[1] SHI J, KANTOFF PW, WOOSTER R, et al. Cancer nanomedicine:progress, challenges and opportunities[J]. Nat Rev Cancer, 2017, 17(1):20-37.
[2] 陈清江, 张明智, 陈小兵. 抗肿瘤纳米药物载体材料的安全性[J]. 中国组织工程研究与临床康复, 2010, 14(47):8861-8864.
[3] PRADOS J,CABEZA L,ORTIZ R, et al. Enhanced antitumor activity of doxorubicin in breast cancer through the use of poly(butylcyanoacrylate) nanoparticles[J]. IJN, 2015, 10:1291-1306.
[4] MA W, CHEN M, KAUSHAL S, et al. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses[J]. Int J Nanomed, 2012, 7:1475-1487.
[5] LIU R, LI D, HE B, et al. Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly (L -histidine-)-poly (L -lactide) nanoparticles[J]. J Controll Releas, 2011, 152(1):49-56.
[6] LEE SJ, YHEE JY, KIM SH, et al. Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice[J]. J Controll Release, 2013, 172(1):358-366.
[7] GAO C, TANG F, ZHANG J, et al. Glutathione-responsive nanoparticles based on a sodium alginate derivative for selective release of doxorubicin in tumor cells[J]. J Mater Chem B, 2017, 5(12):2337-2346.
[8] ABOUTALEB E, ATYABI F, KHOSHAYAND MR, et al. Improved brain delivery of vincristine using dextran sulfate complex solid lipid nanoparticles:optimization and in vivo evaluation[J]. J Biomed Mater Res A, 2014, 102(7):2125-2136.
[9] CHEN Y, CHEN H, SHI J. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells[J]. Mol Pharm, 2014, 11(8):2495-2510.
[10] HE X, HAI L, SU J, et al. One-pot synthesis of sustained-released doxorubicin silica nanoparticles for aptamer targeted delivery to tumor cells[J]. Nanoscale, 2011, 3(7):2936-2942.
[11] REJINOLD NS, THOMAS RG, MUTHIAH M, et al. Breast tumor targetable Fe3O4 embedded thermo-responsive nanoparticles for radiofrequency assisted drug delivery[J]. J Biomed Nanotechnol, 2016, 12(1):43-55.
[12] ZHAO X, YANG L, LI X, et al. Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug[J]. Bioconjug Chem, 2015, 26(1):128-136.
[13] PARVEEN S, SAHOO SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery[J]. Eur J Pharmacol, 2011, 670(2-3):372-383.
[14] MOCAN L, MATEA C, TABARAN FA, et al. Selective exvivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles[J]. Biomaterials, 2017, 119:33-42.
[15] MICHA JP, GOLDSTEIN BH, BIRK CL, et al. Abraxane in the treatment of ovarian cancer:the absence of hypersensitivity reactions[J]. Gynecol Oncol, 2006, 100(2):437-438.
[16] KUMAR M, GUPTA D, SINGH G, et al. Novel polymeric nanoparticles for intracellular delivery of peptide Cargos:antitumor efficacy of the BCL-2 conversion peptide NuBCP-9[J]. Cancer Res, 2014, 74(12):3271-3281.
[17] Phase I intratumoral Pbi-shRNA STMN1 LP in advanced and/or metastatic cancer (STMN1-LP)[DB/OL]. Clinical Trials.gov:US National Library of Medicine,[2012-01-06].[2017-09-20]. https://clinicaltrials.gov/ct2/show/NCT01505153term.
[18] LV S, TANG Z, LI M, et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer[J]. Biomaterials, 2014, 35(23):6118-6129.
[19] LIU Q, LI RT, QIAN HQ, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles[J]. Biomaterials, 2013, 34(29):7191-7203.
[20] KOUCHAKZADEH H,SHOJAOSADATI SA,TAHMA-SEBI F, et al. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles[J]. Int J Pharm, 2013, 447(12):62-69.
[21] GAN CW, FENG SS. Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier[J]. Biomaterials, 2010, 31(30):7748-7757.
[22] KIM YH, JEON J, HONG SH, et al. Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125[J]. Small, 2011, 7(14):2052-2060.
[23] JOKERST JV, MIAO Z, ZAVALETA C, et al. Affibody-functionalized gold silica nanoparticles for raman molecular imaging of the epidermal growth factor receptor[J]. Small, 2011, 7(5):625-633.
[24] HWANG DW, SON S, Jang J, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA[J]. Biomaterials, 2011, 32(21):4968-4975.
[25] CERCHIA L, DE FRANCISCIS V. Targeting cancer cells with nucleic acid aptamers[J]. Trends Biotechnol, 2010, 28(10):517-525.
[26] YANG SJ, LIN FH, TSAI KC, et al. Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells[J]. Bioconjug Chem, 2010, 21(4):679-689.
[27] TAHERI A, DINARVAND R, ATYABI F, et al. Targeted delivery of methotrexate to tumor cells using biotin functionalized methotrexate-human serum albumin conjugated nanoparticles[J]. J Biomed Nanotechnol, 2011, 7(6):743-753.
[28] CAI X, LI X, LIU Y, et al. Galactose decorated acid-labile nanoparticles encapsulating quantum dots for enhanced cellular uptake and subcellular localization[J]. Pharm Res, 2012, 29(8):2167-2179.
[29] YAO XK, ZHU Q, LI CH, et al. Carbamoylmannose enhances tumor targeting of supramolecular nanoparticles formed through host-guest complexation of a pair of homopolymers[J]. J Materi Chem B, 2016, 5(4):834-848.
[30] SUN H, BENJAMINSEN RV, ALMADAL K, et al. Hyaluronic acid immobilized polyacrylamide nanoparticle sensors for CD44 receptor targeting and pH measurement in cells[J]. Bioconjug Chem, 2012, 23(11):2247-2255.
[31] AYDOGAN B, LI J, RAJH T, et al. AuNP-DG:deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging[J]. Mol Imag Biol, 2010, 12(5):463-467.
[32] YUK SH, OH KS, SUN HC, et al. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging[J]. Biomacromolecules, 2011, 12(6):2335-2343.
[33] ZU Y, LI M, ZHAO X, et al. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery[J]. Int J Nanomed, 2013, 8:1207-1222.
[34] SUN W, XIE C, WANG H, et al. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain[J]. Biomaterials, 2004, 25(15):3065-3071.
[35] BAZILE D, PRUD'me C, BASSOULLET MT, et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system[J]. J Pharm Sci, 1995, 84(4):493-498.
[36] XI J, QIN J, FAN L. Chondroitin sulfate functionalized mesostructured silica nanoparticles as biocompatible carriers for drug delivery[J]. Int J Nanomed, 2012, 7:5235-5247.
[37] TANAKA K, KANAZAWA T, SHIBATA Y, et al. Development of cell-penetrating peptide-modified MPEG-PCL diblock copolymeric nanoparticles for systemic gene delivery[J]. Int J Pharm, 2010, 396(1-2):229-238.
[38] WANG YC, WANG F, SUN TM, et al. Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells[J]. Bioconjug Chem, 2011, 22(10):1939-1945.
[39] WU M, ZHANG D, ZENG Y, et al. Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy[J]. Nanotechnology, 2015, 26(11):115102.
[40] WANG C, HO PC, LIM LY. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells[J]. Int J Pharm, 2010, 400(12):201-210.
[41] CHEN H, LIU R, NAN W, et al. Abstract 5659:Surface modification of epirubicin-loaded PLGA nanoparticle with biotinylated chitosan enhances anti-cancer efficacy in breast cancer cells[J]. Cancer Res, 2013, 73(8):5659-5659.
[42] RAO L, XU JH, CAI B, et al. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake[J]. Nanotechnology, 2016, 27(8):085106.
[43] PARODI A, QUATTROCCHI N, VAN DE VEN AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions[J]. Nat Nanotechnol, 2013, 8(1):61-68.
[44] GAO C, LIN Z, JURADO-S NCHEZ B, et al. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery[J]. Small, 2016, 12(30):4056-4062.
[45] FANG RH, HU CM, LUK BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery[J]. Nano Lett, 2014, 14(4):2181-2188.
[46] LO GIUDICE MC, MEDER F, POLO E, et al. Constructing bifunctional nanoparticles for dual targeting:improved grafting and surface recognition assessment of multiple ligand nanoparticles[J]. Nanoscale, 2016, 8(38):16969-16975.
[47] DOOLITTLE E, PEIRIS PM, DORON G, et al. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis[J]. ACS Nano, 2015, 9(8):8012-8021.