留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

糖尿病治疗中多肽类药物新型缓控释给药制剂的研究进展

宣吉明 程玉松 高静 钟延强

宣吉明, 程玉松, 高静, 钟延强. 糖尿病治疗中多肽类药物新型缓控释给药制剂的研究进展[J]. 药学实践与服务, 2012, 30(1): 14-18,37. doi: 10.3969/j.issn.1006-0111.2012.01.004
引用本文: 宣吉明, 程玉松, 高静, 钟延强. 糖尿病治疗中多肽类药物新型缓控释给药制剂的研究进展[J]. 药学实践与服务, 2012, 30(1): 14-18,37. doi: 10.3969/j.issn.1006-0111.2012.01.004
XUAN Ji-ming, CHENG Yu-song, GAO Jing, ZHONG Yan-qiang. Developments of sustained and controlled release delivery systems of peptides in treatment of diabetes[J]. Journal of Pharmaceutical Practice and Service, 2012, 30(1): 14-18,37. doi: 10.3969/j.issn.1006-0111.2012.01.004
Citation: XUAN Ji-ming, CHENG Yu-song, GAO Jing, ZHONG Yan-qiang. Developments of sustained and controlled release delivery systems of peptides in treatment of diabetes[J]. Journal of Pharmaceutical Practice and Service, 2012, 30(1): 14-18,37. doi: 10.3969/j.issn.1006-0111.2012.01.004

糖尿病治疗中多肽类药物新型缓控释给药制剂的研究进展

doi: 10.3969/j.issn.1006-0111.2012.01.004

Developments of sustained and controlled release delivery systems of peptides in treatment of diabetes

  • 摘要: 多肽类降血糖药物具有模拟正常人的生理性胰岛素分泌的功能,并且其降糖作用与患者血糖水平有关,很少发生低血糖事件。现就治疗糖尿病的多肽类药物新型缓控释制剂作一综述。
  • [1] Mei LT, Choong PFM, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery[J]. Peptides, 2010, 31(1):184.
    [2] Park W, Na K. Polyelectrolyte complex of chondroitin sulfate and peptide with lower pI value in poly(lactide-co-glycolide) microsphere for stability and controlled release[J]. Colloids Surf. B Biointerfaces , 2009, 72 (2):193.
    [3] Duchêne D, Wouessidjewe D, Ponchel G. Cyclodextrins and carrier systems[J]. J Control Release, 1999, 62(1-2):263.
    [4] Challa R, Abuja A, Ali J, et al. Cyclodextrins in drug delivery: an updated review[J]. AAPS Pharmscitech, 2005, 6(2):E329.
    [5] Ungaro F, Villa Bianca R, Giovino C, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs[J]. J Control Release, 2009, 135(1):25.
    [6] Agüeros M, Areses P, Campanero MA, et al. Bioadhesive properties and biodistribution of cyclodextrin-poly(anhydride) nanoparticles[J]. Eur J Pharm. Sci, 2009, 37(3-4):231.
    [7] Agüeros M, Zabaleta V, Espuelas S, et al. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles[J]. J Control Release, 2010, 145(1):2.
    [8] Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery[J]. Int J Pharm, 2006, 325(1-2):147.
    [9] Han YD, Tian HY, He P, et al. Insulin nanoparticle preparation and encapsulation into poly(lactic-co-glycolic acid) microspheres by using an anhydrous system[J]. Int J Pharm, 2009, 378(1-2):159.
    [10] Builders PF, Kunle OO, Okpaku LC, et al. Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin[J]. Eur J Pharm Biopharm, 2008, 70(3):777.
    [11] Zhang YL, Wei W, Lv PP, et al. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin[J]. Eur J Pharm Biopharm, 2011, 77(1):11.
    [12] Sonia TA, Sharma CP. In vitro evaluation of N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan for oral insulin delivery[J]. Carbohydrate Polymers, 2011, 84(1):103.
    [13] Pan Y, Xu H, Zhao HY, et al. Study on preparation and oral efficacy of insulin-loaded poly ( lactic-co-glycolic acid)nanoparticles[J] . Acta Pharm Sin (药学学报), 2002, 37(7):374.
    [14] Marco W, Wim EH , Wim J . Protein instability in poly(lactic2co2glycolic acid) nanoparticles[J]. Pharm Res, 2000, 17 (10) :1159.
    [15] Lehr CM, Bouwstra JA , Kok W, et al. Effects of the mucoadhesive polymer polycarbophil on the intestinal absorption of a peptide drug in the rat[J]. J Pharm Pharmacol, 1992, 44(2):402.
    [16] Pimienta C, Chouinard F, Labib A, et al. Effects of various poloxamer coatings on in vitro adhesion of isohexylcyanoacrylate nanospheres to rat ileal segments under liquid flow[J]. Int J Pharm, 1992, 80(1):1.
    [17] Pan Y, Zhao HY, Xu H, et al. Effect of experimental parameters on the encapsulation of insulin-loaded poly(lactide2co2glycolide) nanoparticles prepared by a double emulsion method[J]. J Chin Pharm Sci, 2002, 11(1):38.
    [18] Lee VH.Peptidase activities in absorptive mucosae[J].Biochem Soc, 1989, 17(3):937.
    [19] Jain AK, Chalasani KB, Khar RK, et al. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery[J]. J Drug Target, 2007, 15(6):417.
    [20] 杨天智, 王向涛, 阎雪莹, 等. 胰岛素柔性纳米脂质体的口腔给药研究[J]. 药学学报,2002, 37(11):885.
    [21] YIN DF, LU Y, ZHANG H, et al. Preparation of Glucagon-Like Peptide-1 Loaded PLGA Microspheres: Characterizations, Release Studies and Bioactivities in Vitro/in Vivo[J]. Chem Pharm Bull, 2008, 56(2):156.
    [22] Joseph J W, Kalitsky J, St-Pierre S, et al. Oral delivery of glucagon-like peptide-1 in modified polymer preparation normalizes basal glycaemia in diabetic bd/bd mice[J]. Diabetologia, 2000, 43(10):1319.
    [23] Gao ZH, Tang Y, Chen JQ, et al. A novel DPP-IV-resistant analog of glucagon-like peptide-1 (GLP-1): KGLP-1 alone or in combination with long-acting PLGA microspheres[J]. Peptides, 2009, 30(10):1874.
    [24] Sten Madsbad, Professor. Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)-preclinical and clinical results. Best Practice & Research Clinical Endocrinology & Metabolism, 2009, 23(4):463.
    [25] Yang HJ, Park IS, Na K. Biocompatible microspheres based on acetylated polysaccharide prepared from water-in-oil-in-water (W1/O/W2) double-emulsion method for delivery of type II diabetic drug (exenatide)[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2009, 340(1-3):115.
    [26] Nguyen HN, Wey SP, Juang JH, et al. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo[J]. Biomaterials, 2011, 32(10):2673.
    [27] Hanato J, Kuriyama K,et al. Liposomal formulations of glucagon-like peptide-1: Improved bioavailability and anti-diabetic effect[J]. Int J Pharm, 2009, 382(1-2):111.
    [28] Singh M, Shirley B, Bajwa K, et al. Controlled release of recombinant insulin-like growth factor from a novel formulation of polylactide-co-glycolide microparticles[J]. J Control Release, 2001, 70(1-2):21.
    [29] Chen FM, Zhao YM, Wu H, et al. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres[J]. J Control Release, 2006, 114(2):209.
    [30] Champa Jayasuriya A.Kibbe S. Rapid biomineralization of chitosan microparticles to apply in bone regeneration[J]. J Mater Sci: Mater Med, 2010, 21(2):393.
  • [1] 杨志晖, 张利利, 赵妍, 黄景慧, 刘园, 袁海龙.  临床药师参与糖尿病足患者治疗的效果评价 . 药学实践与服务, 2023, 41(11): 686-688, 699. doi: 10.12206/j.issn.2097-2024.202209087
    [2] 陆涵之, 王怡, 郭冬婕, 郭婉军, 朱建勇, 李福伦.  中草药提取物治疗糖尿病溃疡的研究进展 . 药学实践与服务, 2023, 41(6): 335-340, 357. doi: 10.12206/j.issn.2097-2024.202204111
    [3] 任宇, 方铭, 俞俊, 徐峰.  糖尿病抑郁共病治疗管理研究进展 . 药学实践与服务, 2018, 36(4): 297-300. doi: 10.3969/j.issn.1006-0111.2018.04.003
    [4] 刘维旭, 夏迎兰, 黄洁.  糖尿病并发肾病综合征综合治疗1例报道 . 药学实践与服务, 2014, 32(2): 160-160.
    [5] 王超.  前列地尔联合甲钴胺注射液治疗糖尿病足的疗效观察 . 药学实践与服务, 2013, 31(6): 462-463. doi: 10.3969/j.issn.1006-0111.2013.06.018
    [6] 黄秋明, 赵涛.  降糖合剂治疗糖尿病周围神经病变的临床疗效 . 药学实践与服务, 2013, 31(2): 126-128,142. doi: 10.3969/j.issn.1006-0111.2013.02.012
    [7] 黄秋明, 涂雪松, 晏琼, 史传林.  马来酸桂哌齐特治疗糖尿病周围神经病变的Meta分析 . 药学实践与服务, 2012, 30(2): 137-142. doi: 10.3969/j.issn.1006-0111.2012.02.016
    [8] 丁海峰, 曹永兵, 安毛毛, 贾鑫明, 姜远英.  SGLT2抑制剂治疗糖尿病研究进展 . 药学实践与服务, 2011, 29(2): 89-92,116.
    [9] 樊蓉, 张纯, 高申.  蛋白多肽类药物的药代动力学研究概况 . 药学实践与服务, 2006, (3): 135-138.
    [10] 程凤银, 叶盛英.  桑叶抗糖尿病研究概况 . 药学实践与服务, 2005, (2): 71-74.
    [11] 刘星, 王亚楼.  Ⅱ型糖尿病治疗药物的现状和开发动态 . 药学实践与服务, 2004, (1): 1-4.
    [12] 石璐, 严啸薇, 陈军刚.  硫酸吗啡控释片直肠给药治疗癌性疼痛临床观察 . 药学实践与服务, 2004, (6): 338-340.
    [13] 郭随章.  糖尿病周围神经病变的药物治疗 . 药学实践与服务, 2003, (3): 131-133.
    [14] 田维荣, 戴飞龙, 晏马成.  糖尿病的药物治疗 . 药学实践与服务, 2002, (3): 137-140.
    [15] 徐芳, 信艳红, 段艳冰, 屈岩.  表皮生长因子的临床应用 . 药学实践与服务, 2002, (6): 324-326.
    [16] 卢奕, 艾淑智.  微粒化非诺贝特与非诺贝特治疗Ⅱ型糖尿病合并高脂血症的比较 . 药学实践与服务, 2001, (3): 136-137.
    [17] 李国栋, 王捷频.  蛋白质、多肽类药物制剂的研究现状 . 药学实践与服务, 2001, (6): 344-345,349.
    [18] 陈裕, 许文江, 黄自强, 杨叔禹, 陈进益.  复方金线莲胶囊治疗Ⅱ型糖尿病的初步研究(摘要) . 药学实践与服务, 2000, (5): 358-358.
    [19] 王雯英.  国产和进口格列奇特治疗Ⅱ型糖尿病疗效比较分析 . 药学实践与服务, 1999, (3): 133-134.
    [20] 卫英, 于华生.  胸腺多肽胶囊的研制 . 药学实践与服务, 1998, (6): 346-348.
  • 加载中
计量
  • 文章访问数:  2794
  • HTML全文浏览量:  174
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-22
  • 修回日期:  2011-12-15

糖尿病治疗中多肽类药物新型缓控释给药制剂的研究进展

doi: 10.3969/j.issn.1006-0111.2012.01.004

摘要: 多肽类降血糖药物具有模拟正常人的生理性胰岛素分泌的功能,并且其降糖作用与患者血糖水平有关,很少发生低血糖事件。现就治疗糖尿病的多肽类药物新型缓控释制剂作一综述。

English Abstract

宣吉明, 程玉松, 高静, 钟延强. 糖尿病治疗中多肽类药物新型缓控释给药制剂的研究进展[J]. 药学实践与服务, 2012, 30(1): 14-18,37. doi: 10.3969/j.issn.1006-0111.2012.01.004
引用本文: 宣吉明, 程玉松, 高静, 钟延强. 糖尿病治疗中多肽类药物新型缓控释给药制剂的研究进展[J]. 药学实践与服务, 2012, 30(1): 14-18,37. doi: 10.3969/j.issn.1006-0111.2012.01.004
XUAN Ji-ming, CHENG Yu-song, GAO Jing, ZHONG Yan-qiang. Developments of sustained and controlled release delivery systems of peptides in treatment of diabetes[J]. Journal of Pharmaceutical Practice and Service, 2012, 30(1): 14-18,37. doi: 10.3969/j.issn.1006-0111.2012.01.004
Citation: XUAN Ji-ming, CHENG Yu-song, GAO Jing, ZHONG Yan-qiang. Developments of sustained and controlled release delivery systems of peptides in treatment of diabetes[J]. Journal of Pharmaceutical Practice and Service, 2012, 30(1): 14-18,37. doi: 10.3969/j.issn.1006-0111.2012.01.004
参考文献 (30)

目录

    /

    返回文章
    返回