-
延胡索为罂粟科植物延胡索(Corydalis yanhusuo W.T.Wang)的干燥块茎,主产地为浙江、安徽、江苏等地,中医药应用历史悠久。其具有活血、行气、止痛之功效,用于胸胁,脘腹疼痛,胸痹心痛,经闭痛经,产后淤阻,跌扑肿痛[1]。现代科学研究发现延胡索主要含有生物碱、有机酸、甾体、挥发油、糖类、氨基酸等活性成分[2-3],具有镇痛、镇静催眠、抗溃疡、抗菌、抗炎、抗肿瘤、扩张冠状动脉,增加冠脉血流量,抑制血小板聚集,抗心律失常,改善心肌供氧,增加心输出量等药理作用[4]。含延胡索的中药处方及延胡索乙素制剂广泛应用于胃痛、伤痛、心绞痛、痛经等多种痛症。延胡索临床应用常以炮制品入药,目前常用的炮制方法主要有炒制、醋制、酒制等[5],其中又以醋制为主,醋制可以提高主要活性成分延胡索乙素的含量[6-7],《中国药典》(2015年版)收载醋制延胡索为醋炙和醋煮,醋蒸法始载于明代卢之颐的《本草乘雅半偈》,但药典及其他炮制规范等地方标准也无收载。本实验是在《安徽省中药饮片炮制规范》(2019年版)修订课题的基础上完成,实验数据及操作过程,符合中药标准制定规范要求。
-
超声波清洗仪(德国Elma公司);分析天平(METTLER TOLEDO公司);多功能振荡器(山东申仪电子科技有限公司);高温箱型电炉、数显鼓风干燥箱(上海博讯实业有限公司);普利菲尔超纯水机(上海富诗特仪器设备有限公司);赛默飞U3000系列液相色谱仪(赛默飞世尔科技有限公司)。
-
本实验共收集10批延胡索药材,经海军军医大学药学系中药鉴定学教研室张成中老师鉴定为罂粟科植物延胡索的干燥块茎。延胡索乙素(中国食品药品检定研究院,批号:110726-201516,纯度:99.8%);食用醋(江苏恒顺醋业股份有限公司);自制超纯水;色谱级甲醇、氨水(国药集团)。
-
取净制、切制后的延胡索,大小分档,加醋拌匀、润透,置蒸制容器内,用蒸汽加热蒸透、内无硬心,取出,干燥。炮制操作主药与辅料按延胡索与米醋的质量比为100∶20(kg/kg)制备醋蒸延胡索。
-
取10批醋蒸延胡索分别编号为CYHS-01-01~10,观察其大小、形状、色泽、质地、气、味等总结其共性特征。本品呈不规则的圆形厚片,表面黄褐色,有不规则网状皱纹。质硬而脆,断面黄褐色,角质样,有蜡样光泽。微具醋香气,味苦。
-
取醋蒸延胡索粉末1 g,参照《中国药典》(一部)2015年版延胡索薄层鉴别项下制备供试品溶液。另取延胡索对照药材l g,同法制成对照药材溶液。再取延胡索乙素对照品,加甲醇制成每l ml含0.5 mg 的溶液,制成对照品溶液。吸取上述3种溶液各2~3μl分别点于用1%氢氧化钠溶液制备的同一硅胶G 薄层板上,以甲苯-丙酮(9∶2)为展开剂,展开,取出,晾干,置碘缸中显色约3 min后取出,待板上吸附的碘挥尽后,置紫外光灯(365 nm)下检视。从色谱图上可以看出,供试品色谱中,在与对照药材及对照品色谱相应的位置上,显相同颜色的斑点和荧光斑点(图1)。
-
参照《中国药典》(四部)2015年版0832水分测定法第二法共测定10批次醋蒸延胡索饮片,水分最低值11.87%,最高值15.74%(表1),根据数据及公式μ=
$ \bar x $ + ts/$\sqrt{n} $ +MU[注:$\bar x $ 是样本的平均数;t是置信水平为99%的学生t检测值(单尾);s是样本的标准偏差;n是样本的批数;MU是不确定度评估(MU=0.1270×$\bar x $ )]计算,限度应为15.61%,参照《中国药典》(一部)2015年版延胡索项下,拟定水分限度不得超过15.0%。表 1 10批醋蒸延胡索水分测定结果(%)
序号 含水量A 含水量B 平均值 相对偏差 CYHS-01-01 13.62 13.45 13.54 0.63 CYHS-01-02 12.12 12.35 12.24 0.94 CYHS-01-03 12.39 12.62 12.51 0.92 CYHS-01-04 12.15 12.04 12.10 0.45 CYHS-01-05 12.50 12.15 12.33 1.42 CYHS-01-06 14.09 13.86 13.98 0.82 CYHS-01-07 11.97 11.76 11.87 0.88 CYHS-01-08 16.09 15.38 15.74 2.26 CYHS-01-09 12.40 12.06 12.23 1.39 CYHS-01-10 13.07 12.72 12.90 1.36 -
参照《中国药典》(四部)2015年版2302灰分测定法共测定10批次醋制延胡索饮片,总灰分最低值2.77%,最高值3.80%(表2),根据数据参照《中国药典》(一部)2015年版延胡索项下,根据公式μ=
$\bar x $ +ts/$\sqrt{n} $ +MU计算,限度应为:3.53%,参考《中国药典》(一部)2015年版延胡索项下总灰分限度,拟定不得超过4.0%。表 2 10批醋蒸延胡索总灰分测定结果(%)
序号 灰分A 灰分B 平均值 相对偏差 CYHS-01-01 3.15 3.04 3.10 1.78 CYHS-01-02 2.76 2.80 2.78 0.72 CYHS-01-03 2.89 2.93 2.91 0.69 CYHS-01-04 3.78 3.82 3.80 0.53 CYHS-01-05 2.88 2.95 2.92 1.20 CYHS-01-06 2.74 2.79 2.77 0.90 CYHS-01-07 3.24 3.20 3.22 0.62 CYHS-01-08 3.20 3.23 3.22 0.47 CYHS-01-09 3.25 3.29 3.27 0.61 CYHS-01-10 3.22 3.19 3.21 0.47 -
按照《中国药典》(四部)2015年版2201醇溶性浸出物测定法热浸法,用稀乙醇作溶剂,共测定10批次醋延胡索浸出物, 10批醋延胡索的浸出物在11.68%~18.20%之间(表3)。以统计学方法分析测试数据, 基于测试数据, 设定浸出物限度的公式如下:μ=
$\bar x $ −ts/$\sqrt{n}$ −MU(其中,$\bar x $ 是样本的平均数;t是置信水平为99%的学生t检测值(单尾)t0.01,9=2.821;s是样本的标准偏差;n是样本的批数;MU是不确定度评估MU=0.1413×$\bar x $ )。浸出物测定限度为:10.41%。拟定醇溶性浸出物测定法,参照《中国药典》2015年版(四部)2201测定,用稀乙醇作溶剂,浸出物不得少于11.0%。表 3 10批醋蒸延胡索浸出物测定结果(%)
序号 浸出物A 浸出物B 平均值 相对偏差 CYHS-01-01 13.69 13.48 13.59 0.77 CYHS-01-02 18.51 18.20 18.36 0.84 CYHS-01-03 14.06 14.15 14.11 0.32 CYHS-01-04 13.87 13.67 13.77 0.73 CYHS-01-05 14.39 14.05 14.22 1.20 CYHS-01-06 16.46 16.21 16.34 0.77 CYHS-01-07 14.66 14.50 14.58 0.55 CYHS-01-08 11.43 11.68 11.56 1.08 CYHS-01-09 13.68 13.79 13.74 0.40 CYHS-01-10 11.78 11.92 11.85 0.59 -
以十八烷基硅烷键合硅胶为填充剂;以甲醇-0.1%磷酸溶液(三乙胺调pH至6.0)(55∶45)为流动相;检测波长为280 mn。理论板数按延胡索乙素峰计算应不低于3 000。
-
取P2O5减压干燥12 h后延胡索乙素对照品适量,精密称定,加甲醇制成每1 ml含46 μg的溶液,即得。
-
取醋蒸延胡索粉末(过三号筛)约0.5 g,精密称定,置平底烧瓶中,精密加入浓氨试液-甲醇(1∶20)混合溶液50 ml,称定重量,浸渍1 h后加热回流1 h,放冷,再称定重量,用浓氨试液-甲醇(1∶20)混合溶液补足减失的重量,摇匀,滤过。精密量取续滤液25 ml,蒸干,残渣加甲醇溶解,转移至5 ml量瓶中,并稀释至刻度,摇匀,滤过,取续滤液,即得。
-
精密称取纯度为99.8%的延胡索乙素对照品适量置50 ml容量瓶中,加甲醇稀释至刻度,摇匀,得对照品溶液储备液,分别精密量取一定量的对照品储备液稀释成浓度分别为0.0101、0.0202、0.0404、0.0809、0.1213、0.1618 mg/ml的对照品溶液,注入液相色谱仪,测定含量,以浓度为纵坐标、峰面积为横坐标得标准曲线Y=931.64X+5.1405 (r=0.99995)。
-
取CYHS-01-010样品约0.5 g,精密称定,按供试品溶液制备方法处理,测定含量,平行取样测定6次,计算每次测定延胡索乙素的含量为0.097%,RSD为2.4%,符合要求。
-
精密称取延胡索乙素对照品溶液10 μl注入液相色谱仪,测定峰面积,平行测定8次,计算RSD为1.1%,符合要求。
-
取CYHS-01-010样品约0.5 g,精密称定,按供试品溶液制备方法处理,分别在0、2、4、6、8、12、24 h测定含量,计算每次测定延胡索乙素的RSD为1.8%,符合规定。
-
取CYHS-01-010样品约0.25 g,精密称定,精密加入含延胡素乙素0.202 2 mg的对照品溶液,按供试品溶液制备方法处理,得相关溶液,进液相色谱仪处理,计算含量及加样回收率,理论要求加样回收率85%~110%(CYHS-01-010含量为0.097%),RSD<5%(表4)。
表 4 加样回收率试验结果
编号 取样量(m/g) 加样量(m/mg) 回收率(%) RSD(%) 1 0.2418 0.2022 100.4 3.3 2 0.2417 0.2022 106.7 3 0.2427 0.2022 104.6 4 0.2462 0.2022 105.7 5 0.2453 0.2022 100.0 6 0.2440 0.2022 98.5 -
测定10批样品,根据数据计算,结果参照《中国药典》(一部)2015年版延胡索项下制订,拟定含量限度为:不得少于0.050%(10批检品含量差别不大,最大值与最小值差别接近1倍),见表5。根据公式μ=
$\bar x $ -ts/$\sqrt{n} $ -MU计算,限度应不得少于0.060%,醋蒸为醋制延胡索的一个炮制规格,结合《中国药典》(2015年版)一部延胡索项下的含量限度,设定按干燥品计算,延胡索乙素(C21H25NO4)不少于 0.050%。表 5 10批醋蒸延胡索含量测定结果
样品 含量(%) 平均值(%) CYHS-01-01 0.064 0.077 CYHS-01-02 0.068 CYHS-01-03 0.055 CYHS-01-04 0.058 CYHS-01-05 0.072 CYHS-01-06 0.092 CYHS-01-07 0.068 CYHS-01-08 0.100 CYHS-01-09 0.098 CYHS-01-10 0.098 -
辛、苦、温,归肝、脾经。具有活血,行气,止痛之功。性味与归经、功能与主治、用法与用量、储藏等项目参照现行版《中国药典》(一部)2015年版延胡索项下制定。
-
蒸法炮制药材早在2000多年前的医药文献《五十二病方》中就有“陈藿,蒸而取其汁”记载,汉代张仲景的《伤寒论》中有“乌梅...蒸之”,至明代缪希雍《炮炙大法》中已有近百味药材的蒸制记载。蒸法的广泛应用使其成为中药炮制最常用的炮制工艺之一。中药延胡索的炮制在宋代出现了醋炒、醋煮、盐炒等工艺,及至明清时又出现了醋纸煨、酒煮等工艺,延胡索醋蒸始载于明代《本草乘雅半偈》“醋润,蒸之,从巳至亥,俟冷取出,焙干,研细用”。现在主要炮制方法为醋炙、醋煮、酒炙、醋蒸等,醋蒸延胡索临床上虽广泛应用,但尚缺法定质量标准。
延胡索经过醋炙后,饮片中延胡索乙素的含量较醋炙前变化较小,但醋炙后延胡索煎剂中延胡索乙素的含量变化较大,溶出会显著增加,表明延胡索醋制后大量生物碱和醋酸反应生成生物碱盐,可提高煎出量,继而提高延胡索止痛作用[8-9]。江国荣等将延胡索生品分别经醋炙、醋煮、醋烘、酒炙后,测定生物碱的含量,发现延胡索经不同炮制后生物碱含量均有所升高,说明临床上可以根据治疗需要,对延胡索采用醋烘、醋炙、酒炙等炮制方法来提高有效成分的含量[10]。李春等采用正交试验法优化延胡索醋蒸炮制工艺,以延胡索粗粉为原料,加醋量30%,闷润2 h,蒸制2 h后,延胡索乙素的含量明显提高[11]。郑军献等对新采集的延胡索进行加工炮制,发现通过不同炮制方法制备延胡索药材,水煮法、蒸制法、烘干法在外形、性状基本一致,但延胡索乙素及成品折干率相差较大,蒸制延胡索乙素含量比水煮高出16.35%,成品折干率比煮法高出3.52%,说明蒸制法优于水煮法。蒸制时间10 min,延胡索乙素含量达到最高,当蒸制时间延长时,其含量反而降低[12]。龙全江等研究发现,经煮制加工的延胡索药材样品中3 种生物碱的含量总体低于蒸制加工所得的延胡索药材,其结果为延胡索药材蒸制炮制工艺的确定提供了物质基础和研究依据 [13]。
在现有文献的基础上,经实验研究分析,醋蒸延胡索具备现行版《中国药典》一部收载的醋炙延胡索质量要求,且延胡索乙素的含量明显高于药典中醋炙延胡索的要求,延胡索乙素可以作用于中枢神经系统,止痛、镇静,降低成瘾性、保护大脑的作用;也可以作用于心血管系统,抗心律失常、改善血流动力学、降低血脂[14]。延胡索乙素含量的增加符合醋制增强行气、止痛之功的炮制目的。因此制定醋蒸延胡索质量标准要求应为:性状为不规则的圆形厚片,表面黄褐色,有不规则网状皱纹。质硬而脆,断面黄褐色,角质样,有蜡样光泽,微具醋香气,味苦;水分不超过15%;总灰分不超过5%;以稀乙醇作溶剂,浸出物不少于11.0%;延胡索乙素(C21H25NO4)含量,按干燥品计算不少于 0. 050%。
Study on quality standard for vinegar-steamed Corydalis rhizoma
-
摘要:
目的 制定符合《中国药典》要求的醋蒸延胡索质量标准,用于延胡索醋蒸炮制品种的生产、监督、流通及使用等各环节的质量控制。 方法 参照《中国药典》(四部)2015年版通用检测方法分别对醋蒸延胡索的水分、总灰分、浸出物、主要有效成分含量进行测定。 结果 依据中药质量标准制定指导原则及相关检测方法,根据实验数据,醋蒸延胡索呈不规则的圆形厚片,表面深黄色或黄褐色,有不规则细皱纹。质较硬,断面黄色或黄褐色,角质样,有蜡样光泽,微具醋香气,味苦。其水分含量不超过15.0%,总灰分不得超过4.0%,醇溶性浸出物不少于11.0%,按干燥品计算,含延胡索乙素(C21H25NO4)不少于0.050%。 结论 实验所建立的醋蒸延胡索质量标准符合国家有关中药饮片质量标准制定要求,能够以标准的形式对醋蒸延胡索的质量进行控制。 Abstract:Objective To set up the quality standards for vinegar-steamed Corydalis rhizome, which can be used for the quality control of production, supervision, circulation and application of the steam processed Corydalis rhizoma with vinegar. Methods The moisture content, total ash, ethanol extract content and active ingredients of the steam processed Corydalis rhizoma with vinegar were determined according to the related assay method in Part IV of Chinese Pharmacopeia 2015. Results According to the guidelines from the traditional Chinese medicine quality standards and related testing methods, the moisture content of steam processed Corydalis rhizoma with vinegar should be less than 15.0%, the total ash content less than 4.0%, the ethanol extract content more than 11.0%, and the representative component of tetrahydropalmatine more than 0.05%. Conclusion The established process with this study for the quality standard of vinegar-steamed Corydalis rhizoma was conformed to the state requirements for traditional Chinese medicine. It can be used as a reference for the quality standard of vinegar-steamed Corydalis rhizoma. -
Key words:
- vinegar-steamed Corydalis rhizoma /
- identify /
- quality standard
-
近年来,随着肿瘤、器官移植和获得性免疫缺陷综合征(AIDS)等导致的免疫功能低下人群的增加,侵袭性真菌感染(IFIs)的发病率和病死率逐年上升[1-2]。念珠菌、隐球菌和曲霉菌是IFIs最主要的致病菌,并且造成的病死率超过90%[3]。在念珠菌属中,白念珠菌(Candida. albicans)是院内血液感染最常见的致病菌原体,其在重症监护病房(ICU)患者中致病率超过17%,病死率高达40%[4-5]。临床上治疗IFIs的抗真菌药物主要包括:多烯类(两性霉素B)、核酸类(5-氟胞嘧啶)、唑类(氟康唑)和棘白菌素类(卡泊芬净)药物(图1)[6-7]。然而,由于临床上出现抗真菌药物严重的耐药性和毒副作用,IFIs的治疗效果相当有限。因此,迫切需要研发全新机制的抗真菌药物。
组蛋白乙酰化修饰(包括组蛋白乙酰化和去乙酰化)是表观遗传学研究的重要组成部分。组蛋白去乙酰化酶(HDACs)将组蛋白和其他蛋白上的赖氨酸末端乙酰基去除,对染色体重塑和基因的表达起着重要作用[8-9]。目前HDAC抑制剂主要集中于抗肿瘤研究方向,且已有多个上市药物应用于肿瘤的治疗。据研究报道,真菌中的HDACs,如烟曲霉[10]、白念珠菌[11-12]、酿酒酵母[13]和新生隐球菌的HDACs[14-15]参与了毒力相关的过程和形态变化。因此,抑制真菌HDACs可能是治疗IFIs的有效策略。
联合药物治疗是提高临床一线药物疗效并克服真菌耐药性的有效策略之一。真菌的耐药性涉及转录调节,其中染色体重塑和组蛋白修饰起主要作用。HDACs调节的组蛋白修饰在应激信号通路中起着至关重要的作用,这可能与真菌对各种环境(包括药物)的应激反应有关[16]。此外,已有研究报道,HDAC抑制剂与唑类药物联用具有协同增效作用[17-18]。例如,HDAC抑制剂MGCD290与氟康唑联用具有协同抗多种临床真菌分离株的作用[19]。
基于此,本研究首先对8个市售的HDAC抑制剂(图2)进行体外协同抗真菌活性测试,筛选结果显示化合物Rocilinostat与氟康唑联用具有优秀的体外协同抗耐药白念珠菌活性。后续考察其与不同唑类药物联用时对不同念珠菌属的体外协同抗真菌活性,以及对正常细胞的毒性作用,以期为抗真菌药物的研发提供依据。
1. 材料和方法
1.1 实验试剂与菌株
临床分离的6株唑类耐药白念珠菌(编号:9893,10061,10060,9173,4108和0304103),2株唑类耐药热带念珠菌(编号:5008,10086),1株光滑念珠菌(编号:9073)和1株耳道念珠菌(编号:0029)由海军军医大学附属长征医院提供。菌株活化首先从−80 ℃中挑取菌株冻存液至YEPD液体培养基活化24 h,然后取10 μl菌悬液至1 ml YEPD中,并在30 ℃、200 r/min下培养16 h后待用。HUVEC细胞来源于中国科学院上海细胞库,并在新鲜配置的DMEM完全培养基中培养。
YEPD液体培养基:取10 g酵母浸膏、20 g葡萄糖、20 g蛋白胨溶解于1 000 ml三蒸水中,经高压蒸汽灭菌(121 ℃, 15 min)后,保存于4 ℃条件下备用。RPMI 1640培养基:取10 g RPMI 1640(Gibco)粉末、34.5 g吗啡啉丙磺酸、2 g NaHCO3、2.7 g NaOH溶解于1 000 ml三蒸水中,经0.22 μm的微孔滤膜过滤与灭菌后,置于4 ℃条件下保存和备用。DMEM完全培养基:按照89% DMEM基础培养基+10%胎牛血清+1%的双抗比例混匀制得,混匀后置于4 ℃条件下保存和备用。PBS缓冲液:10 × PBS 100 ml溶解于900 ml三蒸水中,经高压蒸汽灭菌(121 ℃, 15 min)后,置于4 ℃条件下保存和备用。
1.2 仪器
THZ-92A气浴恒温振荡器(上海博迅医疗生物仪器股份有限公司)、MJ-150-I霉菌培养箱(上海一恒科学仪器有限公司)、LW100T生物显微镜(北京测维光电技术有限公司)、HDC-15K高速离心机(上海泰坦科技股份有限公司)、C170二氧化碳培养箱(BINDER GmbH)、infinite M200多功能酶标仪(Tecan Austria GmbH)、高压蒸汽灭菌锅、无菌洁净工作台。
1.3 棋盘式微量液基稀释法
本实验参照美国临床和实验室标准协会(CLSI)公布的M27-A3方案中微量液基稀释法进行。首先,收集活化好的真菌细胞,PBS洗3次后用RPMI 1640培养基制成浓度为1×103 CFU/ml的菌悬液。按照每孔100 μl接种菌悬液至无菌96孔板中,1~9列加入倍半稀释的HDAC抑制剂,A~F行加入倍半稀释的氟康唑,其中G行只加氟康唑,第10列只加化合物,第11列为不加药的阴性对照组,后将96孔板置于35 °C条件下孵育48 h。测定每孔在630 nm处的吸光度A,依据公式:抑制率(%)=(A阳性对照孔−A化合物孔)/(A阳性对照孔−A阴性对照孔)× 100%,计算各孔对应的抑制率。如果某一孔和其左边孔对应的抑制率均大于80%,则该孔对应的化合物和FLC浓度分别作为FIC化合物和FIC氟康唑,利用协同指数公式:FICI =(FIC化合物./MIC80 化合物)+(FIC氟康唑/MIC80 氟康唑),计算各化合物对应的FICI。
1.4 时间-生长曲线实验
收集活化好的白念珠菌0304103稀释在RPMI 1640培养液中,保持菌浓度为1×105 CFU/ml。取5 ml稀释的菌悬液和不同浓度的待测药物加入50 ml的离心管中, DMSO组作为空白对照组和32 μg/ml FLC作为阳性对照。随后将50 ml的离心管置于30 °C条件下振荡培养(200 r/min),在多个时间点吸取不同药物组的真菌混悬液(100 μl)于96孔板上,测量A630值并使用GraphPad Prism 7作图。
1.5 真菌细胞总HDAC酶活性测试实验
收集指数生长期的白念珠菌0304103细胞(湿重为100 mg),然后用3 mg snailase、12 μl 2-巯基乙醇和3 ml snailase反应缓冲液等新鲜配置的真菌裂解液来处理它们,以制备真菌原生质体。真菌原生质体分散在PBS(20 ml)中以获得混悬液,然后往96孔板每孔中加入100 μl的混悬液和不同浓度的化合物Rocilinostat,并在35 °C下培育12 h。接着往每个孔中加入30 μmol/L的HDAC底物,于37°C下孵育6 h。随后添加100 μl HDAC酶促终止溶液并在37°C下孵育2 h。最后,在每个孔中取出100 μl培养物添加到黑板中,用Ex=360 nm,Em=460 nm来监测荧光强度并记录下来用于计算HDAC酶的抑制率。
2. 结果
2.1 化合物Rocilinostat与氟康唑联用具有协同抗真菌活性
表1列出了HDAC抑制剂单独使用或与氟康唑联合使用的体外抗真菌活性筛选结果。MIC80为抑制80%真菌细胞生长的最低药物浓度。实验结果表明,8个HDAC抑制剂单独使用对耐药白念珠菌均无直接的抗真菌活性(MIC80>64 μg/ml);而化合物Rocilinostat(FICI=0.039)和伏立诺他(FICI=0.125)与FLC联用时均表现出良好的协同抗真菌活性。其中,化合物Rocilinostat的协同活性最佳,值得进一步研究。
表 1 单用HDAC抑制剂或者与氟康唑联用对白念珠菌0304103的体外抗真菌活性(μg/ml)抑制剂 抑制剂 氟康唑 FICI 单用 联用 单用 联用 伏立诺他 >64 4 >64 4 0.125 Rocilinostat >64 2 >64 0.5 0.039 T3516 >64 64 >64 64 2 T6016 >64 64 >64 64 2 T6421 >64 32 >64 32 1 T2157 >64 32 >64 32 1 T1726 >64 64 >64 64 2 T3358 >64 32 >64 64 1.5 注: FICI值≤ 0.5表示协同,FICI值> 4表示拮抗;0.5<FICI<4表示不相关。 2.2 Rocilinostat与氟康唑或伏立康唑联用对多种白念珠菌的抗真菌活性
为进一步考察Rocilinostat是否具广谱的抗真菌作用,挑选9株临床分离的念珠菌属菌株进行协同抗真菌活性测试。如表2所示,Rocilinostat与FLC联合使用时,对两株耐FLC的白念珠菌(C. albicans 9173,FICI=0.094; C. albicans 4108, FICI=0.5)和对FLC敏感的光滑念珠菌(C. glabrata 9073)表现出协同增效作用,而对热带念珠菌(C. tropicis)和耳道念珠菌(C. auris)没有协同抗真菌活性。当Rocilinostat与伏立康唑(VRC)联用时,对耐VRC的白念珠菌(C. albicans 10060, FICI=0.033)表现出优异的协同抗真菌活性 (表3)。
表 2 Rocilinostat与氟康唑单用或联用对多种念珠菌菌株的体外抗真菌活性[MIC80 (μg/ml)]菌株 单用 联用 FICI Rocilinostat 氟康唑 Rocilinostat 氟康唑 9893 >64 >64 64 64 2 10061 >64 >64 64 64 2 10060 >64 >64 64 64 2 9173 >64 >64 4 2 0.094 4108 >64 >64 32 32 0.5 10186 >64 >64 64 64 2 5008 >64 >64 64 8 1.125 9073 32 4 32 8 0.375 0029 64 32 >64 32 1 表 3 Rocilinostat与伏立康唑单用或联用对白念珠菌菌株的体外抗真菌活性[MIC80 (μg/ml)]菌株 单用 联用 FICI Rocilinostat 伏立康唑 Rocilinostat 伏立康唑 0304103 >64 >64 32 2 0.531 10061 >64 >64 32 0.125 0.502 10060 >64 >64 2 0.125 0.033 2.3 Rocilinostat与氟康唑联用有效抑制真菌的生长
为进一步考察化合物Rocilinostat的协同抗真菌活性,我们又开展了时间-生长曲线实验。从图3结果可以看出,高浓度的氟康唑或Rocilinostat单独使用对真菌生长无抑制作用,而Rocilinostat与不同浓度的氟康唑联用能够有效抑制真菌的生长,且呈浓度依赖趋势 (图3中抑制剂为Rocilinostat)。
2.4 Rocilinostat对真菌细胞的选择性作用
采用HUVEC(人脐静脉内皮细胞)对化合物Rocilinostat进行细胞毒性的评价。结果如表4显示,化合物Rocilinostat对正常细胞表现出低毒性,IC50值为52.17 μmol/L (22.60 μg/ml),相当于其发挥协同抗耐药真菌(C. albicans 0304103)活性MIC80值的44倍,表明Rocilinostat对真菌细胞具有较强的选择性作用。此外,我们还测试了化合物Rocilinostat对真菌总HDAC酶的抑制活性,结果表明,Rocilinostat对真菌HDAC酶抑制活性(IC50=0.41 μmol/L)优于泛HDAC抑制剂伏立诺他(IC50=1.03 μmol/L)。
表 4 Rocilinostat对正常细胞的毒性和真菌总HDAC酶活性IC50 (μmol/L)化合物 HUVEC 白念珠菌(总HDAC酶) Rocilinostat 52.17 0.41 伏立诺他 — 1.03 注: “—”表示没有测试。 3. 讨论
本研究从市售的8个HDAC抑制剂中筛选出协同活性最佳的化合物Rocilinostat。进一步研究发现Rocilinostat与氟康唑联用对白念珠菌和光滑念珠菌具有协同增效作用。此外,化合物Rocilinostat与伏立康唑联用对临床分离的耐药白念珠菌株同样具有优秀的抗真菌活性。更值得关注的是,化合物Rocilinostat对正常细胞表现出低毒性,其对真菌细胞具有很好的选择性。因此,HDAC抑制剂Rocilinostat可以作为一种低毒、有效的唑类抗真菌药物增效剂,为抗真菌药物的发展提供了新的研究基础。
-
表 1 10批醋蒸延胡索水分测定结果(%)
序号 含水量A 含水量B 平均值 相对偏差 CYHS-01-01 13.62 13.45 13.54 0.63 CYHS-01-02 12.12 12.35 12.24 0.94 CYHS-01-03 12.39 12.62 12.51 0.92 CYHS-01-04 12.15 12.04 12.10 0.45 CYHS-01-05 12.50 12.15 12.33 1.42 CYHS-01-06 14.09 13.86 13.98 0.82 CYHS-01-07 11.97 11.76 11.87 0.88 CYHS-01-08 16.09 15.38 15.74 2.26 CYHS-01-09 12.40 12.06 12.23 1.39 CYHS-01-10 13.07 12.72 12.90 1.36 表 2 10批醋蒸延胡索总灰分测定结果(%)
序号 灰分A 灰分B 平均值 相对偏差 CYHS-01-01 3.15 3.04 3.10 1.78 CYHS-01-02 2.76 2.80 2.78 0.72 CYHS-01-03 2.89 2.93 2.91 0.69 CYHS-01-04 3.78 3.82 3.80 0.53 CYHS-01-05 2.88 2.95 2.92 1.20 CYHS-01-06 2.74 2.79 2.77 0.90 CYHS-01-07 3.24 3.20 3.22 0.62 CYHS-01-08 3.20 3.23 3.22 0.47 CYHS-01-09 3.25 3.29 3.27 0.61 CYHS-01-10 3.22 3.19 3.21 0.47 表 3 10批醋蒸延胡索浸出物测定结果(%)
序号 浸出物A 浸出物B 平均值 相对偏差 CYHS-01-01 13.69 13.48 13.59 0.77 CYHS-01-02 18.51 18.20 18.36 0.84 CYHS-01-03 14.06 14.15 14.11 0.32 CYHS-01-04 13.87 13.67 13.77 0.73 CYHS-01-05 14.39 14.05 14.22 1.20 CYHS-01-06 16.46 16.21 16.34 0.77 CYHS-01-07 14.66 14.50 14.58 0.55 CYHS-01-08 11.43 11.68 11.56 1.08 CYHS-01-09 13.68 13.79 13.74 0.40 CYHS-01-10 11.78 11.92 11.85 0.59 表 4 加样回收率试验结果
编号 取样量(m/g) 加样量(m/mg) 回收率(%) RSD(%) 1 0.2418 0.2022 100.4 3.3 2 0.2417 0.2022 106.7 3 0.2427 0.2022 104.6 4 0.2462 0.2022 105.7 5 0.2453 0.2022 100.0 6 0.2440 0.2022 98.5 表 5 10批醋蒸延胡索含量测定结果
样品 含量(%) 平均值(%) CYHS-01-01 0.064 0.077 CYHS-01-02 0.068 CYHS-01-03 0.055 CYHS-01-04 0.058 CYHS-01-05 0.072 CYHS-01-06 0.092 CYHS-01-07 0.068 CYHS-01-08 0.100 CYHS-01-09 0.098 CYHS-01-10 0.098 -
[1] 国家药典委员会. 中华人民共和国药典(一部)2015年版 [S]. 北京: 中国医药科技出版社, 2015. [2] 冯自立, 赵正栋, 刘建欣. 延胡索化学成分及药理活性研究进展[J]. 天然产物研究与开发, 2018, 30(11):2000-2008. [3] 何晓凤, 张晶, 张梅. 延胡索化学成分、药理活性及毒副作用研究进展[J]. 上海中医药杂志, 2017, 51(11):97-100. [4] 董庆海, 吴福林, 王涵, 等. 延胡索药学研究进展[J]. 中国野生植物资源, 2019, 38(1):48-53,79. [5] 龚千锋. 中药炮制学[M]. 4版. 北京: 中国中医药出版社, 2016. [6] 黄小平. 不同的炮制方法对延胡索中延胡索乙素含量的影响[J]. 当代医药论丛, 2019, 17(18):167-168. doi: 10.3969/j.issn.2095-7629.2019.18.127 [7] 肖辉. 不同炮制方法对延胡索中延胡索乙素含量的影响[J]. 中国药业, 2016, 25(4):29-31. [8] 孟德阳. 延胡索醋炙前后饮片和煎剂中延胡索乙素含量变化对比[J]. 吉林中医药, 2018, 38(2):198-201. [9] 谢明. 延胡索醋制前后总生物碱含量测定及对小鼠的镇痛作用比较[J]. 海峡药学, 2014, 26(3):33-34. [10] 江国荣, 禤雪梅, 潘雪莲, 等. 不同炮制方法对中药延胡索中有效成分含量的影响[J]. 北方药学, 2016, 13(11):5,121. [11] 李春, 蒋晓煌, 蒋孟良, 等. 正交试验优选延胡索醋蒸法炮制工艺[J]. 中医药导报, 2015, 21(6):53-55. [12] 郑军献, 徐雁, 洪春霞, 等. 延胡索不同加工工艺的研究[J]. 浙江中医杂志, 2012, 47(5):379-380. doi: 10.3969/j.issn.0411-8421.2012.05.058 [13] 龙全江, 张颖, 徐雪琴. 不同加工方法对延胡索3种生物碱含量的影响[J]. 中国中医药信息杂志, 2017, 24(7):90-93. doi: 10.3969/j.issn.1005-5304.2017.07.021 [14] 王安铸, 马晓昌. 延胡索乙素的研究进展[J]. 中华中医药杂志(原中国医药学报), 2020, 35(4):1927-1929. 期刊类型引用(1)
1. 王伟倩,吕林锋,蒋永海,谢浙裕,钟宁远. 采用高效液相色谱法同时测定醋延胡索中延胡索乙素和延胡索甲素的含量. 品牌与标准化. 2024(05): 38-40 . 百度学术
其他类型引用(2)
-