留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

透明质酸的作用机制及临床应用研究进展

蔡同凯 刘谋治 邓婕 曹永兵 阎澜

蔡同凯, 刘谋治, 邓婕, 曹永兵, 阎澜. 透明质酸的作用机制及临床应用研究进展[J]. 药学实践与服务, 2022, 40(2): 103-107, 131. doi: 10.12206/j.issn.1006-0111.202108002
引用本文: 蔡同凯, 刘谋治, 邓婕, 曹永兵, 阎澜. 透明质酸的作用机制及临床应用研究进展[J]. 药学实践与服务, 2022, 40(2): 103-107, 131. doi: 10.12206/j.issn.1006-0111.202108002
CAI Tongkai, LIU Mouzhi, DENG Jie, CAO Yongbing, YAN Lan. Research progress on action mechanism and clinical application of hyaluronic acid[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(2): 103-107, 131. doi: 10.12206/j.issn.1006-0111.202108002
Citation: CAI Tongkai, LIU Mouzhi, DENG Jie, CAO Yongbing, YAN Lan. Research progress on action mechanism and clinical application of hyaluronic acid[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(2): 103-107, 131. doi: 10.12206/j.issn.1006-0111.202108002

透明质酸的作用机制及临床应用研究进展

doi: 10.12206/j.issn.1006-0111.202108002
详细信息
    作者简介:

    蔡同凯,硕士研究生,Email:tutuctk@163.com

    通讯作者: 阎 澜,副教授,硕士生导师,研究方向:药理学,Email:ylan20001228@sina.com
  • 中图分类号: R97

Research progress on action mechanism and clinical application of hyaluronic acid

  • 摘要: 透明质酸广泛存在于人体中,是细胞外基质的重要成分,具有独特的流体力学性质、良好的黏弹性和应变性。目前透明质酸被广泛用于生物材料、药物靶向制剂、美容以及腹部手术后预防黏连等。随着透明质酸应用范围的扩展及新型医用材料的不断涌现,近年来对透明质酸的研究日益增加。本文对透明质酸的临床应用及其作用机制进行综述,以期为透明质酸产品的进一步研发和安全应用提供参考。
  • 图  1  透明质酸结构式

    表  1  人体不同组织中透明质酸的含量

    组织或体液HA浓度(μg/ml)
    眼玻璃体140~340
    脐带4100
    关节滑液1400~3600
    真皮200~500
    表皮100
    胸淋巴液0.2~50
    尿液0.1~0.3
    血清0.01~0.1
    下载: 导出CSV

    表  2  不同相对分子质量外源性透明质酸的应用

    用途分子量(Da)作用
    骨关节注射液>5×106对受损部位润滑和机械保护作用;
    眼科手术黏弹剂>3×106撑起前房,减少术后炎症的发生
    滴眼液(1~1.5)×106增加滞留时间;润滑和保护作用
    术后防黏连>1×106形成隔离层,抑制炎症反应
    化妆品(0.5~2)×106保湿
    抗肿瘤药载体(5~7.5)×105与肿瘤CD44靶点特异性结合
    对创伤修复<5×105促进巨噬细胞的吞噬作用;促进血管形成
    抗肿瘤作用800~3200特异性结合CD44受体和RHAMM受体
    下载: 导出CSV
  • [1] MEYER K, PALMER J W. The polysaccharide of the vitreous humor[J]. J Biol Chem,1934,107(3):629-634. doi:  10.1016/S0021-9258(18)75338-6
    [2] KOGAN G, SOLTÉS L, STERN R, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnol Lett,2007,29(1):17-25.
    [3] EVANKO S P, TAMMI M I, TAMMI R H, et al. Hyaluronan-dependent pericellular matrix[J]. Adv Drug Deliv Rev,2007,59(13):1351-1365. doi:  10.1016/j.addr.2007.08.008
    [4] LAURENT T C, FRASER J R. Hyaluronan[J]. FASEB J,1992,6(7):2397-2404. doi:  10.1096/fasebj.6.7.1563592
    [5] 黄小忠, 管国强. 透明质酸生理功能及其应用研究进展[J]. 畜牧与饲料科学, 2015, 36(1):21-25. doi:  10.3969/j.issn.1672-5190.2015.01.008
    [6] 陶国枢. 药物流行病学与药品不良反应监测[J]. 中华老年医学杂志, 2005(12):927-928. doi:  10.3760/j:issn:0254-9026.2005.12.016
    [7] GIRISH K S, KEMPARAJU K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview[J]. Life Sci,2007,80(21):1921-1943. doi:  10.1016/j.lfs.2007.02.037
    [8] 陈超, 孙虹, 和培红, 等. 氟喹诺酮类药物不同品种间的安全性差异[J]. 药物不良反应杂志, 2004, 6(5):289-293. doi:  10.3969/j.issn.1008-5734.2004.05.001
    [9] 中华医学会眼科学分会角膜病学组. 干眼临床诊疗专家共识(2013年)[J]. 中华眼科杂志, 2013, 49(1):73-75. doi:  10.3760/cma.j.issn.0412-4081.2013.01.020
    [10] 俞惠玲. 0.3%透明质酸钠联合普拉洛芬治疗干眼症的临床观察[J]. 临床医药文献电子杂志, 2019, 6(60):71.
    [11] 仲元奎, 梁方. A型肉毒素咬肌定点定位注射联合玻尿酸颏部填充注射微整形术重塑女性颌面部轮廓的美容效果分析[J]. 中外女性健康研究, 2020(13):112-113.
    [12] SCHWARTZ S R, HAMMON K A, GAFNER A, et al. Novel hydrolyzed chicken sternal cartilage extract improves facial epidermis and connective tissue in healthy adult females: a randomized, double-blind, placebo-controlled trial[J]. Altern Ther Health Med,2019,25(5):12-29.
    [13] ESPINOZA L, VINSHTOK Y, MCCREESH J, et al. Kinetic energy-assisted delivery of hyaluronic acid for skin remodeling in middle and lower face[J]. J Cosmet Dermatol,2020,19(9):2277-2281. doi:  10.1111/jocd.13339
    [14] SCHAUSS A, SCHWARTZ S, HAMMON K, et al. The effects of skin aging associated with the use of BioCell collagen: a randomized, double-blind, placebo-controlled clinical trial (P06-122-19)[J]. Curr Dev Nutr, 2019, 3(Supplement_1): DOI:  10.1093/cdn/nzz031.p06-122-19.
    [15] 薛紫涵, 芦笛, 李桂珍, 等. 面部韧带根部填充透明质酸改善轻中度面部老化[J]. 中国美容医学, 2019, 28(3):1-4.
    [16] AMIRLAK B, MAHEDIA M, SHAH N. A clinical evaluation of efficacy and safety of hyaluronan sponge with vitamin C versus placebo for scar reduction[J]. Plast Reconstr Surg Glob Open,2016,4(7):e792. doi:  10.1097/GOX.0000000000000734
    [17] GUTOWSKI K A. Hyaluronic acid fillers: science and clinical uses[J]. Clin Plast Surg,2016,43(3):489-496. doi:  10.1016/j.cps.2016.03.016
    [18] XIAO S, WAN Y, ZOU F, et al. Prevention of intrauterine adhesion with auto-crosslinked hyaluronic acid gel: a prospective, randomized, controlled clinical study[J]. Zhonghua Fu Chan Ke Za Zhi,2015,50(1):32-36.
    [19] PATEL T, TEVET O. Effective treatment of acne scars using pneumatic injection of hyaluronic acid[J]. J Drugs Dermatol,2015,14(1):74-76.
    [20] CAI Z X, ZHANG H B, WEI Y, et al. Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids[J]. Biomater Sci,2019,7(8):3143-3157. doi:  10.1039/C9BM00298G
    [21] ITANO N, SAWAI T, YOSHIDA M, et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties[J]. J Biol Chem,1999,274(35):25085-25092. doi:  10.1074/jbc.274.35.25085
    [22] HERMANS J, BIERMA-ZEINSTRA S M A, BOS P K, et al. The effectiveness of high molecular weight hyaluronic acid for knee osteoarthritis in patients in the working age: a randomised controlled trial[J]. BMC Musculoskelet Disord,2019,20(1):196. doi:  10.1186/s12891-019-2546-8
    [23] IALENTI A, DI ROSA M. Hyaluronic acid modulates acute and chronic inflammation[J]. Agents Actions,1994,43(1-2):44-47. doi:  10.1007/BF02005763
    [24] 苑树岩, 付庆鹏, 邓晓强. 透明质酸钠治疗膝骨性关节炎的疗效[J]. 大医生, 2019, 4(2):108-109.
    [25] PARK S H, PARK J Y, JI Y B, et al. An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold[J]. Acta Biomater,2020,117:108-120. doi:  10.1016/j.actbio.2020.09.013
    [26] YANG J, ZHAO R, FENG Q, et al. Development of a carrier system containing hyaluronic acid and protamine for siRNA delivery in the treatment of melanoma[J]. Invest New Drugs,2021,39(1):66-76. doi:  10.1007/s10637-020-00986-3
    [27] ZHANG Y, LIU Q, YANG N, et al. Hyaluronic acid and oxidized regenerated cellulose prevent adhesion reformation after adhesiolysis in rat models[J]. Drug Des Devel Ther,2016,10:3501-3507. doi:  10.2147/DDDT.S103824
    [28] 蔡同凯, 韩华, 曹永兵, 等. 医用透明质酸钠凝胶的防粘连作用及对伤口愈合、抗生素作用的影响[J]. 药学服务与研究, 2020, 20(2):92-97.
    [29] LEE J W, PARK J Y, PARK S H, et al. Cross-linked electrospun cartilage acellular matrix/poly(caprolactone-co-lactide-co-glycolide) nanofiber as an antiadhesive barrier[J]. Acta Biomater,2018,74:192-206. doi:  10.1016/j.actbio.2018.05.032
    [30] PAŞCALĂU V, TERTIS M, PALL E, et al. Bovine serum albumin gel/polyelectrolyte complex of hyaluronic acid and chitosan based microcarriers for Sorafenib targeted delivery[J]. J Appl Polym Sci,2020,137(34):49002. doi:  10.1002/app.49002
    [31] MANSOORI B, MOHAMMADI A, ABEDI-GABALLU F, et al. Hyaluronic acid-decorated liposomal nanoparticles for targeted delivery of 5-fluorouracil into HT-29 colorectal cancer cells[J]. J Cell Physiol,2020,235(10):6817-6830. doi:  10.1002/jcp.29576
    [32] 杨桂兰, 郭学平, 栾贻宏. 不同相对分子质量透明质酸钠的应用[J]. 食品与药品, 2005, 7(12):1-3. doi:  10.3969/j.issn.1672-979X.2005.12.001
    [33] LEE H, MOK H, LEE S, et al. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels[J]. J Control Release,2007,119(2):245-252. doi:  10.1016/j.jconrel.2007.02.011
    [34] LEE H, LEE K, PARK T G. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity[J]. Bioconjugate Chem,2008,19(6):1319-1325. doi:  10.1021/bc8000485
    [35] BAJAJ G, KIM M R, MOHAMMED S I, et al. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors[J]. J Control Release,2012,158(3):386-392. doi:  10.1016/j.jconrel.2011.12.001
    [36] LIU X, LIU H, WANG S L, et al. Hyaluronic acid derivative-modified nano-structured lipid carrier for cancer targeting and therapy[J]. J Zhejiang Univ Sci B,2020,21(7):571-580. doi:  10.1631/jzus.B1900624
    [37] CHOI K Y, JEON E J, YOON H Y, et al. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer[J]. Biomaterials,2012,33(26):6186-6193. doi:  10.1016/j.biomaterials.2012.05.029
    [38] ZHANG Z, SUNER S S, BLAKE D A, et al. Antimicrobial activity and biocompatibility of slow-release hyaluronic acid-antibiotic conjugated particles[J]. Int J Pharm,2020,576:119024. doi:  10.1016/j.ijpharm.2020.119024
    [39] STERN R, JEDRZEJAS M J. Hyaluronidases: their genomics, structures, and mechanisms of action[J]. Chem Rev,2006,106(3):818-839. doi:  10.1021/cr050247k
    [40] COSTAGLIOLA C, DEL PRETE A, WINKLER N R, et al. The ability of bacteria to use Na-hyaluronate as a nutrient[J]. Acta Ophthalmol Scand,1996,74(6):566-568.
    [41] ZHANG M, MCDONALD F M, STURROCK S S, et al. Group A Streptococcus cell-associated pathogenic proteins as revealed by growth in hyaluronic acid-enriched media[J]. Proteomics,2007,7(9):1379-1390. doi:  10.1002/pmic.200600578
    [42] PIRNAZAR P, WOLINSKY L, NACHNANI S, et al. Bacteriostatic effects of hyaluronic acid[J]. J Periodontol,1999,70(4):370-374. doi:  10.1902/jop.1999.70.4.370
    [43] CARLSON G A, DRAGOO J L, SAMIMI B, et al. Bacteriostatic properties of biomatrices against common orthopaedic pathogens[J]. Biochem Biophys Res Commun,2004,321(2):472-478. doi:  10.1016/j.bbrc.2004.06.165
    [44] LEE J H, LIU A R, PARK J H, et al. Therapeutic effects of hyaluronic acid in peritonitis-induced Sepsis in mice[J]. Shock,2020,54(4):488-497. doi:  10.1097/SHK.0000000000001512
    [45] THEOCHARIS A D, VYNIOS D H, PAPAGEORGAKOPOULOU N, et al. Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma[J]. Int J Biochem Cell Biol,2003,35(3):376-390. doi:  10.1016/S1357-2725(02)00264-9
    [46] GARCÍA I, VIZOSO F, SUÁREZ C, et al. Relationship of tumoral hyaluronic acid and cathepsin D contents with histological type of gastric carcinoma[J]. Int J Biol Markers,2000,15(3):215-218. doi:  10.1177/172460080001500302
    [47] LLANEZA A, VIZOSO F, RODRÍGUEZ J C, et al. Hyaluronic acid as prognostic marker in resectable colorectal cancer[J]. Br J Surg,2000,87(12):1690-1696.
    [48] SUGAHARA K N, MURAI T, NISHINAKAMURA H, et al. Hyaluronan oligosaccharides induce CD44 cleavage and promote cell migration in CD44-expressing tumor cells[J]. J Biol Chem,2003,278(34):32259-32265. doi:  10.1074/jbc.M300347200
    [49] SIMPSON M A, WILSON C M, MCCARTHY J B. Inhibition of prostate tumor cell hyaluronan synthesis impairs subcutaneous growth and vascularization in immunocompromised mice[J]. Am J Pathol,2002,161(3):849-857. doi:  10.1016/S0002-9440(10)64245-9
    [50] ITANO N, SAWAI T, ATSUMI F, et al. Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation[J]. J Biol Chem,2004,279(18):18679-18687. doi:  10.1074/jbc.M313178200
    [51] TOOLE B P. Hyaluronan in morphogenesis[J]. Semin Cell Dev Biol,2001,12(2):79-87. doi:  10.1006/scdb.2000.0244
    [52] BHARADWAJ A G, RECTOR K, SIMPSON M A. Inducible hyaluronan production reveals differential effects on prostate tumor cell growth and tumor angiogenesis[J]. J Biol Chem,2007,282(28):20561-20572. doi:  10.1074/jbc.M702964200
    [53] TAMMI R H, KULTTI A, KOSMA V M, et al. Hyaluronan in human tumors: pathobiological and prognostic messages from cell-associated and stromal hyaluronan[J]. Semin Cancer Biol,2008,18(4):288-295. doi:  10.1016/j.semcancer.2008.03.005
    [54] 黄岳山, 潘艺茗, 薛静. 不同相对分子量透明质酸功能及应用的研究[J]. 透析与人工器官, 2010, 21(4):22-25.
    [55] 郭群英, 叶任高, 黄文生, 等. 不同分子量透明质酸对人腹膜间皮细胞透明质酸合成酶mRNA表达的影响[J]. 中国中西医结合肾病杂志, 2002, 3(6):320-322,331. doi:  10.3969/j.issn.1009-587X.2002.06.003
    [56] BERDIAKI A, NIKITOVIC D, TSATSAKIS A, et al. bFGF induces changes in hyaluronan synthase and hyaluronidase isoform expression and modulates the migration capacity of fibrosarcoma cells[J]. Biochim Biophys Acta,2009,1790(10):1258-1265. doi:  10.1016/j.bbagen.2009.06.013
    [57] 蔡同凯, 杨文胜, 曹永兵, 等. 医用透明质酸钠凝胶对肿瘤生长和转移影响的实验研究[J]. 药学实践杂志, 2020, 38(2):129-134.
    [58] GHATAK S, MISRA S, TOOLE B P. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway[J]. J Biol Chem,2002,277(41):38013-38020. doi:  10.1074/jbc.M202404200
    [59] HALL C L, LANGE L A, PROBER D A, et al. pp60(c-src) is required for cell locomotion regulated by the hyaluronanreceptor RHAMM[J]. Oncogene,1996,13(10):2213-2224.
  • [1] 代宇, 王宏播, 卞康晴, 郭灵怡, 俞媛.  细胞膜仿生纳米载体的制备及应用研究进展 . 药学实践与服务, 2022, 40(): 1-5. doi: 10.12206/j.issn.2097-2024.202202058
    [2] 蔡同凯, 杨文胜, 曹永兵, 韩华, 阎澜.  医用透明质酸钠凝胶对肿瘤生长和转移影响的实验研究 . 药学实践与服务, 2020, 38(2): 129-134. doi: 10.3969/j.issn.1006-0111.201911108
    [3] 韩凌, 孙治国, 鲁莹.  抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法 . 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
    [4] 黎迎, 朱春燕.  基于基因芯片技术研究生物黏附材料促进三七皂苷吸收的机制 . 药学实践与服务, 2018, 36(3): 215-218,223. doi: 10.3969/j.issn.1006-0111.2018.03.005
    [5] 王霖, 李文哲, 张一恺.  Ⅰ类切口围手术期预防用抗菌药物的调查分析 . 药学实践与服务, 2015, 33(1): 73-75. doi: 10.3969/j.issn.1006-0111.2015.01.021
    [6] 胡晓, 胡容峰, 白中稳.  聚乙烯醇衍生物作为水凝胶材料的应用研究进展 . 药学实践与服务, 2013, 31(3): 169-172,180. doi: 10.3969/j.issn.1006-0111.2013.03.002
    [7] 景莉, 范开华, 周倩.  经皮冠脉支架置入围手术期预防性使用抗菌药物的调查分析 . 药学实践与服务, 2012, 30(1): 61-63. doi: 10.3969/j.issn.1006-0111.2012.01.018
    [8] 石佳娜, 叶佐武, 应茵.  我院Ⅰ类切口手术患者预防用抗菌药物评价 . 药学实践与服务, 2011, 29(3): 219-220.
    [9] 侯雪梅, 崔黎丽, 李国栋, 李卫华.  抗肿瘤药物靶向制剂研究进展 . 药学实践与服务, 2007, (5): 273-275,280.
    [10] 非外科手术预防用抗感染药物的使用指南(四) . 药学实践与服务, 2006, (5): 315-320.
    [11] 非外科手术预防用抗感染药物的使用指南 . 药学实践与服务, 2006, (2): 123-127.
    [12] 陈盛新, 栾智鹏, 蒯丽萍.  外科手术预防用抗感染药物的使用指南 . 药学实践与服务, 2006, (1): 56-61.
    [13] 非外科手术预防用抗感染药物的使用指南(五) . 药学实践与服务, 2006, (6): 380-383.
    [14] 陈盛新, 冯惠坚, 蒯丽萍.  非外科手术预防用抗感染药物的使用指南(三) . 药学实践与服务, 2006, (4): 252-256,233.
    [15] 陈洪明, 郭澄.  围手术期预防性抗菌药物的合理应用 . 药学实践与服务, 2006, (3): 156-158.
    [16] 陈盛新, 冯惠坚, 蒯丽萍.  非外科手术预防用抗感染药物的使用指南(二) . 药学实践与服务, 2006, (3): 187-192.
    [17] 陆峰, 李修禄.  用LC分析生物体液中手性药物 . 药学实践与服务, 1994, (1): 65-67,41.
    [18] 瓮林祥, 郭涛, 冀洪娴.  月见草油锌美容霜 . 药学实践与服务, 1988, (3): 43-44.
    [19] 凌沛学, 张天民.  透明质酸在化妆品中的应用 . 药学实践与服务, 1987, (3): 60-62.
    [20] 外国正在研究中药美容 . 药学实践与服务, 1986, (3): 61-61.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  2295
  • HTML全文浏览量:  1048
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-10-11
  • 网络出版日期:  2022-05-25
  • 刊出日期:  2022-03-25

透明质酸的作用机制及临床应用研究进展

doi: 10.12206/j.issn.1006-0111.202108002
    作者简介:

    蔡同凯,硕士研究生,Email:tutuctk@163.com

    通讯作者: 阎 澜,副教授,硕士生导师,研究方向:药理学,Email:ylan20001228@sina.com
  • 中图分类号: R97

摘要: 透明质酸广泛存在于人体中,是细胞外基质的重要成分,具有独特的流体力学性质、良好的黏弹性和应变性。目前透明质酸被广泛用于生物材料、药物靶向制剂、美容以及腹部手术后预防黏连等。随着透明质酸应用范围的扩展及新型医用材料的不断涌现,近年来对透明质酸的研究日益增加。本文对透明质酸的临床应用及其作用机制进行综述,以期为透明质酸产品的进一步研发和安全应用提供参考。

English Abstract

蔡同凯, 刘谋治, 邓婕, 曹永兵, 阎澜. 透明质酸的作用机制及临床应用研究进展[J]. 药学实践与服务, 2022, 40(2): 103-107, 131. doi: 10.12206/j.issn.1006-0111.202108002
引用本文: 蔡同凯, 刘谋治, 邓婕, 曹永兵, 阎澜. 透明质酸的作用机制及临床应用研究进展[J]. 药学实践与服务, 2022, 40(2): 103-107, 131. doi: 10.12206/j.issn.1006-0111.202108002
CAI Tongkai, LIU Mouzhi, DENG Jie, CAO Yongbing, YAN Lan. Research progress on action mechanism and clinical application of hyaluronic acid[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(2): 103-107, 131. doi: 10.12206/j.issn.1006-0111.202108002
Citation: CAI Tongkai, LIU Mouzhi, DENG Jie, CAO Yongbing, YAN Lan. Research progress on action mechanism and clinical application of hyaluronic acid[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(2): 103-107, 131. doi: 10.12206/j.issn.1006-0111.202108002
  • 透明质酸(hyaluronic acid, HA)又名玻璃酸。首次在1934年由Meyer和Palmer自牛眼玻璃体内提取分离[1]。HA同样广泛存在于人体中,包括人眼的玻璃体、脐带和皮肤等组织(表1),是细胞外基质的组成部分[2]。HA化学名称为(1,4)-O-β-D葡萄糖醛酸-(1,3)-2-乙酰氨基-2-脱氧-β-D葡萄糖,是一种高分子直链聚糖,由交替的N-乙酰葡糖胺(GlcNAc)和葡糖醛酸(GlcA)双糖单位反复交替而形成的一种聚合物[3],其分子量的差别很大,分子式为(C14H20NO11Na)n,双糖单位的分子量为401.3(图1)。由于其直链的链轴L单糖之间氢键的作用,HA分子在空间呈刚性的螺旋柱型,其半径为200 nm。HA呈强亲水性,在水溶液中,HA亲和的水分约为其本身重量的1000倍。除了亲水性外,HA溶液还有着独特的流体力学性质,其水溶液是一种非牛顿型流体,因此,有着良好的黏弹性和应变性[4]。目前HA广泛应用于生物材料、药物靶向制剂、美容以及腹部手术后预防粘连等[5]

    表 1  人体不同组织中透明质酸的含量

    组织或体液HA浓度(μg/ml)
    眼玻璃体140~340
    脐带4100
    关节滑液1400~3600
    真皮200~500
    表皮100
    胸淋巴液0.2~50
    尿液0.1~0.3
    血清0.01~0.1

    图  1  透明质酸结构式

    • HA作为一种酸性黏多糖,广泛分布于人体各种组织的细胞间质中,具有维持细胞渗透压稳定,使相邻细胞黏合等重要生理功能[6]。另外,HA还能调节细胞的黏附和运动功能,调控细胞分化和增殖,维持组织的生物力学性能正常[7]。HA在眼科手术中具有广泛应用,主要是由于其具有黏性、假塑性、弹性、黏合性和涂布性等特性,这些特性使其具有黏弹性衬垫、组织内分离、黏性阻塞、黏性止血、黏弹性缓冲以及弹性固定等重要功能[8]

      干眼病是一种常见的眼科综合症,主要由眼腺细胞功能紊乱等原因所致,包括各类结膜炎等。HA富含亲水基团,能够与水分子结合,起亲水及润滑作用,因此可以在一定程度上缓解干眼症状。《干眼临床诊疗专家共识(2013)》指出[9],“干眼症治疗目的:轻度干眼症患者是缓解眼部症状,严重干眼患者是保护视功能”。透明质酸钠滴眼液可以冲洗并稀释眼表面炎性介质,降低泪液渗透压,促进眼表上皮的愈合,以及促进眼表纤维连结蛋白分泌和沉积,从而在眼表上皮损伤愈合中起重要作用。俞惠玲[10]对106例干眼症患者的研究发现,单独使用0.3%透明质酸钠滴眼液,对干眼症有效率达81.8%;透明质酸钠滴眼液加普拉洛芬滴眼液联合使用有效率高达92.3%。

    • HA常用于化妆品保湿成分,包括HA保湿锁水霜以及保湿补水面膜等。人体内50%HA存在于皮肤真皮内,为胶原纤维和弹性蛋白的分布提供空间架构。三者共同形成皮肤的支架,维持皮肤组织稳定,保持皮肤弹性。若有一者缺失,可加速皮肤衰老和皱纹的形成[11]。HA作为组成人体结缔组织和滑液的成分之一,因其生物相容性较高,是目前全球用量最大的皮肤填充物之一,常用于眼周眉间纹、鱼尾纹、抬头纹等治疗[12-14]。薛紫涵等人通过对23例轻中度面部松弛患者,进行面部韧带处注射HA 0.2 ml,23例患者未出现红肿、疼痛、瘀青和过敏反应,也未发生硬块结节、填充物移位、血管栓塞、皮肤坏死等不良反应。注射后,所有人均有不同程度的眼角和颧下松弛的改善,并有提升法令纹、口角上扬、下颌缘更清晰以及面部更加紧致等效果。随访表明,注射效果约持续3~6个月,若欲维持效果则需半年后再次注射[15]。HA能够调控胶原的合成,降低炎性介质的生成,抑制创面毛细血管的渗出和纤维蛋白原的沉积,抑制成纤维细胞合成胶原纤维,从而抑制手术瘢痕形成[16-18]。Patel采用无针注射交联HA,治疗了两例痤疮疤痕患者,间隔4周后,再重复给药一次,能有效减轻病人的疤痕程度,无不良反应[19]

    • HA是关节滑液的重要成分,作为润滑剂给骨骼末端提供保护[20]。在最初合成时,HA主要由2×105~2×106 Da之间的高分子量HA聚合物组成[21]。在骨关节炎和类风湿性关节炎,HA分子量变小,滑液黏稠度降低,使得HA黏弹性下降,从而导致关节面的磨损增加[20]。关节腔内注射高分子量HA能有效的缓解骨关节炎和类风湿性关节炎患者的疼痛,起到一定的治疗作用[22]。HA除了润滑作用外,还能降低巨噬细胞的吞噬作用,改善炎症反应[23]。苑树岩等给35例膝关节炎患者的关节腔内注射2.5 ml 透明质酸钠,给药后患者疼痛减轻,关节滑液中IL-6β含量下降[24]。Seung发现交联HA凝胶支架易与人牙髓干细胞和模拟肽混合,混合溶液便于注射。注射给小鼠后,交联HA迅速在注射部位形成水凝胶支架,并可安全无刺激的在小鼠体内保留8周以上。牙髓干细胞在水凝胶中至少可存活8周,模拟肽可诱导牙髓干细胞向成骨细胞分化,交联HA凝胶支架作为生物材料,可以用于骨骼组织工程[25]

    • HA用于外科手术后防止组织黏连,能有效的降低黏连的发生率和减轻黏连的严重程度[26]。HA防止术后组织黏连的机理是:①HA凝胶具有高分子纤维网状结构,涂布于组织表面,能起到阻隔作用,在腹膜修复时,形成一种短暂的保护屏障;②抑制术后出血和渗出,减少能形成永久性黏连骨架的血块数量,避免组织接触面的纤维蛋白沉着;③HA抑制中性粒白细胞迁移和吞噬作用,降低炎性反应[27];④HA与间质细胞和成纤维细胞膜表面高亲和力的HA受体蛋白相互作用,提高这些细胞的迁移及趋化能力,从而促进了体内修复过程;⑤HA凝胶覆盖于创伤浆膜表面,在一定时间内不被降解代谢,使早期的创面组织修复能持续有效的进行,直至在创面形成一连续的间皮细胞覆盖层,完成组织修复。

      蔡同凯等[28]采用大鼠盲肠和腹壁双侧损伤模型,以Nair黏连5级分类法判断腹腔黏连程度,发现术后30 d,透明质酸钠凝胶组SD大鼠腹腔黏连明显低于模型组,透明质酸钠凝胶组极限荷载比和刚度比与假手术组和模型组无统计学差异。医用透明质酸钠凝胶能有效降低黏连程度,并且不影响创面的恢复。Zhang等采用大鼠两次子宫损伤模型,研究了医用透明质酸钠和氧化再生纤维素预防大鼠腹膜黏连的疗效,发现医用透明质酸钠和氧化再生纤维素均能有效的降低黏连损伤的程度[27]。固体医用膜在使用时,难以被准确固定在创伤部位,在组织愈合后,还需要再次手术取出医用膜[29]。液体形式的HA,不仅便于操作,易于覆盖在创伤部位,而且其在体内保留的时间与伤口愈合周期一致。

    • 近年来,HA作为药物载体,与其他药物反应形成化合物,发挥缓释作用和靶向作用,使其结合的药物能够定时或定向地被释放[30-32]。HA作为纳米材料,可以与抗肿瘤药物形成靶向制剂,治疗盆腔肿瘤。Lee发现透明质酸纳米粒易于被CD44受体阳性患者的结肠癌HCT116细胞内吞吸收[33],HA与紫杉醇共轭形成的纳米复合物,体外对HCT116细胞显示出更强的细胞毒作用[34]。Bajaj将紫杉醇用HA胶体包裹,延长了紫杉醇在裸鼠体内的存留时间,并有效减少人卵巢癌SKOV-3肿瘤的生长和转移[35]。Xiao等采用透明质酸-十八烷基胺结构的脂质载体,装载紫杉醇,其装载率被提高到72%。在裸鼠体内,装载紫杉醇的透明质酸-十八烷基胺载体在肝脏和脾脏的分布减少,而在肿瘤组织的分布增加[36]。Choi将伊立替康封装在HA纳米粒中,在裸鼠体内能有效抑制人结肠癌CT29肿瘤的生长,同时能降低伊立替康的不良反应。利用荧光技术可以观察结肠癌CT26肿瘤的转移[37]。Zhang等利用环丙沙星和万古霉素与HA偶联制备为抗生素缓释颗粒,能在一周内有效抑制绿脓杆菌、金黄色葡萄球菌和枯草芽孢杆菌[38]

    • 人体内HA主要由HA分解酶(Hyals)分解,其中最主要的酶是Hyal-1和Hyal-2。Hyal-2将HA降解成低分子量HA,Hyal-1将HA降解成低分子寡聚体。高分子量HA仅β1、4键暴露,降解缓慢,当HA分子量低于30万时,HA聚集能力降低,降解速度呈指数倍增加[39]。有报道[40]HA能被降解为多糖,为葡萄球菌和链球菌等提供营养。Zhang等[41]研究表明,在富含HA的培养基中,化脓性链球菌的M1蛋白、胶原样表面蛋白和糖酵解酶甘油醛-3-磷酸脱氢酶等几种致病因子上调。但是也有报道[42-43],HA能抑制SA等细菌的生长,1 mg/ml浓度时就能达到最大抑制作用,但是没有杀菌作用。高浓度高分子量HA体外抑制SA和大肠埃希菌的生长,并且体内体外均不影响抗生素的药效[28]。Jae采用小鼠盲肠结扎穿刺法,构建小鼠腹腔脓肿模型,通过腹腔注射高分子量HA(20 mg/kg),能有效的降低腹腔菌载量,降低炎症因子水平,提高小鼠的存活率[44]

    • 内源性低分子量HA可以促进血管生成,增加肿瘤细胞的供血,促进肿瘤细胞的生长[45-47];另外,内源性低分子量HA也可以促进肿瘤细胞表面CD44的分泌,从而促进肿瘤细胞的转移[48]。通过抑制透明质酸合成酶3(HAS3),降低低分子量HA的产生,可使前列腺肿瘤血管生成减少70%~80%,肿瘤生长速度降低[49]。透明质酸合成酶2(HAS2)过表达,高分子量HA合成增加,组织中高分子量HA浓度升高,反而体现出抑制肿瘤细胞的生长[50]。也有文献报道,内源性的HA能促进肿瘤细胞增殖和扩散[51-53]。外源性HA根据分子量不同,应用也不同[3254]表2)。外源性高分子量HA进入人体后会促进HAS2高表达,加速内源性高分子量HA合成,使机体高分子量HA浓度增加,从而抑制肿瘤的生长和扩散[55]。Aikaterini用外源性高分子量HA显著抑制 HT1080细胞的迁移,当加入HA分解酶水解高分子量HA后,HT1080 细胞运动性显著增加[56]。高分子量HA钠凝胶能够抑制结肠癌细胞的转移[57]。除了和抗肿瘤药物合用,外源性寡聚体HA单用还可以与CD44 受体结合,增强肿瘤细胞的凋亡[58],与HA介导的运动受体结合,降低肿瘤细胞的转移[59]

      表 2  不同相对分子质量外源性透明质酸的应用

      用途分子量(Da)作用
      骨关节注射液>5×106对受损部位润滑和机械保护作用;
      眼科手术黏弹剂>3×106撑起前房,减少术后炎症的发生
      滴眼液(1~1.5)×106增加滞留时间;润滑和保护作用
      术后防黏连>1×106形成隔离层,抑制炎症反应
      化妆品(0.5~2)×106保湿
      抗肿瘤药载体(5~7.5)×105与肿瘤CD44靶点特异性结合
      对创伤修复<5×105促进巨噬细胞的吞噬作用;促进血管形成
      抗肿瘤作用800~3200特异性结合CD44受体和RHAMM受体
    • HA的结构与功能决定了其可用于生物材料、药物靶向制剂、美容以及腹部手术后预防黏连等,但是随着HA可能促进肿瘤细胞的生长和转移以及促进细菌的生长等疑问的出现,使得临床使用HA变得慎之又慎。

      本文对HA的临床应用和HA对肿瘤以及细菌作用机制进行综述,对临床安全使用HA特别是将HA用于腹盆腔肿瘤患者的术后防黏连具有一定的指导意义,但其相关作用机制还需要进一步研究。

参考文献 (59)

目录

    /

    返回文章
    返回