留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

共生真菌对植物抗旱性的影响及机制研究进展

叶冰竹 李春艳 贾敏 翟欣 秦路平 韩婷

叶冰竹, 李春艳, 贾敏, 翟欣, 秦路平, 韩婷. 共生真菌对植物抗旱性的影响及机制研究进展[J]. 药学实践与服务, 2018, 36(5): 392-398. doi: 10.3969/j.issn.1006-0111.2018.05.003
引用本文: 叶冰竹, 李春艳, 贾敏, 翟欣, 秦路平, 韩婷. 共生真菌对植物抗旱性的影响及机制研究进展[J]. 药学实践与服务, 2018, 36(5): 392-398. doi: 10.3969/j.issn.1006-0111.2018.05.003
YE Bingzhu, LI Chunyan, JIA Min, ZAI Xin, QIN Luping, HAN Ting. The effects of symbiotic fungi on plant drought resistance and mechanisms[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 392-398. doi: 10.3969/j.issn.1006-0111.2018.05.003
Citation: YE Bingzhu, LI Chunyan, JIA Min, ZAI Xin, QIN Luping, HAN Ting. The effects of symbiotic fungi on plant drought resistance and mechanisms[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 392-398. doi: 10.3969/j.issn.1006-0111.2018.05.003

共生真菌对植物抗旱性的影响及机制研究进展

doi: 10.3969/j.issn.1006-0111.2018.05.003

The effects of symbiotic fungi on plant drought resistance and mechanisms

  • 摘要: 共生真菌分布广泛,与植物形成共生体。研究表明,某些共生真菌可以增强植物对生物胁迫和非生物胁迫,包括干旱、高温、矿物质失调和高盐的耐受性,从而使被内生真菌感染的植株比未感染植株对有限的资源更具竞争力而且生长得更好。植物共生真菌可以通过多样化途径来增强植物体的抗性机能,其提高抗旱性的机制主要表现在营养物质的吸收、植物的保护系统、激素调节、水解酶、水分代谢、相关基因表达、植物防御信号途径等方面。总结共生真菌提高植物耐旱性的机制研究进展,以使读者能全面、及时地了解这一领域的研究动态。
  • [1] STIERLE A,STROBEL G,STIERLE D. Taxol and taxane production by Taxomyces andreanae,an endophytic fungus of Pacific yew[J]. Science,1993,260(5105):214-216.
    [2] MANO H,MORISAKI H.Endophytic bacteria in the riceplant[J]. Microbes Environ,2008,23(2):109-117.
    [3] BARRETTI PB,SOUZA RMD,POZZA AAA,et al. Increased nutritional efficiency of tomato plants inoculated with growth-promoting endophytic bacteria[J]. Revista Brasileira de Ciência do Solo,2008,32(4):1541-1548.
    [4] HASSAN N,NAKASUJI S,ELSHARKAWY MM,et al.Biocontrol potential of an Endophytic Streptomyces sp. strain MBCN152-1 against Alternaria brassicicola on cabbage plug seedlings[J].Microbes Environ,2017,32(2):133-141.
    [5] KULDAU G,BACON C. Clavicipitaceous endophytes:their ability to enhance resistance of grasses to multiple stresses[J]. Biological Control,2008,46(1):57-71.
    [6] KANE KH. Effects of endophyte infection on drought stress tolerance of Lolium perenne,accessions from the Mediterranean region[J]. Environ Exp Bot,2011,71(71):337-344.
    [7] HAHN H,MCMANUS MT,WARNSTORFF K,et al. Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit[J]. Environ Exp Bot,2008,63(1):183-199.
    [8] 宋文玲,刘晓珍,蔡信之,等.两株内生真菌对菊花抗旱特性的影响[J].中国中药杂志,2011,36(3):302-306.
    [9] 穆平,李自超,李春平,等. 水、旱稻根系性状与抗旱性相关分析及其QTL定位[J].科学通报,2003,48(20):2162-2169.
    [10] RUíZ-LOZANO JM,AZCóN R. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status[J]. Physiologia Plantarum,1995,95(3):472-478.
    [11] BELESKY DP,STRINGER WC,HILLl NS. Influence of endophyte and water regime upon tall fescue accessions. I. growth characteristics[J]. Ann Botan,1989,63(5):495-503.
    [12] 张文英,蒿若超,汪嫒嫒,等. 内生真菌印度梨形孢诱导提高玉米苗期抗旱性研究初探[J]. 玉米科学,2013(5):25.
    [13] BAE H,SICHER RC,KIM MS,et al. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao[J]. J Exp Bot,2009,60(11):3279-3295.
    [14] 何跃军,钟章成,刘济明,等. VA真菌对构树(Broussonetia papyrifera)幼苗物质代谢的影响[J]. 生态学报,2007(12):5455-5462.
    [15] 魏媛,张金池,尹晓阳,等. 华山松菌根化幼苗的抗旱特性[J]. 南京林业大学学报(自然科学版),2007,31(4):69-72.
    [16] ELBERSEN HW,WEST CP. Growth and water relations of field-grown tall fescue as influenced by drought and endophyte[J]. GrassFor Sci,1996,51(4):333-342.
    [17] AUGé RM,TOLER HD,SAXTON AM. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions:a meta-analysis[J]. Mycorrhiza,2015,25(1):13-24.
    [18] 张涛,安黎哲,陈拓,等. 不同海拔青海云杉与祁连圆柏叶片抗氧化系统[J]. 植物生态学报,2009,33(4):802-811.
    [19] 姚瑞玲,甘春雁,项东云. 丛枝菌根化香椿,秋枫幼苗对干旱胁迫生理响应[J]. 广西林业科学,2013,42(4):295-299.
    [20] 吴强盛,夏仁学,胡正嘉. 丛枝菌根对枳实生苗抗旱性的影响研究[J]. 应用生态学报,2005,6(3):459-463.
    [21] 肖家欣,任群,吴雪俊,等. 丛枝菌根真菌对百喜草的生理特性的影响[J]. 植物分类与资源学报,2011,33(5):521-528.
    [22] ZHANG YP,NAN ZB. Growth and anti-oxidative systems changes in Elymus dahuricus is affected by Neotyphodium Endophyte under contrasting water availability[J]. J Agron Crop Sci,2007,193(6):377-386.
    [23] ZHANG YP,NAN ZB. Germination and seedling anti-oxidative enzymes of endophyte-infected populations of Elymus dahuricus under osmotic stress[J]. Seed Sci Technol,2010,38(2):522-527.
    [24] VADASSERY J,TRIPATHI S,PRASAD R,et al. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis[J]. J Plant Physiol,2009,166(12):1263-1274.
    [25] BALTRUSCHAT H,FODOR J,HARRACH BD,et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants[J]. New Phytol,2008,180(2):501-510.
    [26] RUíZ-SáNCHEZ M,ARMADA E,MU OZ Y,et al. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions[J]. J Plant Physiol,2011,168(10):1031-1037.
    [27] 丛国强,尹成林,何邦令,等. 水分胁迫下内生真菌球毛壳ND35对冬小麦苗期生长和抗旱性的影响[J]. 生态学报,2015,35(18):6120-6128.
    [28] 韩荣,李夏,任安芝,等.干旱胁迫下内生真菌感染对羽茅的生理生态影响[J].生态学报,2011,31(8):2115-2123.
    [29] SHUKLA N,AWASTHI RP,RAWAT L,et al. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress[J]. Plant Physiol Biochem,2012,54:78-88.
    [30] AUGé RM. Water relations,drought and vesicular-arbuscular mycorrhizal symbiosis[J]. Mycorrhiza,2001,11(1):3-42.
    [31] TANGNGAMSAKUL P,KARNCHANATAT A,SIHANONTH P,et al. An extracellular glucoamylase produced by endophytic fungus EF6[J]. Prikl Biokhim Mikrobiol,2011,47(4):455-461.
    [32] RICHARDSON MD,CHAPMAN GW,HOVELAND CS,et al. Sugar alcohols in endophyte-infected tall feseue under drought[J]. Crop Science,1992,32(4):1060-1061.
    [33] 任安芝,高玉葆,王巍,等.王金龙干旱胁迫下内生真菌感染对黑麦草光合色素和光合产物的影响[J].生态学报,2005,25(2):225-231.
    [34] KONG J,PEI Z,DU M,et al. Effects of arbuscular mycorrhizal fungi on the drought resistance of the mining area repair plant sainfoin[J]. Int J Min Sci Technol,2014,24(4):485-489.
    [35] 贺学礼,高露,赵丽莉. 水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响[J]. 生态学报,2011,31(4):1029-1037.
    [36] JOOST RE. Acremonium in fescue and ryegrass:boon or bane? A review[J]. J Anim Sci,1995,73(3):881-888.
    [37] RUíZ-LOZANO JM,AROCA R,ZAMARRE O áM,et al. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato[J]. Plant Cell Environ,2016,39(2):441-452.
    [38] SáNCHEZ-ROMERA B,RUíZ-LOZANO JM,ZAMARRE OO áM,et al. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought[J]. Mycorrhiza,2016,26(2):111-122..
    [39] KHAN AL,WAQAS M,LEE IJ. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses[J]. J Plant Res,2015,128(2):259-268.
    [40] SHERAMETI I,TRIPATHI S,VARMA A,et al. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves[J]. Mol Plant Microbe Interact,2008,21(6):799-807.
    [41] 王立梅,杨秀芬,曾洪梅,等. 蛋白激发子PeaT1在枯草芽胞杆菌中的分泌表达及重组菌株提高小麦抗旱和促生的作用[J].生物工程学报,2011,27(9):1355-1362.
    [42] 陈鸿鹏,谭晓风,谢耀坚,等. 油茶CoSAD基因载体的构建、鉴定及功能分析[J].植物资源与环境学报,2015,24(2):11-18.
    [43] 蔡昆争,董桃杏,徐涛. 茉莉酸类物质(JAs)的生理特性及其在逆境胁迫中的抗性作用[J]. 生态环境,2006,15(2):397-404.
    [44] TON J,VAN PELT JA,VAN LOON LC,et al. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis[J]. Mol Plant Microbe Interact,2002,15(1):27-34.
    [45] 徐茂军,董菊芳,朱睦元. NO通过水杨酸(SA)或者茉莉酸(JA)信号途径介导真菌诱导子对粉葛悬浮细胞中葛根素生物合成的促进作用[J]. 中国科学(C辑),2006,36(1):66-75.
    [46] SENARATNA T,TOUCHELL D,BUNN E,et al. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants[J]. Plant Growth Regul,2000,30(2):157-161.
    [47] 刘晓珍,宋文玲,张凯,等. 内生真菌对菊花幼苗干旱胁迫生理的影响[J]. 园艺学报,2011,38(2):335-342.
    [48] LIU Z,LI Y,MA L,et al. Coordinated regulation of arbuscular mycorrhizal fungi and soybean MAPK pathway genes improved mycorrhizal soybean drought tolerance[J]. Mol Plant Microbe Interact,2015,28(4):408-419.
    [49] 李飞,李春杰. 内生真菌对禾草类植物抗旱性的影响[J]. 草业科学,2006,23(3):57-62.
    [50] HOVELAND CS. Importance and economic significance of the Acremonium endophytes to performance of animals and grass plant[J]. Agricult Ecosyst Environ,1993,44(1):3-12.
  • [1] 刘胜, 陈敏, 凃远珍.  基于前置审核系统优化的三唑类抗真菌药与他汀类药物相互作用精细化审核 . 药学实践与服务, 2022, 40(2): 175-179. doi: 10.12206/j.issn.1006-0111.202109126
    [2] 柯樱, 朱振明, 张烁阳, 王薇青, 陆峰.  硫酸羟氯喹颗粒水分近红外光谱在线定量模型的建立 . 药学实践与服务, 2021, 39(1): 23-28. doi: 10.12206/j.issn.1006-0111.202007128
    [3] 孙旸, 王鹏源, 刘霞.  摄食的神经及内分泌调节 . 药学实践与服务, 2016, 34(6): 501-506,521. doi: 10.3969/j.issn.1006-0111.2016.06.006
    [4] 许燕, 胡明慧, 高蓓蓉, 周选围.  灵芝真菌免疫调节蛋白在体外对不同胃癌细胞的抑制作用 . 药学实践与服务, 2016, 34(3): 223-226,277. doi: 10.3969/j.issn.1006-0111.2016.03.008
    [5] 丁浩, 杨帆, 蔡艺, 柴晓云, 吴秋业.  选择性雌激素受体调节剂研究现状 . 药学实践与服务, 2016, 34(1): 1-4,55. doi: 10.3969/j.issn.1006-0111.2016.01.001
    [6] 赵红芳, 黄宝康.  重金属胁迫下药用植物耐受及超富集的机制 . 药学实践与服务, 2010, 28(6): 406-409,467.
    [7] 王晓红.  中药调节血脂研究概况 . 药学实践与服务, 2007, (2): 73-77.
    [8] 王旭红.  体式显微成像系统在药用植物分类学实验中的应用 . 药学实践与服务, 2004, (1): 47-48.
    [9] 张立超, 胡晋红.  聚合物水分散体包衣技术的进展 . 药学实践与服务, 1999, (3): 144-148.
    [10] 宋炳生, 杨玉龙.  枸杞多糖的免疫调节作用 . 药学实践与服务, 1997, (2): 69-72.
    [11] 周建设, 史荣组.  生长激素临床应用进展 . 药学实践与服务, 1997, (3): 143-144,150.
    [12] 郭建平.  用水分散性胶体共聚物制药物微囊 . 药学实践与服务, 1995, (2): 102-103.
    [13] 廖万清, 任世泽, 周廷森.  国产氟康唑注射剂治疗系统性真菌病20例疗效观察 . 药学实践与服务, 1994, (2): 21-22.
    [14] 郑希林.  雌激素的临床应用近况 . 药学实践与服务, 1993, (3): 170-171.
    [15] 张尚文, 张紫洞.  抗真菌新药——氟康唑 . 药学实践与服务, 1991, (3): 9-10.
    [16] 景凡伟, 张紫洞.  雌激素是骨质疏松最佳的治疗 . 药学实践与服务, 1989, (2): 19-19.
    [17] BurnstockG, KennedyC.  三磷酸腺苷调节血管张力的双重功能(上) . 药学实践与服务, 1988, (3): 3-6.
    [18] 曾慎健, 张紫洞.  抗真菌药 . 药学实践与服务, 1988, (4): 7-8.
    [19] 合理用药讨论会会务组.  肾上腺皮质激素的合理应用 . 药学实践与服务, 1985, (1): 9-13.
    [20] WalterH.Lewis.  作用于神经系统的植物药 . 药学实践与服务, 1983, (3): 21-27.
  • 加载中
计量
  • 文章访问数:  2996
  • HTML全文浏览量:  414
  • PDF下载量:  909
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-23
  • 修回日期:  2018-06-12

共生真菌对植物抗旱性的影响及机制研究进展

doi: 10.3969/j.issn.1006-0111.2018.05.003

摘要: 共生真菌分布广泛,与植物形成共生体。研究表明,某些共生真菌可以增强植物对生物胁迫和非生物胁迫,包括干旱、高温、矿物质失调和高盐的耐受性,从而使被内生真菌感染的植株比未感染植株对有限的资源更具竞争力而且生长得更好。植物共生真菌可以通过多样化途径来增强植物体的抗性机能,其提高抗旱性的机制主要表现在营养物质的吸收、植物的保护系统、激素调节、水解酶、水分代谢、相关基因表达、植物防御信号途径等方面。总结共生真菌提高植物耐旱性的机制研究进展,以使读者能全面、及时地了解这一领域的研究动态。

English Abstract

叶冰竹, 李春艳, 贾敏, 翟欣, 秦路平, 韩婷. 共生真菌对植物抗旱性的影响及机制研究进展[J]. 药学实践与服务, 2018, 36(5): 392-398. doi: 10.3969/j.issn.1006-0111.2018.05.003
引用本文: 叶冰竹, 李春艳, 贾敏, 翟欣, 秦路平, 韩婷. 共生真菌对植物抗旱性的影响及机制研究进展[J]. 药学实践与服务, 2018, 36(5): 392-398. doi: 10.3969/j.issn.1006-0111.2018.05.003
YE Bingzhu, LI Chunyan, JIA Min, ZAI Xin, QIN Luping, HAN Ting. The effects of symbiotic fungi on plant drought resistance and mechanisms[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 392-398. doi: 10.3969/j.issn.1006-0111.2018.05.003
Citation: YE Bingzhu, LI Chunyan, JIA Min, ZAI Xin, QIN Luping, HAN Ting. The effects of symbiotic fungi on plant drought resistance and mechanisms[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(5): 392-398. doi: 10.3969/j.issn.1006-0111.2018.05.003
参考文献 (50)

目录

    /

    返回文章
    返回