[1] Keep RF, Hua Y, Xi G. Intracerebral haemorrhage:mechanisms of injury and therapeutic targets[J]. Lancet Neurol, 2012,11(8):720-731.
[2] Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH):a randomised trial[J]. Lancet, 2005,365(9457):387-397.
[3] Gu Y, Hua Y, Keep RF, et al. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets[J]. Stroke, 2009,40(6):2241-2243.
[4] Okauchi M, Hua Y, Keep RF, et al. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats[J]. Stroke, 2009,40(5):1858-1863.
[5] Wang J, Doré S. Inflammation after intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2007,27(5):894-908.
[6] Wakisaka Y, Chu Y, Miller JD, et al. Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice[J]. J Cereb Blood Flow metab, 2010,30(1):56-69.
[7] Wagner KR. Modeling intracerebral hemorrhage:glutamate, nuclear factor-kappa B signaling and cytokines[J]. Stroke, 2007,38(2 Suppl):753-758
[8] Zhao X, Grotta J, Gonzales N, et al. Hematoma resolution as a therapeutic target:the role of microglia/macrophages[J]. Stroke, 2009,40(3 Suppl):S92-94.
[9] Zhao X, Zhang Y, Strong R, et al. 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats[J]. J Cereb Blood Flow metab, 2006,26(6):811-820.
[10] Zhao X, Sun G, Zhang J, et al.Hematoma resolution as a target for intracerebral hemorrhage treatment:role for peroxisome proliferator-activated receptor gamma in microglia/macrophages[J]. Ann Neurol, 2007,61(4):352-362.
[11] Gonzales NR, Shah J, Sangha N, et al. Design of a prospective, dose-escalation study evaluating the safety of pioglitazone for hematoma resolution in intracerebral hemorrhage (SHRINC)[J]. Int J Stroke, 2013,8(5):388-396.
[12] Zhao X, Song S, Sun G, et al. Neuroprotective role of haptoglobin after intracerebral hemorrhage[J]. J Neurosci, 2009,29(50):15819-15827.
[13] Huang FP, Xi G, Keep RF, et al. Brain edema after experimental intracerebral hemorrhage:role of hemoglobin degradation products[J]. J Neurosurg, 2002,96(2):287-293.
[14] Gu Y, Hua Y, He Y, et al. Iron accumulation and DNA damage in a pig model of intracerebral hemorrhage[J]. Acta Neurochir Supplement, 2011,111:123-128.
[15] Zhou X, Xie Q, Xi G, et al. Brain CD47 expression in a swine model of intracerebral hemorrhage[J]. Brain Res, 2014,1574:70-76.
[16] Auriat AM, Silasi G, Wei Z, et al. Ferric iron chelation lowers brain iron levels after intracerebral hemorrhage in rats but does not improve outcome[J]. Exp Neurol, 2012,234(1):136-143.
[17] Selim M, Yeatts S, Goldstein JN, et al. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage[J]. Stroke, 2011,42(11):3067-3074.
[18] Babu R, Bagley JH, Di C, et al. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention[J]. Neurosurg Focus, 2012,32(4):E8.
[19] Sun Z, Zhao Z, Zhao S, et al. Recombinant hirudin treatment modulates aquaporin-4 and aquaporin-9 expression after intracerebral hemorrhage in vivo[J]. Mol Biol Rep, 2009,36(5):1119-1127.
[20] Kitaoka T, Hua Y, Xi G, et al. Effect of delayed argatroban treatment on intracerebral hemorrhage-induced edema in the rat[J]. Acta Neurochir Suppl, 2003,86:457-461.
[21] Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury:deleterious or protective[J]. J Neurochem, 2003,84(1):3-9.
[22] Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair[J]. Nat Rev Neurol, 2015,11(1):56-64.
[23] Chhor V, Le Charpentier T, Lebon S, et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro[J]. Brain Behav Immun, 2013,32:70-85.
[24] Bouhlel MA, Derudas B, Rigamonti E, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties[J]. Cell Metab, 2007,6(2):137-143.
[25] Guo J, Chen Q, Tang J, et al. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage[J].Brain Res, 2015,1594:115-124.
[26] Shimada K, Furukawa H, Wada KE, et al. Protective role of peroxisome proliferator-activated receptor-γ in the development of intracranial aneurysm rupture[J].Stroke, 2015,46(6):1664-1672.
[27] Fang H, Wang PF, Zhou Y, et al. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury[J]. J Neuroinflamm, 2013,10:27.
[28] Liu X, Zheng J, Zhou H. TLRs as pharmacological targets for plant-derived compounds in infectious and inflammatory diseases[J]. Int Immunopharmacol, 2011,11(10):1451-1456.
[29] Lin S, Yin Q, Zhong Q, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage[J]. J Neuroinflamm, 2012,9:46.
[30] Ohnishi M, Katsuki H, Fukutomi C, et al. HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats[J]. Neuropharmacology, 2011,61(5-6):975-980.
[31] Du D, Yan J, Ren J, et al. Synthesis, biological evaluation, and molecular modeling of glycyrrhizin derivatives as potent high-mobility group box-1 inhibitors with anti-heart-failure activity in vivo[J]. J Med Chem, 2013,56(1):97-108.
[32] Su X, Wang H, Zhao J, et al. Beneficial effects of ethyl pyruvate through inhibiting high-mobility group box 1 expression and TLR4/NF-kappaB pathway after traumatic brain injury in the rat[J]. Mediat Inflamm, 2011,2011:807142.
[33] Lei C, Lin S, Zhang C, et al. High-mobility group box1 protein promotes neuroinflammation after intracerebral hemorrhage in rats[J]. Neuroscience, 2013,228:190-199.
[34] Lee HJ, Kim KS, Kim EJ, et al. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model[J]. Stem Cells, 2007,25(5):1204-1212.
[35] Bibber B, Sinha G, Lobba AR, et al. A review of stem cell translation and potential confounds by cancer stem cells[J]. Stem Cells Int, 2013,2013:241048.
[36] Lee HK, Finniss S, Cazacu S, et al. Mesenchymal stem cells deliver exogenous miRNAs to neural cells and induce their differentiation and glutamate transporter expression[J]. Stem Cells Dev, 2014,23(23):2851-2861.
[37] Jeon D, Chu K, Lee ST, et al. Neuroprotective effect of a cell-free extract derived from human adipose stem cells in experimental stroke models[J]. Neurobiol Dis, 2013,54:414-420.
[38] Otero L, Zurita M, Bonilla C, et al. Allogeneic bone marrow stromal cell transplantation after cerebral hemorrhage achieves cell transdifferentiation and modulates endogenous neurogenesis[J]. Cytotherapy, 2012,14(1):34-44.