[1] Millet A,Ewbank JJ. Immunity in Caenorhabditis elegans[J]. Curr Opin Immunol, 2004, 16(1):4-9.
[2] Ferrandon D, Imler JL, Hetru C, et al. The drosophila systemic immune response:sensing and signalling during bacterial and fungal infections[J]. Nat Rev Immunol, 2007, 7(11):862-874.
[3] Trede NS, Langenau DM, Traver D, et al. The use of zebra fish to understand immunity[J]. Immunity, 2004, 20(4):367-379.
[4] Brenner S. The genetics of Caenorhabditis elegans[J]. Genetics, 1974, 77(1):71-94.
[5] Byerly L,Cassada R,Russell R. The life cycle of the nematode Caenorhabditis elegans:I. Wild-type growth and reproduction[J]. Devel Biol, 1976, 51(1):23-33.
[6] Cassada RC,Russell RL. The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans[J]. Devel Biol, 1975, 46(2):326-342.
[7] Albert PS,Brown SJ,Riddle DL. Sensory control of dauer larva formation in Caenorhabditis elegans[J]. J Compar Neur, 1981, 198(3):435-451.
[8] Sifri CD,Begun J,Ausubel FM. The worm has turned-microbial virulence modeled in Caenorhabditis elegans[J]. Trends Microbiol, 2005, 13(3):119-127.
[9] Lindsay JA. Genomic variation and evolution of Staphylococcus aureus[J]. Intern J Med Microbiol, 2010, 300(2):98-103.
[10] Garsin DA, Sifri CD, Mylonakis E, et al. A simple model host for identifying Gram-positive virulence factors[J]. Proc Natl Acad Sci, 2001, 98(19):10892-10897.
[11] Irazoqui JE, Troemel ER, Feinbaum RL, et al. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus[J]. PLo S Pathogens, 2010, 6(7):1-24.
[12] Sifri CD, Begun J, Ausubel FM, et al. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis[J]. Infect Immun, 2003, 71(4):2208-2217.
[13] Ogawa T, Sato M, Yonekawa S, et al. Infective endocarditis caused by enterococcus faecalis treated with continuous infusion of ampicillin without adjunctive aminoglycosides[J]. Intern Med, 2012, 52(10):1131-1135.
[14] Maadani A, Fox KA, Mylonakis E, et al. Enterococcus faecalis mutations affecting virulence in the Caenorhabditis elegans model host[J]. Infect Immun, 2007, 75(5):2634-2637.
[15] Sifri CD, Mylonakis E, Singh KV, et al. Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice[J]. Infect Immun, 2002, 70(10):5647-5650.
[16] Chávez V, Mohri-Shiomi A, Maadani A, et al. Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans[J]. Genetics, 2007, 176(3):1567-1577.
[17] van der Hoeven R, McCallum KC, Cruz M R, et al. Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans[J]. PLoS Pathogens, 2011, 7(12):1-14.
[18] Mahajan-Miklos S, Tan MW, Rahme LG, et al. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans.Pathogene Model[J]. Cell, 1999, 96(1):47-56.
[19] Tan MW,Mahajan-Miklos S,Ausubel F M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis[J]. Proc Natl Acad Sci, 1999, 96(2):715-720.
[20] Kabir MA,Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era:an overview[J]. Expert Rev Anti-infect Ther, 2009, 7(1):121-134.
[21] Breger J, Fuchs B B, Aperis G, et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay[J]. PLoS Pathogens, 2007, 3(2):0168-0178.
[22] Mayer FL,Wilson D,Hube B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013, 4(2):119-128.
[23] Pukkila-Worley R,Ausubel F M,Mylonakis E. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses[J]. PLoS Pathogens, 2011, 7(6):1-13.
[24] Pukkila-Worley R, Peleg AY, Tampakakis E, et al. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model[J]. Eukary cell, 2009, 8(11):1750-1758.
[25] Pukkila-Worley R,Mylonakis E. From the outside in and the inside out:antifungal immune responses in Caenorhabditis elegans[J]. Virulence, 2010, 1(3):111-112.
[26] Gantner BN,Simmons RM,Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments[J]. EMBO J, 2005, 24(6):1277-1286.
[27] Netea MG, Brown GD, Kullberg BJ, et al. An integrated model of the recognition of Candida albicans by the innate immune system[J]. Nat Rev Microbiol, 2008, 6(1):67-78.
[28] Jouault T, Sarazin A, Martinez-Esparza M, et al. Host responses to a versatile commensal:PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans[J]. Cellular Microbiol, 2009, 11(7):1007-1015.
[29] Peleg AY, Tampakakis E, Fuchs BB, et al. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans[J]. Proc Natl Acad Sci, 2008, 105(38):14585-14590.
[30] Tampakakis E,Peleg AY,Mylonakis E. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar Typhimurium[J]. Eukary Cell, 2009, 8(5):732-737.
[31] Mylonakis E, Ausubel FM, Perfect JR, et al. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis[J].Proc Natl Acad Sci, 2002, 99(24):15675-15680.
[32] van den Berg MC, Woerlee JZ, Ma H, et al. Sex-dependent resistance to the pathogenic fungus Cryptococcus neoformans[J]. Genetics, 2006, 173(2):677-683.
[33] Tang RJ, Breger J, Idnurm A, et al. Cryptococcus neoformans gene involved in mammalian pathogenesis identified by a Caenorhabditis elegans progeny-based approach[J]. Infect Immun, 2005, 73(12):8219-6225.
[34] Powell JR,Ausubel FM. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens[J].Meth Molecul Biol, 2008, 415:403-427.
[35] Moy T I, Ball A R, Anklesaria Z, et al. Identification of novel antimicrobials using a live-animal infection model[J]. Proc Natl Acad Sci, 2006, 103(27):10414-10419.
[36] Moy TI, Conery AL, Larkins-Ford J, et al. High-throughput screen for novel antimicrobials using a whole animal infection model[J]. ACS Chem Biol, 2009, 4(7):527-533.
[37] Zhou YM, Shao L, Li JA, et al. An efficient and novel screening model for assessing the bioactivity of extracts against multidrug-resistant Pseudomonas aeruginosa using Caenorhabditis elegans[J]. Biosci Biotechnol Biochem, 2011, 75(9):1746-1751.
[38] Okoli I, Coleman J J, Tempakakis E, et al. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay[J]. PloS One, 2009, 4(9):1-8.
[39] Coleman JJ, Okoli I, Tegos GP, et al. Characterization of plant-derived saponin natural products against Candida albicans[J]. ACS Chem Biol, 2010, 5(3):321-332.