留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

脑出血损伤的动物模型及治疗策略的研究进展

魏纯纯 王培 缪朝玉

魏纯纯, 王培, 缪朝玉. 脑出血损伤的动物模型及治疗策略的研究进展[J]. 药学实践与服务, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
引用本文: 魏纯纯, 王培, 缪朝玉. 脑出血损伤的动物模型及治疗策略的研究进展[J]. 药学实践与服务, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
WEI Chunchun, WANG Pei, MIAO Chaoyu. Research progress on animal model and potential therapeutic strategy in intracerebral hemorrhage[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
Citation: WEI Chunchun, WANG Pei, MIAO Chaoyu. Research progress on animal model and potential therapeutic strategy in intracerebral hemorrhage[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003

脑出血损伤的动物模型及治疗策略的研究进展

doi: 10.3969/j.issn.1006-0111.2016.04.003
基金项目: 国家自然科学基金项目(81373414,81130061,81422049,81473208),国家863青年科学家项目(2015AA020943)

Research progress on animal model and potential therapeutic strategy in intracerebral hemorrhage

  • 摘要: 脑出血是指脑实质内血管破裂引起的出血,是脑卒中的一种类型,占全部卒中的10%~15%。脑出血的发病率和病死率都非常高,而且目前对于它的发病机制尚不完全清楚。因此,根据目前的临床循证医学依据,还没有明确有效的医疗手段可以改善患者的生存率和预后。作为基础研究的重要工具,脑出血动物模型的发展和应用,有力地促进了对脑出血的病理生理过程的了解,改善了对脑出血导致的脑损伤的分子机制的认识。此外,在脑出血动物模型上的研究促成了多个潜在治疗策略的提出,比如抑制凝血酶活性、减少脑出血导致的炎症损伤等。另外,近期干细胞领域的研究工作提示,细胞移植治疗在脑出血治疗中可能将具有很好的前景。笔者对脑出血动物模型的发展和应用,以及脑出血治疗策略的进展情况做一综述。
  • [1] Keep RF, Hua Y, Xi G. Intracerebral haemorrhage:mechanisms of injury and therapeutic targets[J]. Lancet Neurol, 2012,11(8):720-731.
    [2] Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH):a randomised trial[J]. Lancet, 2005,365(9457):387-397.
    [3] Gu Y, Hua Y, Keep RF, et al. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets[J]. Stroke, 2009,40(6):2241-2243.
    [4] Okauchi M, Hua Y, Keep RF, et al. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats[J]. Stroke, 2009,40(5):1858-1863.
    [5] Wang J, Doré S. Inflammation after intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2007,27(5):894-908.
    [6] Wakisaka Y, Chu Y, Miller JD, et al. Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice[J]. J Cereb Blood Flow metab, 2010,30(1):56-69.
    [7] Wagner KR. Modeling intracerebral hemorrhage:glutamate, nuclear factor-kappa B signaling and cytokines[J]. Stroke, 2007,38(2 Suppl):753-758
    [8] Zhao X, Grotta J, Gonzales N, et al. Hematoma resolution as a therapeutic target:the role of microglia/macrophages[J]. Stroke, 2009,40(3 Suppl):S92-94.
    [9] Zhao X, Zhang Y, Strong R, et al. 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats[J]. J Cereb Blood Flow metab, 2006,26(6):811-820.
    [10] Zhao X, Sun G, Zhang J, et al.Hematoma resolution as a target for intracerebral hemorrhage treatment:role for peroxisome proliferator-activated receptor gamma in microglia/macrophages[J]. Ann Neurol, 2007,61(4):352-362.
    [11] Gonzales NR, Shah J, Sangha N, et al. Design of a prospective, dose-escalation study evaluating the safety of pioglitazone for hematoma resolution in intracerebral hemorrhage (SHRINC)[J]. Int J Stroke, 2013,8(5):388-396.
    [12] Zhao X, Song S, Sun G, et al. Neuroprotective role of haptoglobin after intracerebral hemorrhage[J]. J Neurosci, 2009,29(50):15819-15827.
    [13] Huang FP, Xi G, Keep RF, et al. Brain edema after experimental intracerebral hemorrhage:role of hemoglobin degradation products[J]. J Neurosurg, 2002,96(2):287-293.
    [14] Gu Y, Hua Y, He Y, et al. Iron accumulation and DNA damage in a pig model of intracerebral hemorrhage[J]. Acta Neurochir Supplement, 2011,111:123-128.
    [15] Zhou X, Xie Q, Xi G, et al. Brain CD47 expression in a swine model of intracerebral hemorrhage[J]. Brain Res, 2014,1574:70-76.
    [16] Auriat AM, Silasi G, Wei Z, et al. Ferric iron chelation lowers brain iron levels after intracerebral hemorrhage in rats but does not improve outcome[J]. Exp Neurol, 2012,234(1):136-143.
    [17] Selim M, Yeatts S, Goldstein JN, et al. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage[J]. Stroke, 2011,42(11):3067-3074.
    [18] Babu R, Bagley JH, Di C, et al. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention[J]. Neurosurg Focus, 2012,32(4):E8.
    [19] Sun Z, Zhao Z, Zhao S, et al. Recombinant hirudin treatment modulates aquaporin-4 and aquaporin-9 expression after intracerebral hemorrhage in vivo[J]. Mol Biol Rep, 2009,36(5):1119-1127.
    [20] Kitaoka T, Hua Y, Xi G, et al. Effect of delayed argatroban treatment on intracerebral hemorrhage-induced edema in the rat[J]. Acta Neurochir Suppl, 2003,86:457-461.
    [21] Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury:deleterious or protective[J]. J Neurochem, 2003,84(1):3-9.
    [22] Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair[J]. Nat Rev Neurol, 2015,11(1):56-64.
    [23] Chhor V, Le Charpentier T, Lebon S, et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro[J]. Brain Behav Immun, 2013,32:70-85.
    [24] Bouhlel MA, Derudas B, Rigamonti E, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties[J]. Cell Metab, 2007,6(2):137-143.
    [25] Guo J, Chen Q, Tang J, et al. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage[J].Brain Res, 2015,1594:115-124.
    [26] Shimada K, Furukawa H, Wada KE, et al. Protective role of peroxisome proliferator-activated receptor-γ in the development of intracranial aneurysm rupture[J].Stroke, 2015,46(6):1664-1672.
    [27] Fang H, Wang PF, Zhou Y, et al. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury[J]. J Neuroinflamm, 2013,10:27.
    [28] Liu X, Zheng J, Zhou H. TLRs as pharmacological targets for plant-derived compounds in infectious and inflammatory diseases[J]. Int Immunopharmacol, 2011,11(10):1451-1456.
    [29] Lin S, Yin Q, Zhong Q, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage[J]. J Neuroinflamm, 2012,9:46.
    [30] Ohnishi M, Katsuki H, Fukutomi C, et al. HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats[J]. Neuropharmacology, 2011,61(5-6):975-980.
    [31] Du D, Yan J, Ren J, et al. Synthesis, biological evaluation, and molecular modeling of glycyrrhizin derivatives as potent high-mobility group box-1 inhibitors with anti-heart-failure activity in vivo[J]. J Med Chem, 2013,56(1):97-108.
    [32] Su X, Wang H, Zhao J, et al. Beneficial effects of ethyl pyruvate through inhibiting high-mobility group box 1 expression and TLR4/NF-kappaB pathway after traumatic brain injury in the rat[J]. Mediat Inflamm, 2011,2011:807142.
    [33] Lei C, Lin S, Zhang C, et al. High-mobility group box1 protein promotes neuroinflammation after intracerebral hemorrhage in rats[J]. Neuroscience, 2013,228:190-199.
    [34] Lee HJ, Kim KS, Kim EJ, et al. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model[J]. Stem Cells, 2007,25(5):1204-1212.
    [35] Bibber B, Sinha G, Lobba AR, et al. A review of stem cell translation and potential confounds by cancer stem cells[J]. Stem Cells Int, 2013,2013:241048.
    [36] Lee HK, Finniss S, Cazacu S, et al. Mesenchymal stem cells deliver exogenous miRNAs to neural cells and induce their differentiation and glutamate transporter expression[J]. Stem Cells Dev, 2014,23(23):2851-2861.
    [37] Jeon D, Chu K, Lee ST, et al. Neuroprotective effect of a cell-free extract derived from human adipose stem cells in experimental stroke models[J]. Neurobiol Dis, 2013,54:414-420.
    [38] Otero L, Zurita M, Bonilla C, et al. Allogeneic bone marrow stromal cell transplantation after cerebral hemorrhage achieves cell transdifferentiation and modulates endogenous neurogenesis[J]. Cytotherapy, 2012,14(1):34-44.
  • [1] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [2] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [3] 唐淑慧, 凤美娟, 薛智霞, 鲁桂华.  帕博利珠单抗治疗所致免疫相关不良反应与中医体质的相关性研究 . 药学实践与服务, 2024, 42(5): 217-222. doi: 10.12206/j.issn.2097-2024.202311029
    [4] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [5] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [6] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [7] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [8] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [9] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
    [10] 王鹏, 陈顺, 赵逸, 高守红, 王志鹏.  卡培他滨致小鼠手足综合征模型的建立及评价 . 药学实践与服务, 2024, 42(8): 1-5. doi: 10.12206/j.issn.2097-2024.202308045
    [11] 王雪莲, 郑斯莉, 李志勇, 罗亨宇, 缪朝玉.  全身过表达人METRNL基因小鼠模型的构建与验证 . 药学实践与服务, 2024, 42(5): 198-202, 222. doi: 10.12206/j.issn.2097-2024.202311014
    [12] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(): 1-6. doi: 10.12206/j.issn.2097-2024.202310044
    [13] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(7): 1-7. doi: 10.12206/j.issn.2097-2024.202303023
  • 加载中
计量
  • 文章访问数:  3154
  • HTML全文浏览量:  524
  • PDF下载量:  984
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-18
  • 修回日期:  2016-05-04

脑出血损伤的动物模型及治疗策略的研究进展

doi: 10.3969/j.issn.1006-0111.2016.04.003
    基金项目:  国家自然科学基金项目(81373414,81130061,81422049,81473208),国家863青年科学家项目(2015AA020943)

摘要: 脑出血是指脑实质内血管破裂引起的出血,是脑卒中的一种类型,占全部卒中的10%~15%。脑出血的发病率和病死率都非常高,而且目前对于它的发病机制尚不完全清楚。因此,根据目前的临床循证医学依据,还没有明确有效的医疗手段可以改善患者的生存率和预后。作为基础研究的重要工具,脑出血动物模型的发展和应用,有力地促进了对脑出血的病理生理过程的了解,改善了对脑出血导致的脑损伤的分子机制的认识。此外,在脑出血动物模型上的研究促成了多个潜在治疗策略的提出,比如抑制凝血酶活性、减少脑出血导致的炎症损伤等。另外,近期干细胞领域的研究工作提示,细胞移植治疗在脑出血治疗中可能将具有很好的前景。笔者对脑出血动物模型的发展和应用,以及脑出血治疗策略的进展情况做一综述。

English Abstract

魏纯纯, 王培, 缪朝玉. 脑出血损伤的动物模型及治疗策略的研究进展[J]. 药学实践与服务, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
引用本文: 魏纯纯, 王培, 缪朝玉. 脑出血损伤的动物模型及治疗策略的研究进展[J]. 药学实践与服务, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
WEI Chunchun, WANG Pei, MIAO Chaoyu. Research progress on animal model and potential therapeutic strategy in intracerebral hemorrhage[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
Citation: WEI Chunchun, WANG Pei, MIAO Chaoyu. Research progress on animal model and potential therapeutic strategy in intracerebral hemorrhage[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(4): 297-300,376. doi: 10.3969/j.issn.1006-0111.2016.04.003
参考文献 (38)

目录

    /

    返回文章
    返回