Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 39 Issue 3
May  2021
Turn off MathJax
Article Contents

QIU Lijuan, CHAO Wen, SHI Anjie, YAN Lan, LÜ Quanzhen, JIANG Yuanying. Study on the antifungal activity of phenazine derivatives[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(3): 249-254. doi: 10.12206/j.issn.1006-0111.202103083
Citation: QIU Lijuan, CHAO Wen, SHI Anjie, YAN Lan, LÜ Quanzhen, JIANG Yuanying. Study on the antifungal activity of phenazine derivatives[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(3): 249-254. doi: 10.12206/j.issn.1006-0111.202103083

Study on the antifungal activity of phenazine derivatives

doi: 10.12206/j.issn.1006-0111.202103083
  • Received Date: 2021-03-26
  • Rev Recd Date: 2021-05-07
  • Available Online: 2021-05-25
  • Publish Date: 2021-05-25
  •   Objective  To study the antifungal activity of phenazines derivatives.  Methods  The anti-fungal activity of phenazine compounds was evaluated initially with micro-liquid dilution. No significant antifungal activity against Candida albicans was found. Then, with the combination of phenazine compounds and fluconazole, the anti-fungal activity against fluconazole-resistant C. albicans was detected.  Results  The phenazine-17 had significant antifungal activity when combined with fluconazole through the inhibition of hyphae formation.  Conclusion  This study provides a new idea for the development of antifungal drugs and the solution of antifungal drug resistance.
  • [1] 廖万清. 深部真菌感染治疗进展[J]. 中国麻风皮肤病杂志, 2003, 19(6):597-600. doi:  10.3969/j.issn.1009-1157.2003.06.036
    [2] FRIDKIN SK, JARVIS WR. Epidemiology of nosocomial fungal infections[J]. Clin Microbiol Rev,1996,9(4):499-511.
    [3] PFALLER MA. Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission[J]. Clin Infect Dis,1996,22(Suppl 2):S89-S94.
    [4] LEE JS, JUNG WK, JEONG MH, et al. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway[J]. Int J Toxicol,2012,31(1):70-77. doi:  10.1177/1091581811423845
    [5] SANDAI D, TABANA YM, OUWEINI AE, et al. Resistance of Candida albicans biofilms to drugs and the host immune system[J]. Jundishapur J Microbiol,2016,9(11):e37385.
    [6] HARVEY AL, EDRADA ER, QUINN RJ. The re-emergence of natural products for drug discovery in the genomics era[J]. Nat Rev Drug Discov,2015,14(2):111-129. doi:  10.1038/nrd4510
    [7] MORALES DK, JACOBS NJ, RAJAMANI S, et al. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms[J]. Mol Microbiol,2010,78(6):1379-1392. doi:  10.1111/j.1365-2958.2010.07414.x
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(2)

Article Metrics

Article views(3927) PDF downloads(30) Cited by()

Related
Proportional views

Study on the antifungal activity of phenazine derivatives

doi: 10.12206/j.issn.1006-0111.202103083

Abstract:   Objective  To study the antifungal activity of phenazines derivatives.  Methods  The anti-fungal activity of phenazine compounds was evaluated initially with micro-liquid dilution. No significant antifungal activity against Candida albicans was found. Then, with the combination of phenazine compounds and fluconazole, the anti-fungal activity against fluconazole-resistant C. albicans was detected.  Results  The phenazine-17 had significant antifungal activity when combined with fluconazole through the inhibition of hyphae formation.  Conclusion  This study provides a new idea for the development of antifungal drugs and the solution of antifungal drug resistance.

QIU Lijuan, CHAO Wen, SHI Anjie, YAN Lan, LÜ Quanzhen, JIANG Yuanying. Study on the antifungal activity of phenazine derivatives[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(3): 249-254. doi: 10.12206/j.issn.1006-0111.202103083
Citation: QIU Lijuan, CHAO Wen, SHI Anjie, YAN Lan, LÜ Quanzhen, JIANG Yuanying. Study on the antifungal activity of phenazine derivatives[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(3): 249-254. doi: 10.12206/j.issn.1006-0111.202103083
  • 近年来,随着免疫抑制剂的广泛使用和介入手术的增多,深部真菌感染的发病率逐年上升。同时,手术患者的增加,住院天数的增长,也使得院内真菌感染成为急需解决的问题。在治疗真菌感染过程中长周期的给药方式和真菌耐药问题造成了政府和住院患者的医疗支出大幅增加,新的抗真菌药物或者协同抗真菌药物研究迫在眉睫。为了克服真菌的耐药性问题,本课题组一直致力于研究药物联用协同抗耐药真菌的效果。据统计,真菌感染中最常见菌属是念珠菌,而在念珠菌中白念珠菌的占比又高达45%~50%,因此,靶向于白念珠菌的药物研究就显得十分重要[1-6]。2010年,Morales等报道了化合物吩嗪硫酸甲酯具有抗白念珠菌被膜的活性[7]。为了进一步获得具有更强抗真菌活性的先导化合物,我们筛选了以吩嗪为骨架的20余种吩嗪类衍生物,获得了具有协同氟康唑抗真菌活性的化合物吩嗪衍生物-17,本研究为抗耐药真菌联合用药提供了新思路。

  • 洁净工作台(HPeafe-1200LC(A2)上海力申科学仪器有限公司);振荡培养箱(HZ-2111K-B江苏太仓市实验设备厂);微量加样器(Biohit);小型冷冻离心机(HitachiCT15RE);蒸汽灭菌锅(KG-SX500 KAGOSHIMA SELSAKUSYO,Japan);多功能酶标仪(TECAN Infinite M200);倒置相差显微镜(Amersham Pharmacia AMG EVOS×1);紫外分光光度计(Amersham Biosciences Μltrospec10)。

  • 白念珠菌标准菌株SC5314由美国Georgetown大学William A Fonzi教授赠送,临床分离的耐药白念珠菌103和538来自海军军医大学附属长海医院皮肤科,氟康唑(FCZ)由辉瑞公司生产,吩嗪类化合物购自chemdiv化合物库,二甲基亚砜(DMSO)购自博光生物试剂有限公司,酵母提取物、甘露醇、营养肉汤购自BD公司,蛋白胨、葡萄糖、琼脂均购自上海生工生物技术有限公司,RPMI1640购自Gibco公司。

  • 将保存在SDA固体培养皿的SC5314单克隆菌株转接到1 ml YEPD培养基,30 ℃、200 r/min,培养过夜,使真菌菌株处于指数生长平台期。①洗菌:将活化好的菌株转移到1.5 ml离心管中,用无菌PBS缓冲液洗3次,再用1 ml PBS重悬。②调节浓度:用RPMI1640稀释菌液100倍,使其浓度为(1~5)×106 CFU/ml。再用RPMI1640稀释1000倍,使菌终浓度(1~5)×103 CFU/ml。③制备药敏实验板:取一块96孔板,第1列加入100 μl RPMI 1640液体培养基做空白对照;第2列加200 μl上述菌液,第3~12列分别加入100 μl上述菌液,第2列加吩嗪类衍生物使其终浓度为64 μg/ml,2~11列进行倍比稀释,使得药物终浓度分别为64、32、16、8、4、2、1、0.5、0.25、0.125 μg/ml,每个药都加2个复孔(2行),以减少实验误差,铺好药和菌的96孔板用封条封闭,于30 ℃恒温培养过夜,用酶标仪在λ=630 nm测吸光度(A)值,计算MIC80值。

  • 菌株活化、洗菌和调菌浓度同前所述,取一块96孔板,第1列加入100 μl RPMI1640/YEPD培养基做空白对照;第12列加入100 μl上述菌液做阳性对照;剩余菌液加入适量氟康唑,使得氟康唑终浓度为2 μg/ml,第2列加入该配制好的菌液200 μl,第3~11列加入该配制好的菌液100 μl,第2列再加入吩嗪类衍生物使其终浓度为64 μg/ml,2~11列进行倍比稀释,使得药物终浓度分别为64、32、16、8、4、2、1、0.5、0.25、0.125 μg/ml,每种药都加2个复孔(2行),以减少实验误差,将铺好药和菌的96孔板用封条封闭,于30 ℃恒温培养过夜,用酶标仪在λ=630 nm处测A值,计算最低抑菌浓度(MIC80)和协同指数(FICI)。

    除了用上述耐药白念珠菌103实验外,再更换菌株为538,重复上述实验步骤进行实验。

  • 过夜活化的白念珠菌SC5314分别用Spider培养液和RPMI1640培养液稀释1 000倍,分别加药使吩嗪衍生物-17终浓度为4 μg/ml、FCZ的终浓度为4 μg/ml以及吩嗪衍生物-17与FCZ的合用(浓度与单药相同),空白对照加入同体积的DMSO,充分混匀,转移至12孔板中,37 ℃,静置培养3 h,倒置显微镜观察菌丝形态。

  • 通过对吩嗪类24种衍生物的体外抗真菌活性研究发现,吩嗪类化合物单用对白念珠菌没有抗真菌活性,其MIC80均>128 μg/ml。在RPMI1640培养液中,采用临床分离的氟康唑耐药白念珠菌103和538(氟康唑单用时,MIC80>32 μg/ml),考察吩嗪类化合物协同氟康唑的抗真菌活性。结果显示,当吩嗪类化合物与2 μg/ml的氟康唑合用时,0.25~0.5 μg/ml的吩嗪衍生物-12、0.125 μg/ml的吩嗪衍生物-17、1~2 μg/ml的吩嗪衍生物-18协同氟康唑后有明显的抗耐药白念珠菌的活性,结果见表1。而后我们采用棋盘式微量液基稀释法,进一步考察了氟康唑和吩嗪衍生物-12、吩嗪衍生物-17、吩嗪衍生物-18合用时的最低浓度,结果显示吩嗪衍生物-17与氟康唑协同抗白念珠菌菌效果最强,0.0625 μg/ml的吩嗪衍生物-17与1 μg/ml的氟康唑即可完全抑制耐药白念珠菌的生长,协同指数FICI<0.5,说明与氟康唑具有明显的协同作用(表2)。

    化合物编号结构分离株103MIC80
    (μg/ml)
    分离株538MIC80
    (μg/ml)
    吩嗪-1>16>16
    吩嗪-288
    吩嗪-3>1616
    吩嗪-4>16>16
    吩嗪-5>16>16
    吩嗪-688
    吩嗪-7>16>16
    吩嗪-8168
    吩嗪-9>16>16
    吩嗪-10>16>16
    吩嗪-111616
    吩嗪-120.50.25
    吩嗪-13>16>16
    吩嗪-14>16>16
    吩嗪-15>16>16
    吩嗪-16>16>16
    吩嗪-170.1250.125
    吩嗪-1821
    吩嗪-1988
    吩嗪-20168
    吩嗪-211616
    吩嗪-22>16>16
    吩嗪-23>16>16
    吩嗪-24>1616
    化合物编号单用[MIC80(μg/ml)]合用[MIC80(μg/ml)]FICI协同方式
    吩嗪类衍生物氟康唑吩嗪类衍生物氟康唑
    吩嗪类衍生物-12>64>320.251.00.034协同
    吩嗪类衍生物-17>64>320.06251.00.032协同
    吩嗪类衍生物-18>64>320.52.00.070协同
  • 为了进一步考察吩嗪类衍生物-17的体外抗菌活性,我们考察了其对菌丝生长的抑制作用。结果表明,在RPMI1640诱导菌丝形成的过程中,吩嗪衍生物-17与氟康唑合用对菌丝的生长抑制不明显,但在Spider培养基中,两药合用对菌丝的形成有明显抑制作用(图1)。

  • 近年来,随着免疫抑制剂的广泛用、手术介入和免疫缺陷患者的增多,系统性真菌感染的发病率逐年攀升。但抗真菌药物的研发进展缓慢,现有的几类抗真菌药物在长期使用后也逐渐出现了耐药性。为克服临床真菌感染的问题,研发新的抗真菌药物意义重大。本课题组长期致力于协同抗耐药真菌研究,期望筛选获得具有协同抗耐药真菌活性的化合物,进而达到降低给药剂量,提高抗菌能力的目的,为临床抗真菌治疗提供新的策略。本研究前期通过体外筛选吩嗪类化合物的抗真菌活性,发现吩嗪类化合物单药使用时没有抗真菌活性,但是吩嗪衍生物-12、-17、-18与氟康唑合用有显著的协同抗真菌活性,这一研究结果有望为抗真菌药物研发提供新的思路。该研究尚未探讨吩嗪类衍生物的协同抗耐药真菌机制,后续仍需进一步深入研究。

Reference (7)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return