留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

秀丽隐杆线虫在抗感染研究中的应用

胡淦海 李德东 赵兰雪 王彦 姜远英

胡淦海, 李德东, 赵兰雪, 王彦, 姜远英. 秀丽隐杆线虫在抗感染研究中的应用[J]. 药学实践与服务, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
引用本文: 胡淦海, 李德东, 赵兰雪, 王彦, 姜远英. 秀丽隐杆线虫在抗感染研究中的应用[J]. 药学实践与服务, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
Citation: HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002

秀丽隐杆线虫在抗感染研究中的应用

doi: 10.3969/j.issn.1006-0111.2014.01.002
基金项目: 国家自然科学基金(81273558,81072678,90913008);国家重点基础研究发展计划(2013CB531602);国家科技部科技重大专项(2011ZX09102-002-01);上海市科技重点项目(10431902200).

Application of Caenorhabditis elegans in anti-infective research

  • 摘要: 目的 介绍秀丽隐杆线虫(Caenorhabditis elegans)作为模式生物宿主在抗感染研究中的应用,为秀丽隐杆线虫在抗感染研究领域的进一步应用提供参考。 方法 参阅近年来国内、外相关文献,对其进行分析、整合及归纳。 结果 发现秀丽隐杆线虫具有生长周期短、成本低等特点,被广泛用于病原微生物致病机制的研究以及抗感染药物的研发。 结论 秀丽隐杆线虫在病原微生物致病机制研究和抗感染药物研发中有广阔的应用前景。
  • [1] Millet A,Ewbank JJ. Immunity in Caenorhabditis elegans[J]. Curr Opin Immunol, 2004, 16(1):4-9.
    [2] Ferrandon D, Imler JL, Hetru C, et al. The drosophila systemic immune response:sensing and signalling during bacterial and fungal infections[J]. Nat Rev Immunol, 2007, 7(11):862-874.
    [3] Trede NS, Langenau DM, Traver D, et al. The use of zebra fish to understand immunity[J]. Immunity, 2004, 20(4):367-379.
    [4] Brenner S. The genetics of Caenorhabditis elegans[J]. Genetics, 1974, 77(1):71-94.
    [5] Byerly L,Cassada R,Russell R. The life cycle of the nematode Caenorhabditis elegans:I. Wild-type growth and reproduction[J]. Devel Biol, 1976, 51(1):23-33.
    [6] Cassada RC,Russell RL. The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans[J]. Devel Biol, 1975, 46(2):326-342.
    [7] Albert PS,Brown SJ,Riddle DL. Sensory control of dauer larva formation in Caenorhabditis elegans[J]. J Compar Neur, 1981, 198(3):435-451.
    [8] Sifri CD,Begun J,Ausubel FM. The worm has turned-microbial virulence modeled in Caenorhabditis elegans[J]. Trends Microbiol, 2005, 13(3):119-127.
    [9] Lindsay JA. Genomic variation and evolution of Staphylococcus aureus[J]. Intern J Med Microbiol, 2010, 300(2):98-103.
    [10] Garsin DA, Sifri CD, Mylonakis E, et al. A simple model host for identifying Gram-positive virulence factors[J]. Proc Natl Acad Sci, 2001, 98(19):10892-10897.
    [11] Irazoqui JE, Troemel ER, Feinbaum RL, et al. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus[J]. PLo S Pathogens, 2010, 6(7):1-24.
    [12] Sifri CD, Begun J, Ausubel FM, et al. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis[J]. Infect Immun, 2003, 71(4):2208-2217.
    [13] Ogawa T, Sato M, Yonekawa S, et al. Infective endocarditis caused by enterococcus faecalis treated with continuous infusion of ampicillin without adjunctive aminoglycosides[J]. Intern Med, 2012, 52(10):1131-1135.
    [14] Maadani A, Fox KA, Mylonakis E, et al. Enterococcus faecalis mutations affecting virulence in the Caenorhabditis elegans model host[J]. Infect Immun, 2007, 75(5):2634-2637.
    [15] Sifri CD, Mylonakis E, Singh KV, et al. Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice[J]. Infect Immun, 2002, 70(10):5647-5650.
    [16] Chávez V, Mohri-Shiomi A, Maadani A, et al. Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans[J]. Genetics, 2007, 176(3):1567-1577.
    [17] van der Hoeven R, McCallum KC, Cruz M R, et al. Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans[J]. PLoS Pathogens, 2011, 7(12):1-14.
    [18] Mahajan-Miklos S, Tan MW, Rahme LG, et al. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans.Pathogene Model[J]. Cell, 1999, 96(1):47-56.
    [19] Tan MW,Mahajan-Miklos S,Ausubel F M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis[J]. Proc Natl Acad Sci, 1999, 96(2):715-720.
    [20] Kabir MA,Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era:an overview[J]. Expert Rev Anti-infect Ther, 2009, 7(1):121-134.
    [21] Breger J, Fuchs B B, Aperis G, et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay[J]. PLoS Pathogens, 2007, 3(2):0168-0178.
    [22] Mayer FL,Wilson D,Hube B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013, 4(2):119-128.
    [23] Pukkila-Worley R,Ausubel F M,Mylonakis E. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses[J]. PLoS Pathogens, 2011, 7(6):1-13.
    [24] Pukkila-Worley R, Peleg AY, Tampakakis E, et al. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model[J]. Eukary cell, 2009, 8(11):1750-1758.
    [25] Pukkila-Worley R,Mylonakis E. From the outside in and the inside out:antifungal immune responses in Caenorhabditis elegans[J]. Virulence, 2010, 1(3):111-112.
    [26] Gantner BN,Simmons RM,Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments[J]. EMBO J, 2005, 24(6):1277-1286.
    [27] Netea MG, Brown GD, Kullberg BJ, et al. An integrated model of the recognition of Candida albicans by the innate immune system[J]. Nat Rev Microbiol, 2008, 6(1):67-78.
    [28] Jouault T, Sarazin A, Martinez-Esparza M, et al. Host responses to a versatile commensal:PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans[J]. Cellular Microbiol, 2009, 11(7):1007-1015.
    [29] Peleg AY, Tampakakis E, Fuchs BB, et al. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans[J]. Proc Natl Acad Sci, 2008, 105(38):14585-14590.
    [30] Tampakakis E,Peleg AY,Mylonakis E. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar Typhimurium[J]. Eukary Cell, 2009, 8(5):732-737.
    [31] Mylonakis E, Ausubel FM, Perfect JR, et al. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis[J].Proc Natl Acad Sci, 2002, 99(24):15675-15680.
    [32] van den Berg MC, Woerlee JZ, Ma H, et al. Sex-dependent resistance to the pathogenic fungus Cryptococcus neoformans[J]. Genetics, 2006, 173(2):677-683.
    [33] Tang RJ, Breger J, Idnurm A, et al. Cryptococcus neoformans gene involved in mammalian pathogenesis identified by a Caenorhabditis elegans progeny-based approach[J]. Infect Immun, 2005, 73(12):8219-6225.
    [34] Powell JR,Ausubel FM. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens[J].Meth Molecul Biol, 2008, 415:403-427.
    [35] Moy T I, Ball A R, Anklesaria Z, et al. Identification of novel antimicrobials using a live-animal infection model[J]. Proc Natl Acad Sci, 2006, 103(27):10414-10419.
    [36] Moy TI, Conery AL, Larkins-Ford J, et al. High-throughput screen for novel antimicrobials using a whole animal infection model[J]. ACS Chem Biol, 2009, 4(7):527-533.
    [37] Zhou YM, Shao L, Li JA, et al. An efficient and novel screening model for assessing the bioactivity of extracts against multidrug-resistant Pseudomonas aeruginosa using Caenorhabditis elegans[J]. Biosci Biotechnol Biochem, 2011, 75(9):1746-1751.
    [38] Okoli I, Coleman J J, Tempakakis E, et al. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay[J]. PloS One, 2009, 4(9):1-8.
    [39] Coleman JJ, Okoli I, Tegos GP, et al. Characterization of plant-derived saponin natural products against Candida albicans[J]. ACS Chem Biol, 2010, 5(3):321-332.
  • [1] 杨啊晶, 杨宁, 张娟.  2007~2009年我院抗感染药物的应用分析 . 药学实践与服务, 2010, 28(5): 374-377.
    [2] 王雁霞, 邱瑞桂.  2004~2006年我院抗微生物药物利用评价 . 药学实践与服务, 2009, 27(1): 66-68.
    [3] 曾志海, 李小龙.  对2005年版《临床用药须知》中有关问题的商榷 . 药学实践与服务, 2009, 27(4): 297-298,301.
    [4] 万日义, 吴肇春.  我院2002-2004年呼吸科住院患者抗感染药物利用分析 . 药学实践与服务, 2006, (4): 238-241,243.
    [5] 非外科手术预防用抗感染药物的使用指南(五) . 药学实践与服务, 2006, (6): 380-383.
    [6] 王婧, 周萍, 文明, 吴广通.  我院2003~2004年抗微生物药物使用频度分析 . 药学实践与服务, 2005, (5): 291-294.
    [7] 陈洁锋, 丘明宇.  我院2001~2003年抗感染药物用药分析 . 药学实践与服务, 2004, (3): 178-179,186.
    [8] 徐雯宇, 严炎中.  儿科使用抗感染药的几个误区 . 药学实践与服务, 2004, (1): 13-14.
    [9] 闫双银, 李花, 张绍义, 张淑萍, 李贺英.  我院住院病人抗感染药物应用分析 . 药学实践与服务, 2003, (1): 16-17.
    [10] 李华荣, 孙鑫, 陈明新.  某院2000年抗感染药物应用动态分析 . 药学实践与服务, 2002, (1): 34-36.
    [11] 李文杰, 李红梅, 王剑.  1999~2000年我院住院病人抗感染药物消耗金额排序及利用分析 . 药学实践与服务, 2001, (4): 239-241,236.
    [12] 顾文华, 王彬, 张国庆.  东方肝胆外科医院某病区静脉用抗感染药物用药分析 . 药学实践与服务, 2001, (6): 366-367.
    [13] 陈蓉.  我院门诊使用抗感染药物现状分析 . 药学实践与服务, 2001, (1): 53-54.
    [14] 王国平, 王岚, 吴涓.  1997~1999年我院常用抗微生物药物的使用调查 . 药学实践与服务, 2000, (4): 243-244.
    [15] 陈庆辉.  门诊抗感染药物的药物利用调查及分析 . 药学实践与服务, 2000, (6): 402-404.
    [16] 王彬, 顾文华, 张国庆, 李捷玮, 信艳红.  我院抗感染药物用药分析 . 药学实践与服务, 1999, (3): 185-187.
    [17] 邹振新, 陈幼亭.  约定日剂量分析在抗感染药物利用评价中的应用 . 药学实践与服务, 1998, (2): 120-122.
    [18] 傅翔, 张钧.  口服环丙氟哌酸和注射抗微生物药物在临床、微生物学和经济学方面的检查比较 . 药学实践与服务, 1994, (2): 34-39.
    [19] J.R.Dungore.  抗生素药物相互作用的体外微生物学研究 . 药学实践与服务, 1989, (1): 41-43.
    [20] 李以欣.  抗微生物药物的选择 . 药学实践与服务, 1985, (2): 8-18.
  • 加载中
计量
  • 文章访问数:  2521
  • HTML全文浏览量:  294
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-11-17

秀丽隐杆线虫在抗感染研究中的应用

doi: 10.3969/j.issn.1006-0111.2014.01.002
    基金项目:  国家自然科学基金(81273558,81072678,90913008);国家重点基础研究发展计划(2013CB531602);国家科技部科技重大专项(2011ZX09102-002-01);上海市科技重点项目(10431902200).

摘要: 目的 介绍秀丽隐杆线虫(Caenorhabditis elegans)作为模式生物宿主在抗感染研究中的应用,为秀丽隐杆线虫在抗感染研究领域的进一步应用提供参考。 方法 参阅近年来国内、外相关文献,对其进行分析、整合及归纳。 结果 发现秀丽隐杆线虫具有生长周期短、成本低等特点,被广泛用于病原微生物致病机制的研究以及抗感染药物的研发。 结论 秀丽隐杆线虫在病原微生物致病机制研究和抗感染药物研发中有广阔的应用前景。

English Abstract

胡淦海, 李德东, 赵兰雪, 王彦, 姜远英. 秀丽隐杆线虫在抗感染研究中的应用[J]. 药学实践与服务, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
引用本文: 胡淦海, 李德东, 赵兰雪, 王彦, 姜远英. 秀丽隐杆线虫在抗感染研究中的应用[J]. 药学实践与服务, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
Citation: HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
参考文献 (39)

目录

    /

    返回文章
    返回