留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法

韩凌 孙治国 鲁莹

韩凌, 孙治国, 鲁莹. 抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法[J]. 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
引用本文: 韩凌, 孙治国, 鲁莹. 抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法[J]. 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
HAN Ling, SUN Zhiguo, LU Ying. Preparation materials, drug loading and modification of nanoparticles as anticancer drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
Citation: HAN Ling, SUN Zhiguo, LU Ying. Preparation materials, drug loading and modification of nanoparticles as anticancer drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005

抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法

doi: 10.3969/j.issn.1006-0111.2018.04.005

Preparation materials, drug loading and modification of nanoparticles as anticancer drug carrier

  • 摘要: 纳米粒作为抗肿瘤药物的载体,具有提高药物靶向性、稳定性、降低药物毒副作用等诸多优点。近年来,抗肿瘤药物纳米粒载体研究取得了较大进展,从其制备材料、包载药物及修饰方法3方面进行综述。
  • [1] SHI J, KANTOFF PW, WOOSTER R, et al. Cancer nanomedicine:progress, challenges and opportunities[J]. Nat Rev Cancer, 2017, 17(1):20-37.
    [2] 陈清江, 张明智, 陈小兵. 抗肿瘤纳米药物载体材料的安全性[J]. 中国组织工程研究与临床康复, 2010, 14(47):8861-8864.
    [3] PRADOS J,CABEZA L,ORTIZ R, et al. Enhanced antitumor activity of doxorubicin in breast cancer through the use of poly(butylcyanoacrylate) nanoparticles[J]. IJN, 2015, 10:1291-1306.
    [4] MA W, CHEN M, KAUSHAL S, et al. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses[J]. Int J Nanomed, 2012, 7:1475-1487.
    [5] LIU R, LI D, HE B, et al. Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly (L -histidine-)-poly (L -lactide) nanoparticles[J]. J Controll Releas, 2011, 152(1):49-56.
    [6] LEE SJ, YHEE JY, KIM SH, et al. Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice[J]. J Controll Release, 2013, 172(1):358-366.
    [7] GAO C, TANG F, ZHANG J, et al. Glutathione-responsive nanoparticles based on a sodium alginate derivative for selective release of doxorubicin in tumor cells[J]. J Mater Chem B, 2017, 5(12):2337-2346.
    [8] ABOUTALEB E, ATYABI F, KHOSHAYAND MR, et al. Improved brain delivery of vincristine using dextran sulfate complex solid lipid nanoparticles:optimization and in vivo evaluation[J]. J Biomed Mater Res A, 2014, 102(7):2125-2136.
    [9] CHEN Y, CHEN H, SHI J. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells[J]. Mol Pharm, 2014, 11(8):2495-2510.
    [10] HE X, HAI L, SU J, et al. One-pot synthesis of sustained-released doxorubicin silica nanoparticles for aptamer targeted delivery to tumor cells[J]. Nanoscale, 2011, 3(7):2936-2942.
    [11] REJINOLD NS, THOMAS RG, MUTHIAH M, et al. Breast tumor targetable Fe3O4 embedded thermo-responsive nanoparticles for radiofrequency assisted drug delivery[J]. J Biomed Nanotechnol, 2016, 12(1):43-55.
    [12] ZHAO X, YANG L, LI X, et al. Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug[J]. Bioconjug Chem, 2015, 26(1):128-136.
    [13] PARVEEN S, SAHOO SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery[J]. Eur J Pharmacol, 2011, 670(2-3):372-383.
    [14] MOCAN L, MATEA C, TABARAN FA, et al. Selective exvivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles[J]. Biomaterials, 2017, 119:33-42.
    [15] MICHA JP, GOLDSTEIN BH, BIRK CL, et al. Abraxane in the treatment of ovarian cancer:the absence of hypersensitivity reactions[J]. Gynecol Oncol, 2006, 100(2):437-438.
    [16] KUMAR M, GUPTA D, SINGH G, et al. Novel polymeric nanoparticles for intracellular delivery of peptide Cargos:antitumor efficacy of the BCL-2 conversion peptide NuBCP-9[J]. Cancer Res, 2014, 74(12):3271-3281.
    [17] Phase I intratumoral Pbi-shRNA STMN1 LP in advanced and/or metastatic cancer (STMN1-LP)[DB/OL]. Clinical Trials.gov:US National Library of Medicine,[2012-01-06].[2017-09-20]. https://clinicaltrials.gov/ct2/show/NCT01505153term.
    [18] LV S, TANG Z, LI M, et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer[J]. Biomaterials, 2014, 35(23):6118-6129.
    [19] LIU Q, LI RT, QIAN HQ, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles[J]. Biomaterials, 2013, 34(29):7191-7203.
    [20] KOUCHAKZADEH H,SHOJAOSADATI SA,TAHMA-SEBI F, et al. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles[J]. Int J Pharm, 2013, 447(12):62-69.
    [21] GAN CW, FENG SS. Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier[J]. Biomaterials, 2010, 31(30):7748-7757.
    [22] KIM YH, JEON J, HONG SH, et al. Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125[J]. Small, 2011, 7(14):2052-2060.
    [23] JOKERST JV, MIAO Z, ZAVALETA C, et al. Affibody-functionalized gold silica nanoparticles for raman molecular imaging of the epidermal growth factor receptor[J]. Small, 2011, 7(5):625-633.
    [24] HWANG DW, SON S, Jang J, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA[J]. Biomaterials, 2011, 32(21):4968-4975.
    [25] CERCHIA L, DE FRANCISCIS V. Targeting cancer cells with nucleic acid aptamers[J]. Trends Biotechnol, 2010, 28(10):517-525.
    [26] YANG SJ, LIN FH, TSAI KC, et al. Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells[J]. Bioconjug Chem, 2010, 21(4):679-689.
    [27] TAHERI A, DINARVAND R, ATYABI F, et al. Targeted delivery of methotrexate to tumor cells using biotin functionalized methotrexate-human serum albumin conjugated nanoparticles[J]. J Biomed Nanotechnol, 2011, 7(6):743-753.
    [28] CAI X, LI X, LIU Y, et al. Galactose decorated acid-labile nanoparticles encapsulating quantum dots for enhanced cellular uptake and subcellular localization[J]. Pharm Res, 2012, 29(8):2167-2179.
    [29] YAO XK, ZHU Q, LI CH, et al. Carbamoylmannose enhances tumor targeting of supramolecular nanoparticles formed through host-guest complexation of a pair of homopolymers[J]. J Materi Chem B, 2016, 5(4):834-848.
    [30] SUN H, BENJAMINSEN RV, ALMADAL K, et al. Hyaluronic acid immobilized polyacrylamide nanoparticle sensors for CD44 receptor targeting and pH measurement in cells[J]. Bioconjug Chem, 2012, 23(11):2247-2255.
    [31] AYDOGAN B, LI J, RAJH T, et al. AuNP-DG:deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging[J]. Mol Imag Biol, 2010, 12(5):463-467.
    [32] YUK SH, OH KS, SUN HC, et al. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging[J]. Biomacromolecules, 2011, 12(6):2335-2343.
    [33] ZU Y, LI M, ZHAO X, et al. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery[J]. Int J Nanomed, 2013, 8:1207-1222.
    [34] SUN W, XIE C, WANG H, et al. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain[J]. Biomaterials, 2004, 25(15):3065-3071.
    [35] BAZILE D, PRUD'me C, BASSOULLET MT, et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system[J]. J Pharm Sci, 1995, 84(4):493-498.
    [36] XI J, QIN J, FAN L. Chondroitin sulfate functionalized mesostructured silica nanoparticles as biocompatible carriers for drug delivery[J]. Int J Nanomed, 2012, 7:5235-5247.
    [37] TANAKA K, KANAZAWA T, SHIBATA Y, et al. Development of cell-penetrating peptide-modified MPEG-PCL diblock copolymeric nanoparticles for systemic gene delivery[J]. Int J Pharm, 2010, 396(1-2):229-238.
    [38] WANG YC, WANG F, SUN TM, et al. Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells[J]. Bioconjug Chem, 2011, 22(10):1939-1945.
    [39] WU M, ZHANG D, ZENG Y, et al. Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy[J]. Nanotechnology, 2015, 26(11):115102.
    [40] WANG C, HO PC, LIM LY. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells[J]. Int J Pharm, 2010, 400(12):201-210.
    [41] CHEN H, LIU R, NAN W, et al. Abstract 5659:Surface modification of epirubicin-loaded PLGA nanoparticle with biotinylated chitosan enhances anti-cancer efficacy in breast cancer cells[J]. Cancer Res, 2013, 73(8):5659-5659.
    [42] RAO L, XU JH, CAI B, et al. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake[J]. Nanotechnology, 2016, 27(8):085106.
    [43] PARODI A, QUATTROCCHI N, VAN DE VEN AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions[J]. Nat Nanotechnol, 2013, 8(1):61-68.
    [44] GAO C, LIN Z, JURADO-S NCHEZ B, et al. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery[J]. Small, 2016, 12(30):4056-4062.
    [45] FANG RH, HU CM, LUK BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery[J]. Nano Lett, 2014, 14(4):2181-2188.
    [46] LO GIUDICE MC, MEDER F, POLO E, et al. Constructing bifunctional nanoparticles for dual targeting:improved grafting and surface recognition assessment of multiple ligand nanoparticles[J]. Nanoscale, 2016, 8(38):16969-16975.
    [47] DOOLITTLE E, PEIRIS PM, DORON G, et al. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis[J]. ACS Nano, 2015, 9(8):8012-8021.
  • [1] 温萍, 张俊平.  隐丹参酮及其衍生物抗肿瘤活性研究进展 . 药学实践与服务, 2023, 41(4): 207-211. doi: 10.12206/j.issn.2097-2024.202208090
    [2] 代宇, 王宏播, 卞康晴, 郭灵怡, 俞媛.  细胞膜仿生纳米载体的制备及应用研究进展 . 药学实践与服务, 2023, 41(3): 135-138, 145. doi: 10.12206/j.issn.2097-2024.202202058
    [3] 王吉荣, 贡海, 卢光照, 邓莉.  纳米材料在止血方面的研究进展 . 药学实践与服务, 2021, 39(3): 211-214. doi: 10.12206/j.issn.1006-0111.202012015
    [4] 刘丹, 张军东, 廉云飞, 房秋雨, 李娟.  核-壳结构的脂质-聚合物杂化纳米粒的研究进展 . 药学实践与服务, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
    [5] 施赛健, 张文, 厉廷有, 庄春林.  抗肿瘤多药耐药微管蛋白调节剂的研究进展 . 药学实践与服务, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
    [6] 陈大中, 高洁, 解方园, 张翮, 鲁莹, 邹豪, 钟延强.  共载阿霉素和依克立达的PLGA纳米粒的制备及表征 . 药学实践与服务, 2017, 35(3): 219-223,251. doi: 10.3969/j.issn.1006-0111.2017.03.007
    [7] 成念, 赵文萃, 张琦, 王艳萍, 韩丹, 肖轩昂.  用疏水改性的白及多糖制备载紫杉醇纳米粒并对其表征 . 药学实践与服务, 2017, 35(1): 48-53. doi: 10.3969/j.issn.1006-0111.2017.01.012
    [8] 朱冰, 盛丹丹, 李善心, 张黎.  盐霉素纳米制剂的研究进展 . 药学实践与服务, 2016, 34(6): 489-492,515. doi: 10.3969/j.issn.1006-0111.2016.06.003
    [9] 张悦, 王静, 李铁军.  海带多糖抗肿瘤活性研究进展 . 药学实践与服务, 2016, 34(5): 393-395,473. doi: 10.3969/j.issn.1006-0111.2016.05.003
    [10] 苏瑞强, 李晏, 彭坤, 李洁, 杨全, 杨献文.  海洋拟诺卡菌SCSIO 11492中次生代谢产物的分离及其抗肿瘤活性研究 . 药学实践与服务, 2015, 33(5): 406-410. doi: 10.3969/j.issn.1006-0111.2015.05.006
    [11] 金夕琳, 张洁, 江海龙, 陆一鸣.  蛇毒毒素的抗肿瘤作用及其在医药领域的应用 . 药学实践与服务, 2015, 33(6): 502-504,517. doi: 10.3969/j.issn.1006-0111.2015.06.006
    [12] 苑旺, 王美玲, 石岩, 崔黎丽.  季铵化壳聚糖胰岛素纳米粒的制备、处方优化及其初步药效学实验 . 药学实践与服务, 2015, 33(4): 319-323. doi: 10.3969/j.issn.1006-0111.2015.04.008
    [13] 王欢, 佘岚, 王琳召, 马志强, 张欣荣, 杨峰.  氧化介孔碳球纳米粒作为紫杉醇载体的研究 . 药学实践与服务, 2015, 33(2): 114-118. doi: 10.3969/j.issn.1006-0111.2015.02.005
    [14] 邵帅, 崔光华, 周旭, 高钟镐, 黄伟.  中心组合设计法优化载基因壳聚糖纳米粒的最佳转染制备区域 . 药学实践与服务, 2014, 32(6): 419-424. doi: 10.3969/j.issn.1006-0111.2014.06.006
    [15] 王园园, 王鑫, 王义善.  瑞香狼毒提取物尼地吗啉的抗肿瘤研究概况 . 药学实践与服务, 2011, 29(5): 328-330,335.
    [16] 陈婷, 鲁莹.  载抗肿瘤药物纳米靶向给药系统的研究进展 . 药学实践与服务, 2011, 29(3): 176-178,196.
    [17] 廖洪利, 苏春丽, 王伟新, 杨倩.  抗肿瘤青蒿素衍生物的研究 . 药学实践与服务, 2009, 27(2): 84-86.
    [18] 许洁, 王菊, 冯年平, 赵继会, 于燕燕, 谭蓉.  星点设计-效应面法优化冬凌草甲素聚乳酸纳米粒的制备工艺 . 药学实践与服务, 2009, 27(5): 345-348,369.
    [19] 董环文, 刘超美, 何秋琴, 赵荔华.  斑蝥素及其衍生物的抗肿瘤构效关系研究进展 . 药学实践与服务, 2007, (5): 276-280.
    [20] 王昌林, 周月芬, 李昱.  喜树碱类抗肿瘤药物研究概况 . 药学实践与服务, 2001, (3): 172-174.
  • 加载中
计量
  • 文章访问数:  2395
  • HTML全文浏览量:  287
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-14
  • 修回日期:  2018-01-10

抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法

doi: 10.3969/j.issn.1006-0111.2018.04.005

摘要: 纳米粒作为抗肿瘤药物的载体,具有提高药物靶向性、稳定性、降低药物毒副作用等诸多优点。近年来,抗肿瘤药物纳米粒载体研究取得了较大进展,从其制备材料、包载药物及修饰方法3方面进行综述。

English Abstract

韩凌, 孙治国, 鲁莹. 抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法[J]. 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
引用本文: 韩凌, 孙治国, 鲁莹. 抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法[J]. 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
HAN Ling, SUN Zhiguo, LU Ying. Preparation materials, drug loading and modification of nanoparticles as anticancer drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
Citation: HAN Ling, SUN Zhiguo, LU Ying. Preparation materials, drug loading and modification of nanoparticles as anticancer drug carrier[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
参考文献 (47)

目录

    /

    返回文章
    返回