留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

用于肿瘤治疗的小分子干扰RNA非病毒载体研究进展

王欢 马志强 杨峰

王欢, 马志强, 杨峰. 用于肿瘤治疗的小分子干扰RNA非病毒载体研究进展[J]. 药学实践与服务, 2015, 33(6): 498-501. doi: 10.3969/j.issn.1006-0111.2015.06.005
引用本文: 王欢, 马志强, 杨峰. 用于肿瘤治疗的小分子干扰RNA非病毒载体研究进展[J]. 药学实践与服务, 2015, 33(6): 498-501. doi: 10.3969/j.issn.1006-0111.2015.06.005
WANG Huan, MA Zhiqiang, YANG Feng. Current status of non-viral siRNA vectors for therapy of cancers[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 498-501. doi: 10.3969/j.issn.1006-0111.2015.06.005
Citation: WANG Huan, MA Zhiqiang, YANG Feng. Current status of non-viral siRNA vectors for therapy of cancers[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 498-501. doi: 10.3969/j.issn.1006-0111.2015.06.005

用于肿瘤治疗的小分子干扰RNA非病毒载体研究进展

doi: 10.3969/j.issn.1006-0111.2015.06.005

Current status of non-viral siRNA vectors for therapy of cancers

  • 摘要: 近年来,小分子干扰RNA(siRNA)作为RNA干扰 (RNAi) 技术的效应分子,已被广泛用于恶性肿瘤的基因治疗领域。欲获得理想的治疗效果,其关键因素是寻找一种安全、高效、稳定、可控的基因载体。非病毒载体具有低毒、低免疫原性、制备简单、目的基因容量大、外源基因随机整合率低且携带基因大小类型不受限制等突出优势,已经成为目前siRNA载体的研究热点。在以往学者的研究基础上,从药剂学的角度,笔者对这些载体在siRNA传递系统中的研究现况做回顾性总结。
  • [1] David S, Pitard B, Benoit JP, et al. Non-viral nanosystems for systemic siRNA delivery[J].Pharmacol Res, 2010,62(2): 100-114.
    [2] Tiemann K, Rossi JJ. RNAi-based therapeutics-current status, challenges and prospects[J].EMBO Mol Med, 2009, 1(3): 142-151.
    [3] Liu W, Chen JM. Progress in studies of the structure-activity relationship of cationic lipid-mediated gene delivery[J].Chin J New Drug, 2011,20( 20): 1975-1980.
    [4] Yang ST, Zaitseva E, Chernomordik LV, et al. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid[J].Biophys J,2010, 99(8): 2525-2533.
    [5] Han SE, Kang H, Shim GY, et al. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA[J].Int J Pharm, 2008,353(1-2): 260-269.
    [6] Maslov MA, Kabilova TO, Petukhov IA, et al. Novel cholesterol spermine conjugates provide efficient cellular delivery of plasmid DNA and small interfering RNA[J].J Control Release, 2012, 160(2): 182-193
    [7] Kim J, Kim SW, W Kim WJ. PEI-g-PEG-RGD/small interference RNA polyplex-mediated silencing of vascular endothelial growth factor receptor and its potential as an anti-angiogenic tumor therapeutic strategy[J].Oligonucleotides, 2011,21(2): 101-107.
    [8] Malek A, Czubayko F, Aigner A. PEG grafting of polyethylenimine (PEI) exerts different effects on DNA transfection and siRNA-induced gene targeting efficacy[J].J Drug Target, 2008, 16(2): 124-139.
    [9] Xia W, Wang P, Lin C, et al. Bioreducible polyethylenimine-delivered siRNA targeting human telomerase reverse transcriptase inhibits HepG2 cell growth in vitro and in vivo[J].J Control Release, 2012, 157(3): 427-436.
    [10] Yu T, Liu X. Bolcato-Bellemin AL,et al. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo[J].Angew Chem Int Ed Engl, 2012,51(34): 8478-8484.
    [11] Biswas S, Deshpande PP, Navarro GS, et al. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery[J].Biomaterials, 2013, 34(4): 1289-12301.
    [12] Perez AP, Mundina-Weilenmann C, Romero EL, et al. Increased brain radioactivity by intranasalP-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels[J].Int J Nanomedicine, 2012, 7: 1373-1385.
    [13] Liu P, Yu H, Sun Y, et al. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery[J].Biomaterials, 2012, 33(17): 4403-4412.
    [14] Ambardekar VV, Wakaskar RR, Sharma B, et al. The efficacy of nuclease-resistant Chol-siRNA in primary breast tumors following complexation with PLL-PEG(5K)[J].Biomaterials, 2013.4839-4848.
    [15] Christie RJ, Matsumoto Y, Miyata K, et al. Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection[J].ACS Nano, 2012, 6(6): 5174-5189.
    [16] Mumper RJ, Wang J, Claspel JM, et al. Novel polymeric condensing carriers for gene delivery[J].Symp Controlled Rel,1995, 22:178.
    [17] Zhou SM, Kong FQ, Sun B, et al. Phosphorylatable short peptide conjugated low molecular weight chitosan for efficient siRNA delivery and target gene silencing[J].Chin J Biochem Molecul Biol, 2011, 27(10): 980-986.
    [18] Pezzoli D, Olimpieri F, Malloggi C, et al. Chitosan-graft-branched polyethylenimine copolymers: influence of degree of grafting on transfection behavior[J].PLoS One, 2012, 7(4): e34711.
    [19] Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic[J].Mol Pharm, 2009. 6(3): 659-668.
    [20] Hu T.N, Wang QW, Jin X, et al. Anticancer effect of triptolide-polyethylenimine-cyclodextrin in vitro[J].J Zhejiang Univ (Med Sci), 2012, 41(6): 610-619.
    [21] Boe SL, Longva AS, Hovig E. Cyclodextrin-containing polymer delivery system for light-directed siRNA gene silencing[J].Oligonucleotides, 2010, 20(4): 175-182.
    [22] Fang B, Jiang L, Zhang M,et al. A novel cell-penetrating peptide TAT-A1 delivers siRNA into tumor cells selectively[J].Biochimie, 2013, 95(2): 251-257.
    [23] Choi YS, Lee JY, Suh JS, et al. The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine[J].Biomaterials, 2010, 31(6): 1429-1443.
    [24] Alberici L, Roth L, Sugahara KN, et al. De novo design of a tumor-penetrating peptide[J].Cancer Res, 2013, 73(2): 804-812.
    [25] Lin D, Cheng Q, Jiang Q, et al. Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo[J].Nanoscale, 2013.5, 4291-4301.
    [26] Li X, Chen Y, Wang M, et al. A mesoporous silica nanoparticle-PEI-fusogenic peptide system for siRNA delivery in cancer therapy[J].Biomaterials, 2013, 34(4): 1391-1401.
  • [1] 田硕, 厉建中.  转录因子ZNF24在肿瘤中的研究进展 . 药学实践与服务, 2023, 41(12): 710-713, 721. doi: 10.12206/j.issn.2097-2024.202204043
    [2] 方宇昕, 李育, 刘宝姝, 董国强.  线性泛素连接酶复合体与去线性泛素化酶在肿瘤中的研究进展 . 药学实践与服务, 2023, 41(9): 534-539. doi: 10.12206/j.issn.2097-2024.202307045
    [3] 高习清, 卢光照, 鲁莹, 邹豪.  活性氧自由基响应型脂质体在抗肿瘤研究中的应用进展 . 药学实践与服务, 2023, 41(1): 14-17. doi: 10.12206/j.issn.2097-2024.202105086
    [4] 史彤, 李积宗.  基因治疗发展现状及展望 . 药学实践与服务, 2022, 40(4): 296-301, 313. doi: 10.12206/j.issn.1006-0111.202112015
    [5] 张冬梅, 高迎春, 何蕾, 陈克明, 李文斌, 王荣, 马慧萍.  PC12细胞SLC6A4基因沉默稳转细胞系的建立及SLC6A4基因沉默对缺氧PC12细胞凋亡的影响 . 药学实践与服务, 2022, 40(5): 389-394, 463. doi: 10.12206/j.issn.2097-2024.202205093
    [6] 陆顺超, 阎澜.  抗病毒药物研究进展及其在军事方面的应用 . 药学实践与服务, 2019, 37(3): 201-205. doi: 10.3969/j.issn.1006-0111.2019.03.002
    [7] 丁佳宁, 马进原, 朱全刚.  长链非编码RNA人母系表达基因3在肿瘤发生中作用的研究进展 . 药学实践与服务, 2019, 37(5): 390-393,421. doi: 10.3969/j.issn.1006-0111.2019.05.002
    [8] 陈自强, 张玮, 李玉平, 王晓宇.  纳米载药系统逆转肿瘤及骨肉瘤多药耐药的研究进展 . 药学实践与服务, 2016, 34(2): 103-105. doi: 10.3969/j.issn.1006-0111.2016.02.002
    [9] 姜文丽, 黄才国.  晚期非小细胞肺癌靶向治疗的研究进展 . 药学实践与服务, 2016, 34(4): 301-304,333. doi: 10.3969/j.issn.1006-0111.2016.04.004
    [10] 王欢, 佘岚, 王琳召, 马志强, 张欣荣, 杨峰.  氧化介孔碳球纳米粒作为紫杉醇载体的研究 . 药学实践与服务, 2015, 33(2): 114-118. doi: 10.3969/j.issn.1006-0111.2015.02.005
    [11] 任海峰, 赵英魁, 杨峰, 俞媛, 马志强.  微小RNA传递载体聚乙二醇-b-聚赖氨酸的合成及细胞毒性研究 . 药学实践与服务, 2014, 32(5): 362-365,373. doi: 10.3969/j.issn.1006-0111.2014.05.013
    [12] 周忻.  50例肿瘤科住院患者的中药用药情况分析 . 药学实践与服务, 2009, 27(1): 55-57.
    [13] 张夏华, 吴广通, 李蓉.  基因治疗现状与前景 . 药学实践与服务, 2009, 27(1): 4-10,42.
    [14] 章忱, 程康, 郭炜, 卫洪昌.  麝香保心丸对裸小鼠人结肠癌肝转移模型促血管新生因子及肿瘤生长的影响 . 药学实践与服务, 2007, (5): 295-296,302.
    [15] 侯雪梅, 崔黎丽, 李国栋, 李卫华.  抗肿瘤药物靶向制剂研究进展 . 药学实践与服务, 2007, (5): 273-275,280.
    [16] 丁力, 丁家崇, 郭葆玉.  抗肿瘤药物新靶点半胱天冬酶-10 . 药学实践与服务, 2006, (2): 76-79.
    [17] 庞晓军, 黄军章, 刘国勇, 李香乐.  肿瘤基因治疗研究进展 . 药学实践与服务, 2006, (1): 4-6.
    [18] 王彦, 刁亚英, 姜远英.  ABC转运蛋白与肿瘤多药耐药 . 药学实践与服务, 2003, (1): 28-31.
    [19] 王晶, 潘勇华, 王旭明, 刘建飞.  光敏剂及其临床应用进展 . 药学实践与服务, 2002, (2): 67-70.
    [20] 范开华, 刘子文, 夏俊.  血卟啉二乙二醇对消化道肿瘤的光动力疗效观察 . 药学实践与服务, 2001, (2): 76-76.
  • 加载中
计量
  • 文章访问数:  2929
  • HTML全文浏览量:  257
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-21
  • 修回日期:  2015-03-05

用于肿瘤治疗的小分子干扰RNA非病毒载体研究进展

doi: 10.3969/j.issn.1006-0111.2015.06.005

摘要: 近年来,小分子干扰RNA(siRNA)作为RNA干扰 (RNAi) 技术的效应分子,已被广泛用于恶性肿瘤的基因治疗领域。欲获得理想的治疗效果,其关键因素是寻找一种安全、高效、稳定、可控的基因载体。非病毒载体具有低毒、低免疫原性、制备简单、目的基因容量大、外源基因随机整合率低且携带基因大小类型不受限制等突出优势,已经成为目前siRNA载体的研究热点。在以往学者的研究基础上,从药剂学的角度,笔者对这些载体在siRNA传递系统中的研究现况做回顾性总结。

English Abstract

王欢, 马志强, 杨峰. 用于肿瘤治疗的小分子干扰RNA非病毒载体研究进展[J]. 药学实践与服务, 2015, 33(6): 498-501. doi: 10.3969/j.issn.1006-0111.2015.06.005
引用本文: 王欢, 马志强, 杨峰. 用于肿瘤治疗的小分子干扰RNA非病毒载体研究进展[J]. 药学实践与服务, 2015, 33(6): 498-501. doi: 10.3969/j.issn.1006-0111.2015.06.005
WANG Huan, MA Zhiqiang, YANG Feng. Current status of non-viral siRNA vectors for therapy of cancers[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 498-501. doi: 10.3969/j.issn.1006-0111.2015.06.005
Citation: WANG Huan, MA Zhiqiang, YANG Feng. Current status of non-viral siRNA vectors for therapy of cancers[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 498-501. doi: 10.3969/j.issn.1006-0111.2015.06.005
参考文献 (26)

目录

    /

    返回文章
    返回