-
阿尔茨海默病(AD)是一种以进行性记忆功能和神经行为障碍为表现的中枢神经系统退行性疾病。目前全球约有AD患者
5000 余万人,随着人口老龄化的进展,这一数字还将持续增加,给全球发展带来巨大的健康和经济负担[1] 。到目前为止,临床尚缺乏有效的AD治疗手段。胆碱酯酶抑制剂、NMDA拮抗剂等传统AD治疗药物效果有限,FDA新批准上市的Aβ单克隆抗体仑卡奈单抗等疗效尚存争议,且治疗费用昂贵[2] 。因此,开发经济、有效的AD治疗药物仍是当前研究热点。中药因其多靶点系统作用和低毒副作用的优势,近年来在AD等复杂疾病治疗药物发掘中发挥重要作用[3] 。中药葛根和知母临床应用历史悠久,葛根解肌退热、生津止渴,知母清热泻火、滋阴润燥,二者配伍可清热生津、滋阴润燥,改善代谢紊乱,对热邪灼津、痰浊阻窍所致的健忘呆钝、消渴等症具有治疗作用,主要代表方剂为玉液汤[4-6] 。近年来研究发现该药对的一些成分如葛根素[7] 、芒果苷[8] 、知母皂苷BⅡ[9] 等对AD具有药效作用。作为一种复杂的异质性疾病,AD的发生与糖尿病存在紧密的因果关联,也被称为脑型糖尿病(3型糖尿病)[10] 。但是目前鲜见葛根与知母配伍后在AD治疗中作用效果的报道。因此,本研究拟通过建立AD大鼠模型考察葛根和知母配伍防治AD的效果,同时运用代谢组学策略探究葛根与知母作为药对配伍后防治AD潜在的作用机制,为中药防治AD研究提供参考借鉴。
-
以水迷宫实验中大鼠逃避潜伏期、穿越站台所在位置次数以及站台所在象限的停留时间作为评价指标,考察大鼠的学习和记忆水平。结果如图1所示,定位航行训练期间,各组大鼠的逃避潜伏期随训练时间增加均呈下降趋势,其中模型组逃避潜伏期下降趋势较为平缓,对照组和3个中药干预组下降趋势均较模型组显著,对照组和葛根-知母药对组第5日逃避潜伏期较模型组均有极显著差异(P<0.01)。同样,空间探索实验中,模型组大鼠穿越站台次数以及站台所在象限的停留时间较对照组均显著减少,组间差异具有统计学意义(P<0.05)。中药干预后各组大鼠穿越站台次数及目标象限停留时间均有所增加,其中葛根-知母药对组与模型组间差异具有统计学意义(P<0.05)。结果表明,造模后大鼠的学习和记忆能力出现下降,给予葛根、知母和葛根-知母药对干预均可不同程度改善大鼠的学习和记忆能力,以葛根-知母药对最为显著,效果优于单药。
-
与对照组相比,模型组大鼠血清NO水平相对升高,MDA水平显著升高(P<0.05),SOD含量极显著降低(P<0.01)。中药干预后,各给药组血清NO和MDA水平出现不同程度降低,其中葛根-知母药对组降低效果最为明显,与模型组间差异具有统计学意义(P<0.05)。葛根、知母和葛根-知母药对给药组血清SOD含量较模型组均有所回调,组间差异具有统计学意义(P<0.05),见图2。
-
血清样本经UHPLC-Q/TOF-MS分析后得到各组大鼠血清代谢图谱,不同色谱柱分析条件下各组大鼠血清代谢轮廓存在一定差异。多元统计分析结果表明(图3),在PLS-DA多组分析模型中,空白对照组、AD模型组和3个中药干预组组间区分度较好,组内差异相对较小。PLS-DA模型200次置换检验结果显示,Q2回归线与Y轴截距小于0,R2和Q2曲线斜率始终为正值,且Q2<R2,表明模型未出现过拟合,具有相对可靠的解释和预测能力。在OPLS-DA模型中,不同分析条件下,AD模型组与空白对照组间完全分离,表明模型组与对照组间具有显著组间差异,CV-ANOVA验证结果证实所建立的OPLS-DA模型未出现过拟合,具备解释和预测能力。
-
对T3柱和HILIC柱正、负离子模式下的代谢物信息进行差异化分析,以VIP值>1、P<0.05和FC>1.2或FC<0.8作为筛选标准,对不同模式下空白对照组与AD模型组的差异代谢物进行筛选,并以火山图形式呈现(图4)。图中橙色标记点为显著上调代谢物,蓝色标记点为显著下调代谢物。
利用HMDB数据库对差异代谢物质谱信息进行匹配和鉴定,在AD模型组与对照组间鉴定出70个AD相关的潜在生物标志物,其中由HILIC柱鉴定得到31个代谢物,T3柱鉴定得到45个代谢物,T3和HILIC柱共同鉴定得到的代谢物6个,具体如表1所示。
序号 代谢物 色谱柱 分子质量(m/z) 化学式 加合离子 趋势 相关通路 P 值 1 2-羟基丁酸 T3 127.0362 C4H8O3 M+Na ↑ 丙酸代谢 1.22E-03 2 肌酸 T3 132.0781 C4H9N3O2 M+H ↑# 甘氨酸、丝氨酸和苏氨酸代谢 6.98E-03 3 脯氨酸 T3、HILIC 138.0553 C5H9NO2 M+Na ↓#* 精氨酸和脯氨酸代谢 4.20E-03 4 L-天冬氨酸 T3 133.0606 C4H8N2O3 M+H ↑# 丙氨酸、天冬氨酸和
谷氨酸代谢2.36E-02 5 L-乙酰基肉碱 T3 204.1218 C9H17NO4 M+H ↑ 不饱和脂肪酸的生物合成 1.26E-03 6 棕榈酰肉碱 T3 400.3424 C23H45NO4 M+H ↑#* 脂肪酸降解 2.38E-04 7 喹啉酸 T3 168.0271 C7H5NO4 M+H ↑ 烟酸和烟酰胺代谢 4.97E-04 8 焦谷氨酸 T3 128.0329 C5H7NO3 M-H ↓# 谷胱甘肽代谢 2.89E-02 9 3b-羟基-5-胆酸 T3 357.2789 C24H38O3 M+H-H2O ↑ − 1.01E-02 10 香草酸 T3 151.0361 C8H8O4 M+H-H2O ↑ − 3.05E-03 11 肌酸酐 T3 136.0491 C4H7N3O M+Na ↑# − 1.89E-04 12 戊烯二酸 T3 153.0198 C5H6O4 M+Na ↑ − 8.96E-03 13 亚油酸 T3 303.2327 C18H32O2 M+Na ↑# 亚油酸代谢 2.45E-02 14 4-羟基丁酸 T3 103.0382 C4H8O3 M-H ↑# − 4.49E-03 15 糖原 T3 689.2111 C24H42O21 M+Na ↑ 淀粉和蔗糖代谢 2.24E-02 16 肉豆蔻酸 T3 211.2038 C14H28O2 M+H-H2O ↑# 脂肪酸生物合成 4.15E-02 17 丙酰肉碱 T3 218.1383 C10H19NO4 M+H ↓# 支链脂肪酸的氧化 1.97E-02 18 硬脂酰肉碱 T3 428.3734 C25H50NO4 M+H ↑#* 长链饱和脂肪酸的
线粒体β氧化2.84E-04 19 花生四烯酸 T3 327.232 C20H32O2 M+Na ↑#* 花生四烯酸代谢 1.53E-02 20 N1乙酰精胺 T3 267.208 C12H28N4O M+Na ↑# 赖氨酸降解 3.71E-02 21 N6, N6, N6-三甲基-L-赖氨酸 T3 189.16 C9H20N2O2 M+H ↑# α-亚麻酸代谢 4.44E-02 22 α-亚麻酸 T3 279.2316 C18H30O2 M+H ↑#* 初级胆汁酸生物合成 2.80E-02 23 24羟基胆固醇 T3 425.343 C27H46O2 M+Na ↑# 半胱氨酸和蛋氨酸代谢 8.17E-04 24 2-氧代-4-甲硫基丁酸 T3 131.0189 C5H8O3S M+H-H2O ↑ 不饱和脂肪酸的生物合成 1.14E-02 25 二十碳五烯酸 T3 285.2212 C20H30O2 M+H-H2O ↑# − 2.45E-02 26 油酰乙醇酰胺 T3 348.2891 C20H39NO2 M+Na ↑# − 8.42E-03 27 吲哚-3-丙酸 T3 190.0858 C11H11NO2 M+H ↓# − 4.79E-04 28 棕榈油酸 T3 237.2193 C16H30O2 M+H-H2O ↑#* − 5.79E-03 29 15(S)-羟基二十碳三烯酸 T3 345.2341 C20H34O3 M+Na ↑# − 9.83E-03 30 十四酰肉碱 T3、HILIC 372.3103 C21H41NO4 M+H ↑# − 1.15E-02 31 3-羟基马尿酸 T3 178.0501 C9H9NO4 M+H-H2O ↓#* − 9.53E-03 32 18-羟基花生四烯酸 T3 343.225 C20H32O3 M+Na ↑# − 3.91E-02 33 亚麻酰基肉碱 T3 424.3414 C25H46NO4 M+H ↑# − 4.25E-04 34 LysoPC(15:0/0:0) T3 526.3057 C23H48NO7P M+FA-H ↓#* − 2.55E-02 35 PC(18:1(9Z)e/2:0) T3 550.3872 C28H56NO7P M+H ↑#* − 2.11E-03 36 7-酮胆固醇 T3 401.3455 C27H44O2 M+H ↑#* − 1.08E-04 37 9-十六碳烯酰肉碱 T3 398.3152 C23H43NO4 M+H ↑# − 9.43E-05 38 16(17)-EpDPE T3 343.2219 C22H32O3 M-H ↑#* − 3.33E-02 39 十八烯酰肉碱 T3 426.3578 C25H47NO4 M+H ↑# − 1.84E-04 40 肉豆蔻酰肉碱 T3 370.2951 C21H39NO4 M+H ↑ − 4.25E-03 41 DL-乙酰肉碱 T3 204.1227 C9H17NO4 M+H ↑ 嘧啶代谢 1.85E-03 42 胞苷一磷酸 HILIC 368.0407 C9H14N3O8P M+FA-H ↓# 甘氨酸、丝氨酸和苏氨酸代谢 2.74E-02 43 胆碱 HILIC 86.0963 C5H14NO M+H-H2O ↑ 初级胆汁酸生物合成 1.20E-02 44 甘胆酸 HILIC 466.33 C26H43NO6 M+H ↑#* 苯丙氨酸、酪氨酸和色氨酸生物合成 2.43E-04 45 L-酪氨酸 HILIC 182.0812 C9H11NO3 M+H ↑#* 苯丙氨酸、酪氨酸和色氨酸生物合成 2.89E-03 46 苯丙氨酸 HILIC 166.0862 C9H11NO2 M+H ↑ 嘌呤代谢 1.68E-03 47 肌苷酸 HILIC 383.0262 C10H13N4O8P M+Cl ↓#* 丙氨酸、天冬氨酸和
谷氨酸代谢9.85E-04 48 L-天门冬氨酸 HILIC 134.0433 C4H7NO4 M+H ↑ 苯丙氨酸、酪氨酸和色氨酸生物合成 5.14E-04 49 苯丙酮酸 HILIC 165.0546 C9H8O3 M+H ↑#* 嘧啶代谢 6.25E-03 50 乳清酸 HILIC、T3 179.0029 C5H4N2O4 M+Na ↓#* 鞘脂代谢 3.04E-02 51 鞘氨醇 HILIC 302.3059 C18H39NO2 M+H ↑# 酪氨酸代谢 6.59E-04 52 香草扁桃酸 HILIC 233.0192 C9H10O5 M+Cl ↑#* 酪氨酸代谢 6.72E-05 53 酪胺 HILIC 120.079 C8H11NO M+H-H2O ↑ − 2.50E-03 54 3-氧代-4, 6 -胆二烯酸 HILIC 393.2315 C24H34O3 M+Na ↑# 初级胆汁酸生物合成 1.46E-02 55 鹅去氧胆酸 HILIC 437.2877 C24H40O4 M+FA-H ↑#* 丙氨酸、天冬氨酸和
谷氨酸代谢7.30E-04 56 谷氨酰胺 HILIC 169.0584 C5H10N2O3 M+Na ↑# − 5.06E-04 57 亮氨酸 HILIC 133.0855 C6H12O3 M+H ↑ − 5.18E-03 58 高-L-精氨酸 HILIC 189.1292 C7H16N4O2 M+H ↑#* − 1.22E-02 59 马尿酸 HILIC、T3 178.0516 C9H9NO3 M-H ↓# − 2.94E-02 60 牛磺胆酸3-硫酸盐 HILIC 596.2653 C26H45NO10S2 M+H ↑ − 1.78E-05 61 鹅去氧胆酸3-硫酸盐 HILIC 455.2515 C24H40O7S M+H-H2O ↑ 半胱氨酸和蛋氨酸代谢 2.76E-03 62 硫代半胱氨酸 HILIC 187.9645 C3H7NO2S2 M+Cl ↓# 亚油酸代谢 8.23E-05 63 13-L-过氧化氢亚油酸 HILIC 311.2187 C18H32O4 M-H ↓# − 4.63E-03 64 S-亚硝基谷胱甘肽 HILIC 381.0763 C10H16N4O7S M+FA-H ↓#* 鞘脂代谢 8.86E-05 65 LacCer(d18:1/12:0) HILIC 806.5705 C42H79NO13 M+H ↑ 花生四烯酸代谢 1.30E-04 66 LysoPC(14:0/0:0) HILIC、T3 512.3009 C22H46NO7P M+FA-H ↓ − 3.34E-02 67 2-(14,15-环氧二十碳三烯酰基)甘油 HILIC 395.2749 C23H38O5 M+H ↑ − 1.41E-03 68 赖氨酰苯丙氨酸 HILIC 294.1891 C15H23N3O3 M+H ↑ 醚脂代谢 2.52E-04 69 二十四碳四烯酸肉碱 HILIC、T3 526.3786 C31H53NO4 M+Na ↑ − 2.98E-05 70 1-(11Z二十二碳烯酰基)-3-磷酸甘油酯 HILIC 515.3163 C25H49O7P M+Na ↑ − 8.91E-07 注:↑表示模型组较对照组相对升高趋势,↓表示模型组较对照组相对下降趋势,P值为模型组与对照组间代谢物水平的t检验计算结果;
#表示代谢物经葛根-知母药对干预后具有回调趋势(共47个),*表示代谢物(共20个)经葛根-知母药对干预后回调差异具有统计学意义(P<0.05) -
利用各组间的FC值变化情况判断药对干预后的回调代谢物。对于具有回调趋势的代谢物多组间变化情况进行单因素方差分析,P<0.05的代谢物确定为药对干预后显著回调的差异代谢物。结果显示,葛根-知母药对干预后出现回调的差异代谢物共计47个,其中显著回调代谢物20个(表1和图5)。
对70个AD相关的差异代谢物和葛根-知母药对干预后显著回调的20个差异代谢物分别进行通路富集分析后发现(图6),AD模型大鼠潜在疾病生物标志物涉及通路主要包括苯丙氨酸、酪氨酸和色氨酸生物合成、苯丙氨酸代谢、亚油酸代谢、不饱和脂肪酸的生物合成、丙氨酸、天冬氨酸和谷氨酸代谢、精氨酸生物合成、酪氨酸代谢、嘧啶代谢等。葛根-知母药对干预可对苯丙氨酸、酪氨酸和色氨酸生物合成、苯丙氨酸代谢、不饱和脂肪酸的生物合成、酪氨酸代谢和初级胆汁酸生物合成等通路产生回调影响。
Study on the Pharmacological Effects and Mechanism of Gegen-Zhimu Herb Pair in Preventing and Treating Alzheimer's Disease by UHPLC-Q/TOF-MS Metabolomics Strategy
doi: 10.12206/j.issn.2097-2024.202409035
- Received Date: 2024-09-13
- Rev Recd Date: 2024-11-06
-
Key words:
- Alzheimer's disease /
- metabolomics /
- Gegen-Zhimu /
- herb pair /
- mechanism
Abstract:
Citation: | CHAO Liang, WANG Hui, SHEN Shuqi, YOU Piaoxue, JI Kaihong, HONG Zhanying. Study on the Pharmacological Effects and Mechanism of Gegen-Zhimu Herb Pair in Preventing and Treating Alzheimer's Disease by UHPLC-Q/TOF-MS Metabolomics Strategy[J]. Journal of Pharmaceutical Practice and Service. doi: 10.12206/j.issn.2097-2024.202409035 |