersinia),脱硫弧菌属(Desulfovibrio),幽门螺杆菌属(Helicobacter),弧菌属(Vibrio[31, 33-36]。目前报道较多的是黏附侵入性大肠杆菌,此种细菌能够黏附并穿过肠道黏液屏障,侵入肠道上皮层,促进TNFα分泌和炎症的发生[37-38]。本研究表明,肠上皮特异性Metrnl敲除后,在3%DSS诱导的溃疡性结肠炎模型中,导致肠道菌群动态平衡的进一步紊乱,表明恢复菌群动态平衡对于治疗溃疡性结肠炎至关重要。

    需要注意的是,大量研究表明,目前并没有明确具体的哪一种微生物群对人体是有益的,因为每个人的菌群特征都不同。一般而言,只有相对平衡的微生物群,才能最佳地维持人体的代谢和免疫功能以及预防疾病的发展。在健康的肠道中,病原菌和共生菌群可以共存而不会出现问题。但是,这种平衡的任何紊乱都会导致营养不良,从而改变微生物与宿主之间的相互作用[39]。尽管目前普遍认为溃疡性结肠炎中肠环境平衡的破坏是显著发生的,但是造成肠道平衡紊乱的生物学机制的仍然未知,并且不清楚这种紊乱究竟是造成溃疡性结肠炎的原因还是结果。

    本研究仍存在不足。首先,肠道微生态对溃疡性结肠炎的保护作用的详细机制仍未探究清楚,特别是肠道中存在的主要4类微生物群(拟杆菌,厚壁菌,放线菌,变形杆菌)对溃疡性结肠炎的作用还有待证实。其次,肠上皮特异性Metrnl敲除后通过调节肠道菌群的组成,从而加重3%DSS诱导的溃疡性结肠炎的作用证据仍不十分充分,需要今后在进一步的研究中加以阐明。

  • 图  1  SERS检测流程图

    图  2  银纳米颗粒表征结果

    A.银纳米颗粒紫外吸收光谱;B.银纳米颗粒电镜扫描结果;C.浓缩后的银纳米颗粒电镜扫描结果

    图  3  加入不同体积碘化钾后银胶的背景信号

    图  4  黄嘌呤、茶碱、可可碱的结构式

    图  5  10 μmol/L黄嘌呤(A)、茶碱(B)、可可碱(C)及三者对比(D)SERS图谱

    图  6  黄嘌呤(A)、茶碱(B)、可可碱(C)的检测限

    图  7  混合3种物质的血清SERS图谱与3种物质水溶液SERS图谱对比

    A.黑色为血清空白样品SERS图谱、红色为包含3种物质的血清样品SERS图谱;B.3种物质水溶液的SERS图谱

  • [1] 兰燕娜, 周玲. 表面增强拉曼光谱[J]. 南通工学院学报(自然科学版), 2004, 3(2):21-23.
    [2] 王明栋, 王宗廷, 王凤英. 表面增强拉曼光谱技术研究进展[J]. 化学分析计量, 2016, 25(1):104-107. doi:  10.3969/j.issn.1008-6145.2016.01.030
    [3] 白敏. 表面增强拉曼光谱技术在环境污染物检测中的应用[J]. 中国资源综合利用, 2019, 37(8):191-193. doi:  10.3969/j.issn.1008-9500.2019.08.057
    [4] 应方, 梁苗苗, 李剑锋. 有机磷农药残留的表面增强拉曼光谱快速检测[J]. 光散射学报, 2019, 31(2):131-135.
    [5] 王海波. 表面增强拉曼光谱用于食品检测的研究进展[J]. 食品工业科技, 2019, 40(15):322-329.
    [6] 罗丹, 周光明, 陈蓉, 等. 表面增强拉曼光谱法分析软饮料中的阿斯巴甜[J]. 分析测试学报, 2019, 38(3):328-333.
    [7] 张晨曦, 孙波, 刘佳佳, 等. 表面增强拉曼光谱在肿瘤实验室诊断中的应用[J]. 国际检验医学杂志, 2019, 40(12):1502-1505, 1525. doi:  10.3969/j.issn.1673-4130.2019.12.022
    [8] ZONG C, XU M X, XU L J, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chem Rev,2018,118(10):4946-4980. doi:  10.1021/acs.chemrev.7b00668
    [9] ZHANG Y, ZHAO S J, ZHENG J K, et al. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization[J]. Trac Trends Anal Chem,2017,90:1-13. doi:  10.1016/j.trac.2017.02.006
    [10] WU M R, LI H, LV D, et al. Dynamic-SERS spectroscopy for the in situ discrimination of xanthine analogues in ternary mixture[J]. Anal Bioanal Chem,2017,409(23):5569-5579. doi:  10.1007/s00216-017-0495-3
    [11] 翟剑凤. 氨茶碱在支气管炎治疗中的临床效果研究[J]. 临床医药文献电子杂志, 2019, 6(59):152-153.
    [12] 郭晓玲, 崔继文, 李锦莲, 等. 聚苏氨酸修饰铅芯电极同时测定尿酸、黄嘌呤和次黄嘌呤[J]. 佳木斯大学学报(自然科学版), 2019, 37(4):621-623.
    [13] 张先平. 己酮可可碱联合治疗急性脑梗死的临床疗效[J]. 中国现代医生, 2007, 45(6):44-45. doi:  10.3969/j.issn.1673-9701.2007.06.029
    [14] 周绪云. 一测多评法测定水蛭中尿嘧啶、次黄嘌呤、黄嘌呤和尿苷的含量[J]. 中国药品标准, 2019, 20(4):339-345.
    [15] LEE P C, MEISEL D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. J Phys Chem,1982,86(17):3391-3395. doi:  10.1021/j100214a025
    [16] XU L J, LEI Z C, LI J X, et al. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity[J]. J Am Chem Soc,2015,137(15):5149-5154. doi:  10.1021/jacs.5b01426
    [17] BIAO L H, TAN S N, WANG Y L, et al. Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles[J]. Mater Sci Eng: C,2017,76:73-80. doi:  10.1016/j.msec.2017.02.154
    [18] LO T H, SHIH P Y, WU C H. The response of UV/blue light and ozone sensing using Ag-TiO2 planar nanocomposite thin film[J]. Sensors (Basel),2019,19(23):E5061. doi:  10.3390/s19235061
    [19] 王存, 孟丽, 惠俊敏. 聚咪唑/氮化碳新型纳米复合材料修饰电极对尿酸、黄嘌呤和次黄嘌呤的同时检测[J]. 高等学校化学学报, 2019, 40(3):431-438. doi:  10.7503/cjcu20180717
    [20] 聂吉语, 李荣, 王颖, 等. 可可碱、茶碱和咖啡碱的快速测定及其色谱保留行为[J]. 食品科学, 2019, 40(20):318-324. doi:  10.7506/spkx1002-6630-20181120-227
    [21] 唐喆, 管静. RP-HPLC同时测定万古霉素和茶碱的血清药物浓度[J]. 中国执业药师, 2015, 12(10):7-10.
  • [1] 葛鹏程, 苏日古嘎, 任天舒, 党大胜.  硫酸黏菌素联合头孢哌酮舒巴坦治疗泛耐药鲍曼不动杆菌肺内感染的疗效分析 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202404093
    [2] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 1-7. doi: 10.12206/j.issn.2097-2024.202406035
    [3] 宋泽成, 马闪闪, 胡巧灵, 仲华, 王彦.  小檗碱与氟康唑合用抗氟康唑耐受白念珠菌的研究 . 药学实践与服务, 2025, 43(2): 87-91. doi: 10.12206/j.issn.2097-2024.202409047
    [4] 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟.  花椒生物碱富集纯化工艺优化及其成分分析 . 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
    [5] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202401072
    [6] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [7] 王晓飞, 张颖, 顾佳钰, 胡馨儿, 张海, 曹岩.  表面等离子共振传感器的识别元件在医药领域中的研究应用进展 . 药学实践与服务, 2024, 42(): 1-9. doi: 10.12206/j.issn.2097-2024.202309014
    [8] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
  • 加载中
图(7)
计量
  • 文章访问数:  9951
  • HTML全文浏览量:  2220
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2020-02-24
  • 网络出版日期:  2020-05-20
  • 刊出日期:  2020-05-01

表面增强拉曼光谱对结构类似物黄嘌呤、茶碱、可可碱的鉴别

doi: 10.12206/j.issn.1006-0111.202001005
    基金项目:  国家重大新药创制科技重大专项(2018ZX09J18112)
    作者简介:

    崔晓林,硕士研究生,Email:15021568203@163.com

    通讯作者: 陆 峰,教授,博士生导师,研究方向:药物分析,Email:fenglufeng@hotmail.com
  • 中图分类号: R284.1

摘要:   目的  采用表面增强拉曼光谱技术对结构类似物黄嘌呤、茶碱、可可碱进行区分。  方法  通过制备浓缩的银胶增强试剂作为拉曼基底,增加单位面积内的“热点”数目,从而提高表面增强拉曼光谱的灵敏度,增强待测样品的信号强度,实现对结构类似物进行有效区分的目的。同时,通过测定包含3种混合物的血清样品,验证表面增强拉曼光谱在实际应用中的可行性。  结果  浓缩后的银胶极大地提高了3种结构类似物的信号强度,分别得到3种物质各自的特征光谱图,以及混合物在血清体系下的光谱图。3种物质水溶液的检测限依次为:0.005、0.01、0.005 μmol/L。  结论  表面增强拉曼光谱是一种很好的用于区分结构类似物的分析方法,具有简便快捷、灵敏度高、对样品无损等特点,可广泛应用于检测、分析、临床治疗和诊断等领域。

English Abstract

陈昕璐, 高原, 李鹃鹃, 郭欢欢, 王卓, 高申. mRNA脂质纳米粒载药系统的构建及体外评价[J]. 药学实践与服务, 2023, 41(5): 291-295. doi: 10.12206/j.issn.2097-2024.202302026
引用本文: 崔晓林, 陆峰. 表面增强拉曼光谱对结构类似物黄嘌呤、茶碱、可可碱的鉴别[J]. 药学实践与服务, 2020, 38(3): 227-231, 258. doi: 10.12206/j.issn.1006-0111.202001005
CHEN Xinlu, GAO Yuan, LI Juanjuan, GUO Huanhuan, WANG Zhuo, GAO Shen. Construction and in vitro evaluation of an LNP system for mRNA delivery[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(5): 291-295. doi: 10.12206/j.issn.2097-2024.202302026
Citation: CUI Xiaolin, LU Feng. Identification of structural analogues xanthine, theophylline and theobromine by surface-enhanced Raman spectroscopy[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(3): 227-231, 258. doi: 10.12206/j.issn.1006-0111.202001005
    • 表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)是在拉曼光谱技术上发展起来的,一种快速、灵敏、简便、无损的分析方法[1-2],可用于食品、药物、环境污染、生物分子、细菌等物质的结构鉴定、定性定量分析等[3-7]。其主要有两种增强机制:化学增强和电磁增强[8-9]。两种机制共同作用,可使SERS信号增强106~1014倍。SERS图谱包含待测物质详细的指纹图谱信息,即使是细微的结构差别,在SERS图谱上均有明显不同,是区分结构类似物很好的技术手段[10]。同时,因其简便、快速等特性使得SERS技术可以应用于原位现场检测。

      黄嘌呤、茶碱、可可碱均属于嘌呤类衍生物,在结构上十分相似,其中,茶碱和可可碱与黄嘌呤是同系物,茶碱与可可碱是同分异构体。临床上常用黄嘌呤或茶碱进行支气管扩张、哮喘治疗等,可可碱常用来降低血液黏度[11-13]。较窄的治疗窗使得临床应用此类药物时通常需要对其进行血药浓度监测,以防止用药过量或不足等情况发生。但是,由于这3种物质的结构类似物很多,且常见于普通食品之中。如发生误服,易导致检测到的数据偏高,因此,急需一种实用、高效的分析手段,能够对这类结构类似物进行有效的区分和鉴别。常规分析方法如液相、质谱等[14]要经过复杂的分离手段,操作复杂、耗时长,给临床监测带来诸多不便。笔者利用SERS技术对3种结构类似物进行了有效的区分,并极大地降低了三者的检测限,同时,在实际血清样品的鉴别中也得到了很好的应用。

    • DF-101S恒温加热磁力搅拌器(上海梅颖浦仪器仪表制造有限公司);Vortex-Genie2多功能旋涡混合器(美国Scientific Industries公司);TG16-WS离心机(上海卢湘仪离心机有限公司);电子分析天平(北京赛多利斯仪器系统有限公司);BWS415-785H便携式拉曼光谱仪(美国必达泰克公司);TU-1902紫外可见分光计(北京普析通用仪器有限责任公司);Zeiss EVO MA-10扫描电子显微镜(德国Carl-Zeiss公司);

    • 黄嘌呤、茶碱、可可碱(分析纯)购自上海泰坦科技股份有限公司;硝酸银、柠檬酸三钠、碘化钾、甲醇(分析纯)购自国药集团化学试剂有限公司;血清样品取自SD大鼠;去离子水为实验室自制。

    • 10 μmol/L黄嘌呤溶液:用精度为十万分之一的电子天平准确称取15.21 mg黄嘌呤粉末,溶于1 L去离子水中,搅拌均匀,待完全溶解后得到浓度为100 μmol/L的黄嘌呤储备液。再利用去离子水按照浓度梯度稀释,依次得到浓度为10、5、1、0.5、0.2、0.15、0.1、0.075 μmol/L的黄嘌呤溶液。

      10 μmol/L茶碱溶液:用精度为十万分之一的电子天平准确称取18.16 mg茶碱粉末,溶于1 L去离子水中,搅拌均匀,待完全溶解后得到浓度为100 μmol/L的茶碱储备溶液。再利用去离子水按照浓度梯度稀释,依次得到浓度为10、5、1、0.5、0.2、0.15、0.1、0.075 μmol/L的茶碱溶液。

      10 μmol/L可可碱溶液:用精度为十万分之一的电子天平准确称取18.16 mg可可碱粉末,溶于1 L去离子水中,搅拌均匀,待完全溶解后得到浓度为100 μmol/L的可可碱储备溶液。再利用去离子水按照浓度梯度稀释,依次得到浓度为10、5、1、0.5、0.2、0.15、0.1、0.075 μmol/L的可可碱溶液。

      1 μmol/L碘化钾溶液:用精度为十万分之一的电子天平准确称取碘化钾粉末16.6 mg,溶于100 ml去离子水中,搅拌均匀,待完全溶解后即得1 mmol/L的碘化钾溶液。

      10 mmol/L硫酸镁MgSO4溶液:用精度为十万分之一的电子天平准确称取无水硫酸镁粉末120 mg,溶于100 ml去离子水中,搅拌均匀,待完全溶解后即得10 mmol/L的MgSO4溶液。

    • 用电子分析天平准确称取硝酸银36 mg,用200 ml 的去离子水充分溶解,将该溶液缓慢倒入500 ml的三颈烧瓶中,不断加热的同时进行磁力搅拌,溶液微沸时,加入4 ml质量分数1%的柠檬酸三钠溶液,继续加热搅拌约1 h,溶液的颜色由无色变为灰绿色,停止加热,冷却至室温,倒入棕色瓶中,避光保存[15]。由于溶胶体系的不稳定性,每次使用银胶之前都要摇晃均匀。

    • 紫外图谱表征:取2 ml纳米银胶溶液离心(7 000 r/min,5 min),尽可能多地去除上清液,然后加入等量的去离子水,吹打混匀,再加入8 ml去离子水稀释5倍,最后在300~700 nm波长范围内进行紫外光谱扫描,观察物质的紫外特征吸收峰。

      扫描电镜表征:取1 ml银胶溶液离心(7 000 r/min,5 min),尽可能多地去除上清液,然后加入1 ml去离子水,吹打混匀后,用移液枪吸取2.5 µl银胶溶液滴于硅片上,烘干后电镜扫描,观察纳米银胶颗粒的形态。

    • 本实验为了增加单位面积内SERS检测的“热点”数目,对银胶溶液进行了浓缩处理。结果发现浓缩约60倍的银胶溶液信号增强效果最好,但是却产生了极强的背景信号,推测可能是由于制备银胶溶液时残留的柠檬酸根导致的。根据任斌课题组的方法[16],我们用碘化钾溶液对银胶表面进行清洗。首先用移液枪分别吸取10 μl浓缩后的银胶溶液,置于6个1.5 ml离心管中,然后向每个离心管中分别加入0、1、3、5、7、9 μl的碘化钾溶液,涡旋混匀后,室温下孵育20~30 min采集SERS光谱。观察当多少碘化钾用量可使银胶浓缩后的背景信号基本去除。

    • 本实验所有SERS图谱均由BWS415拉曼光谱仪测得,将待测体系加到96孔板中,置于拉曼显微系统的检测台上,检测过程中,96孔板保持水平的状态,打开激光,将激光聚焦于待测溶液表面,点击开始,然后进行SERS检测。

      光谱检测参数如下:激光波长785 nm,分辨率5 cm−1,积分时间10 s,扫描次数为1次,激光功率为100 mW。

    • 用移液枪吸取10 μl浓缩60倍后的银胶溶液置于1.5 ml离心管中,向其中加入5 μl 1 mmol碘化钾溶液,涡旋混匀后,室温下孵育20~30 min。然后加入10 μl 100 mmol的黄嘌呤(茶碱/可可碱)溶液和2 μl的MgSO4溶液(这里Mg2+的加入是为了对银胶颗粒起到团聚作用,以达到增强检测信号的目的),吹打混匀后,加入去离子水,使最终的溶液体积为100 μl。此时,黄嘌呤(茶碱/可可碱)的最终检测浓度均为10 mmol/L,然后将溶液转移到96孔板中,放到检测台上,打开激光,采集SERS图谱。SERS检测步骤如图1所示。

      图  1  SERS检测流程图

    • 按照上述SERS检测的步骤,分别对已经配好的10、5、1、0.5、0.2、0.15、0.1、0.075 μmol/L的黄嘌呤、茶碱、可可碱溶液进行检测,测定3种结构类似物的最低检测限。

    • 从SD大鼠眼眶中获取适量全血样品溶液,等比例加入黄嘌呤、茶碱、可可碱粉末,混合均匀后,按照1:3的比例加入纯甲醇溶液,用以沉淀蛋白,获得包含3种物质的血清样品溶液。按照上述拉曼检测步骤对3种物质的血清体系进行检测。

    • 采用BWSpec4软件对采集到的光谱原始数据进行处理,主要为光谱平滑和基线校正。然后利用Matlab软件对数据进行光谱波段的截取,选取400~1 800 cm−1处的光谱数据进行分析,同时采用Origin 9软件对处理好的数据进行绘图。

    • 本实验采用的制胶方法来源于Lee法,是银胶最经典的制备方法。大多数实验的银胶制备方法都在Lee法的基础上加以进一步的改进和优化,所以,不同实验室制备的纳米银胶在粒径、形态大小上略有不同。本实验利用紫外光谱和扫描电镜对纳米银胶颗粒进行表征,结果如图2所示。由图2A可见,纳米银胶在300~700 nm扫描范围内,只在419 nm处出现了一个尖锐的单峰,半峰宽较窄。验证本实验制备的溶液确实为银胶溶液,且较小的半峰宽也可以反映出纳米银颗粒具有良好的分散性和均一性[17-18]图2B可以看出本实验制备的纳米银胶颗粒为球形,大小均一,直径约为60 nm,分布较为松散。而图2C是将银胶溶液浓缩之后的纳米银胶颗粒形态,相比于未浓缩的银纳米颗粒,浓缩之后粒子之间距离极大缩短,单位面积之内的粒子数目增加,SERS检测“热点”也随之增加,极大地提高了待测物质的信号强度。

      图  2  银纳米颗粒表征结果

    • 为了增强待测物质的信号强度,提高SERS检测的灵敏度,本实验将银胶溶液通过离心的方式进行了浓缩。经过一系列浓缩倍数的尝试,发现当浓缩倍数为60倍左右时,信号增强效果最好。但是,与此同时,制备银胶溶液时残留在溶液里的柠檬酸根离子也随之富集,显示了强大的背景信号,严重掩盖了待测物质的信号。所以,本实验采用碘化钾溶液对银纳米颗粒表面进行清洗。由图3可知,当1 mmol/L碘化钾溶液用量为5 μl时,背景信号基本去除干净。碘化钾用量不宜过多,因为过量的I也会屏蔽待测物质的信号,所以,碘化钾用量为刚好去除背景信号即可。之后的所有实验都会对浓缩后的银胶溶液经历KI清洗步骤,以保证待测物质信号不受背景信号干扰,同时也不会被I屏蔽。

      图  3  加入不同体积碘化钾后银胶的背景信号

    • 黄嘌呤、茶碱、可可碱是3个结构十分相似的化合物,其中,茶碱、可可碱与黄嘌呤是同系物,而茶碱与可可碱之间是同分异构体,如图4所示。所以在实际应用中,对于三者的鉴定检测十分困难。通过SERS特有的指纹图谱特性,可以对三者进行很好的区分。由图5可知,黄嘌呤的特征峰主要出现在400~800 cm−1处,其中,522、577、660 cm−1处峰强明显;茶碱的特征峰主要出现在400~600 cm−1以及1 300~1 700 cm−1处,其中,520、567、932、1 306、1 380、1 440、1 587 cm−1峰强明显;而可可碱出峰较多,在400~1 800 cm−1均有出峰,其中,474、639、698、1 316、1 355、1 594 cm−1峰强较高。由此可见,尽管3种物质的结构十分类似,但是在SERS图谱中的特征峰却完全不同。所以SERS技术对于这类结构类似物具有很好的区分效果。

      图  4  黄嘌呤、茶碱、可可碱的结构式

      图  5  10 μmol/L黄嘌呤(A)、茶碱(B)、可可碱(C)及三者对比(D)SERS图谱

    • 上述对银胶溶液进行浓缩,不仅是为了增强待测物质的信号强度,同时也有降低检测限的目的。现利用浓缩银胶对3种物质检测限分别测定,由图6可知,黄嘌呤和可可碱的最低检测限为0.075 μmol/L,而茶碱的最低检测限为0.1 μmol/L,相比于液相等方法[19-21],该方法对三者的检测灵敏度更高,检测限更低,完全能满足实际应用中对3种物质含量的检测。

      图  6  黄嘌呤(A)、茶碱(B)、可可碱(C)的检测限

    • 黄嘌呤、茶碱以及可可碱都是常见药物成分,临床上常对3种物质的血药浓度进行监测。但是三者之间互为结构类似物,常常对监测过程产生干扰,使得测定结果偏高,故而本实验利用SERS技术对3种物质同时存在的血清溶液进行测定,观察SERS图谱是否可以很好地将其区别开来。结果如图7所示。由图7A可知,单独对血清空白样品进行检测,是没有SERS信号产生的。表明血清体系不对测定结果产生干扰。而含有3种物质的血清样品溶液可以检测到三者的特征信号。尽管信号强度对比水溶液来说弱了许多,但是与图7B对比可知,3种物质的特征峰均可以在混合血清溶液中一一对应。以上表明,利用SERS技术可以有效检测血清样品中是否包含黄嘌呤、茶碱、可可碱中一个或多个物质的存在。

      图  7  混合3种物质的血清SERS图谱与3种物质水溶液SERS图谱对比

    •   本实验利用SERS技术对结构类似物黄嘌呤、茶碱、可可碱进行测定。结果表明,尽管3种物质在结构上相差不大,但是其各自的SERS图谱却完全不同,特征峰各异,可以很好的区分。整个实验过程操作简单、耗时短、样品需求少,证明了SERS技术对结构类似物具有很好的区分鉴别作用。同时,我们通过将SERS技术应用到检测3种物质的血清样品溶液中,证明该方法可以有效地对 三者混合物进行鉴定。综上,SERS在对结构类似物进行定性鉴别等方面具有巨大优势。

参考文献 (21)

目录

/

返回文章
返回