[1]
|
World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report:2022 [R]. http:// www.who.int/news-room/fact-sheets/detail/antibiotic-resistance. |
[2]
|
PAPP-WALLACE K M, ENDIMIANI A, TARACILA M A, et al. Carbapenems: past, present, and future[J]. Antimicrob Agents Chemother, 2011, 55(11):4943-4960. doi: 10.1128/AAC.00296-11 |
[3]
|
DING L, SHEN S Q, CHEN J, et al. Klebsiella pneumoniae carbapenemase variants: the new threat to global public health[J]. Clin Microbiol Rev, 2023, 36(4):e0000823. doi: 10.1128/cmr.00008-23 |
[4]
|
Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019 (2019 AR Threats Report) [R].https//www.cdc.gov/antimicrobial-resistance/data-research/threats/?CDC_AAref_Val=https://www.cdc.gov/drugresistance/biggest-threats.html. |
[5]
|
GUH A Y, LIMBAGO B M, KALLEN A J. Epidemiology and prevention of carbapenem-resistant Enterobacteriaceae in the United States[J]. Expert Rev Anti Infect Ther, 2014, 12(5):565-580. doi: 10.1586/14787210.2014.902306 |
[6]
|
SADER H S, CASTANHEIRA M, FLAMM R K, et al. Tigecycline activity tested against carbapenem-resistant Enterobacteriaceae from 18 European nations: results from the SENTRY surveillance program (2010–2013)[J]. Diagn Microbiol Infect Dis, 2015, 83(2):183-186. doi: 10.1016/j.diagmicrobio.2015.06.011 |
[7]
|
TOMPKINS K, VAN DUIN D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(10):2053-2068. doi: 10.1007/s10096-021-04296-1 |
[8]
|
PALZKILL T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases[J]. Front Mol Biosci, 2018, 5:16. doi: 10.3389/fmolb.2018.00016 |
[9]
|
WALTHER-RASMUSSEN J, HØIBY N. Class A carbapenemases[J]. J Antimicrob Chemother, 2007, 60(3):470-482. doi: 10.1093/jac/dkm226 |
[10]
|
HOSSAIN A, FERRARO M J, PINO R M, et al. Plasmid-mediated carbapenem-hydrolyzing enzyme KPC-2 in an Enterobacter sp[J]. Antimicrob Agents Chemother, 2004, 48(11):4438-4440. doi: 10.1128/AAC.48.11.4438-4440.2004 |
[11]
|
TOOKE C L, HINCHLIFFE P, BRAGGINTON E C, et al. β-lactamases and β-lactamase inhibitors in the 21st century[J]. J Mol Biol, 2019, 431(18):3472-3500. doi: 10.1016/j.jmb.2019.04.002 |
[12]
|
POTTER R F, D’SOUZA A W, DANTAS G. The rapid spread of carbapenem-resistant Enterobacteriaceae[J]. Drug Resist Updat, 2016, 29:30-46. doi: 10.1016/j.drup.2016.09.002 |
[13]
|
WALSH T R, TOLEMAN M A, POIREL L, et al. Metallo-beta-lactamases: the quiet before the storm?[J]. Clin Microbiol Rev, 2005, 18(2):306-325. doi: 10.1128/CMR.18.2.306-325.2005 |
[14]
|
MAIRI A, PANTEL A, SOTTO A, et al. OXA-48-like carba-penemases producing Enterobacteriaceae in different niches[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(4):587-604. doi: 10.1007/s10096-017-3112-7 |
[15]
|
PITOUT J D D, PEIRANO G, KOCK M M, et al. The global ascendency of OXA-48-type carbapenemases[J]. Clin Microbiol Rev, 2019, 33(1):e00102-e00119. |
[16]
|
GUZMÁN-PUCHE J, JENAYEH R, PÉREZ-VÁZQUEZ M, et al. Characterization of OXA-48-producing Klebsiella oxytoca isolates from a hospital outbreak in Tunisia[J]. J Glob Antimicrob Resist, 2021, 24:306-310. doi: 10.1016/j.jgar.2021.01.008 |
[17]
|
HEIREMAN L, HAMERLINCK H, VANDENDRIESSCHE S, et al. Toilet drain water as a potential source of hospital room-to-room transmission of carbapenemase-producing Klebsiella pneumoniae[J]. J Hosp Infect, 2020, 106(2):232-239. doi: 10.1016/j.jhin.2020.07.017 |
[18]
|
SHAIDULLINA E, SHELENKOV A, YANUSHEVICH Y, et al. Antimicrobial resistance and genomic characterization of OXA-48- and CTX-M-15-co-producing hypervirulent Klebsiella pneumoniae ST23 recovered from nosocomial outbreak[J]. Antibiotics(Basel), 2020, 9(12):862. |
[19]
|
ZHANG R, LIU L Z, ZHOU H W, et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China[J]. EBioMedicine, 2017, 19(5):98-106. doi: 10.1016/j.ebiom.2017.04.032 |
[20]
|
WANG Q, WANG X J, WANG J, et al. Phenotypic and genotypic characterization of Carbapenem-resistant Enterobacteriaceae: data from a longitudinal large-scale cre study in China (2012−2016)[J]. Clin Infect Dis, 2018, 67(suppl_2):S196-S205. doi: 10.1093/cid/ciy660 |
[21]
|
HAN R R, SHI Q Y, WU S, et al. Dissemination of carbapenemases(KPC, NDM, OXA-48, IMP, and VIM)among carbapenem-resistant Enterobacteriaceae isolated from adult and children patients in China[J]. Front Cell Infect Microbiol, 2020, 10:314. doi: 10.3389/fcimb.2020.00314 |
[22]
|
莫银竹, 宋沧桑, 李志伟, 等. 耐碳青霉烯肺炎克雷伯菌耐药机制及治疗策略的研究进展[J]. 中国药物评价, 2023, 40(3):217-223. |
[23]
|
孟文凯, 包志瑶, 李庆云. 肠杆菌科细菌AcrAB-TolC外排泵调控机制及对策的研究进展[J]. 中国药物与临床, 2021, 21(19):3280-3282. |
[24]
|
WESTON N, SHARMA P, RICCI V, et al. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae[J]. Res Microbiol, 2018, 169(7-8):425-431. doi: 10.1016/j.resmic.2017.10.005 |
[25]
|
OLLIVER A, VALLÉ M, CHASLUS-DANCLA E, et al. Role of an acrR mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium[J]. FEMS Microbiol Lett, 2004, 238(1):267-272. |
[26]
|
WEBBER M A, TALUKDER A, PIDDOCK L J. Contribution of mutation at amino acid 45 of AcrR to acrB expression and ciprofloxacin resistance in clinical and veterinary Escherichia coli isolates[J]. Antimicrob Agents Chemother, 2005, 49(10):4390-4392. doi: 10.1128/AAC.49.10.4390-4392.2005 |
[27]
|
LI X Z, PLÉSIAT P, NIKAIDO H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria[J]. Clin Microbiol Rev, 2015, 28(2):337-418. doi: 10.1128/CMR.00117-14 |
[28]
|
VALENTIN-HANSEN P, JOHANSEN J, RASMUSSEN A A. Small RNAs controlling outer membrane porins[J]. Curr Opin Microbiol, 2007, 10(2):152-155. doi: 10.1016/j.mib.2007.03.001 |
[29]
|
WANG X D, CAI J C, ZHOU H W, et al. Reduced susceptibility to carbapenems in Klebsiella pneumoniae clinical isolates associated with plasmid-mediated beta-lactamase production and OmpK36 porin deficiency[J]. J Med Microbiol, 2009, 58(Pt 9): 1196-1202. |
[30]
|
BORNET C, DAVIN-REGLI A, BOSI C, et al. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability[J]. J Clin Microbiol, 2000, 38(3):1048-1052. doi: 10.1128/JCM.38.3.1048-1052.2000 |
[31]
|
KUMAR G, GALANIS C, BATCHELDER HR, et al. Penicillin binding proteins and β-lactamases of mycobacterium tuberculosis: reexamination of the historical paradigm[J]. MSphere, 2022, 7(1): e0003922. |
[32]
|
刘洁, 赵建平. 碳青霉烯耐药革兰阴性杆菌的耐药机制及抗菌药物的研究进展[J]. 国外医药(抗生素分册), 2024, 45(1):20-27. |
[33]
|
JEAN S S, LEE W S, LAM C, et al. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options[J]. Future Microbiol, 2015, 10(3):407-425. doi: 10.2217/fmb.14.135 |
[34]
|
RACT P, COMPAIN F, ROBIN F, et al. Synergistic in vitro activity between aztreonam and amoxicillin-clavulanate against Enterobacteriaceae-producing class B and/or class D carbapenemases with or without extended-spectrum β-lactamases[J]. J Med Microbiol, 2019, 68(9):1292-1298. doi: 10.1099/jmm.0.001052 |
[35]
|
MARAKI S, MAVROMANOLAKI V E, MORAITIS P, et al. Ceftazidime-avibactam, meropenen-vaborbactam, and imipenem-relebactam in combination with aztreonam against multidrug-resistant, metallo-β-lactamase-producing Klebsiella pneumoniae[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(8):1755-1759. doi: 10.1007/s10096-021-04197-3 |
[36]
|
FALAGAS M E, VOULOUMANOU E K, SAMONIS G, et al. Fosfomycin[J]. Clin Microbiol Rev, 2016, 29(2):321-347. doi: 10.1128/CMR.00068-15 |
[37]
|
ESCHENBURG S, PRIESTMAN M, SCHÖNBRUNN E. Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase(MurA)is essential for product release[J]. J Biol Chem, 2005, 280(5):3757-3763. doi: 10.1074/jbc.M411325200 |
[38]
|
DE OLIVEIRA M V D, FURTADO R M, DA COSTA K S, et al. Advances in UDP-N-acetylglucosamine enolpyruvyl transferase(MurA) covalent inhibition[J]. Front Mol Biosci, 2022, 9:889825. doi: 10.3389/fmolb.2022.889825 |
[39]
|
靳迺诗, 何菊英, 冯伟, 等. 磷霉素在多药耐药肠杆菌科细菌感染治疗中的研究进展[J]. 实用药物与临床, 2022, 25(6):568-572. |
[40]
|
ITO R, MUSTAPHA M M, TOMICH A D, et al. Widespread fosfomycin resistance in gram-negative bacteria attributable to the chromosomal fosA gene[J]. mBio, 2017, 8(4):e00749-e00717. |
[41]
|
HUANG L, CAO M, HU Y Y, et al. Prevalence and mechanisms of fosfomycin resistance among KPC-producing Klebsiella pneumoniae clinical isolates in China[J]. Int J Antimicrob Agents, 2021, 57(1):106226. doi: 10.1016/j.ijantimicag.2020.106226 |
[42]
|
MOTSCH J, MURTA DE OLIVEIRA C, STUS V, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of Imipenem/Relebactam vs colistin plus imipenem in patients with Imipenem-nonsusceptible bacterial infections[J]. Clin Infect Dis, 2020, 70(9):1799-1808. doi: 10.1093/cid/ciz530 |
[43]
|
WUNDERINK R G, GIAMARELLOS-BOURBOULIS E J, RAHAV G, et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial[J]. Infect Dis Ther, 2018, 7(4):439-455. doi: 10.1007/s40121-018-0214-1 |
[44]
|
OLOWO-OKERE A, YACOUBA A. Molecular mechanisms of colistin resistance in Africa: a systematic review of literature[J]. Germs, 2020, 10(4):367-379. doi: 10.18683/germs.2020.1229 |
[45]
|
EICHENBERGER E M, THADEN J T. Epidemiology and mechanisms of resistance of extensively drug resistant gram-negative bacteria[J]. Antibiotics(Basel), 2019, 8(2):37. |
[46]
|
周玉, 李玉茹, 邓新立, 等. 临床常见肠杆菌科细菌对替加环素耐药机制研究进展[J]. 中华医院感染学杂志, 2023, 33(2):310-315. |
[47]
|
YAGHOUBI S, ZEKIY AO, KRUTOVA M, et al. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review[J]. Eur J Clin Microbiol Infect Dis, 2022, 41(7): 1003-1022. |
[48]
|
POURNARAS S, KOUMAKI V, SPANAKIS N, et al. Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance[J]. Int J Antimicrob Agents, 2016, 48(1):11-18. doi: 10.1016/j.ijantimicag.2016.04.017 |
[49]
|
YOON E J, OH Y, JEONG S H. Development of tigecycline resistance in carbapenemase-producing Klebsiella pneumoniae sequence type 147 via AcrAB overproduction mediated by replacement of the ramA promoter[J]. Ann Lab Med, 2020, 40(1):15-20. doi: 10.3343/alm.2020.40.1.15 |
[50]
|
LI Y, SUN X R, XIAO X, et al. Global distribution and genomic characteristics of Tet(X)-positive Escherichia coli among humans, animals, and the environment[J]. Sci Total Environ, 2023, 887:164148. doi: 10.1016/j.scitotenv.2023.164148 |
[51]
|
SHIRLEY M. Ceftazidime-avibactam: a review in the treatment of serious gram-negative bacterial infections[J]. Drugs, 2018, 78(6):675-692. doi: 10.1007/s40265-018-0902-x |
[52]
|
GIACOBBE D R, BASSETTI M. Innovative β-lactam/β-lactamase inhibitor combinations for carbapenem-resistant Gram-negative bacteria[J]. Future Microbiol, 2022, 17:393-396. doi: 10.2217/fmb-2021-0301 |
[53]
|
LEE Y R, BAKER N T. Meropenem-vaborbactam: a carbapenem and beta-lactamase inhibitor with activity against carbapenem-resistant Enterobacteriaceae[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(8):1411-1419. doi: 10.1007/s10096-018-3260-4 |
[54]
|
ZHANEL G G, LAWRENCE C K, ADAM H, et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations[J]. Drugs, 2018, 78(1):65-98. doi: 10.1007/s40265-017-0851-9 |
[55]
|
HACKEL M A, LOMOVSKAYA O, DUDLEY M N, et al. In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriaceae[J]. Antimicrob Agents Chemother, 2018, 62(1):e01904-e01917. |
[56]
|
ACKLEY R, ROSHDY D, MEREDITH J, et al. Meropenem-vaborbactam versus ceftazidime-avibactam for treatment of carbapenem-resistant Enterobacteriaceae infections[J]. Antimicrob Agents Chemother, 2020, 64(5):e02313-e02319. |
[57]
|
GAIBANI P, GIANI T, BOVO F, et al. Resistance to ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam in gram-negative MDR bacilli: molecular mechanisms and susceptibility testing[J]. Antibiotics(Basel), 2022, 11(5):628. |
[58]
|
SUN D X, RUBIO-APARICIO D, NELSON K, et al. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2017, 61(12):e01694-e01617. |
[59]
|
MO Y, LORENZO M, FARGHALY S, et al. What’s new in the treatment of multidrug-resistant gram-negative infections?[J]. Diagn Microbiol Infect Dis, 2019, 93(2):171-181. doi: 10.1016/j.diagmicrobio.2018.08.007 |
[60]
|
ELJAALY K, ALHARBI A, ALSHEHRI S, et al. Plazomicin: a novel aminoglycoside for the treatment of resistant gram-negative bacterial infections[J]. Drugs, 2019, 79(3):243-269. doi: 10.1007/s40265-019-1054-3 |
[61]
|
SARAVOLATZ L D, STEIN G E. Plazomicin: a new aminoglycoside[J]. Clin Infect Dis, 2020, 70(4):704-709. |
[62]
|
ZHANEL G G, CHEUNG D, ADAM H, et al. Review of eravacycline, a novel fluorocycline antibacterial agent[J]. Drugs, 2016, 76(5):567-588. doi: 10.1007/s40265-016-0545-8 |
[63]
|
ZHANG Y L, LIN X Y, BUSH K. In vitro susceptibility of β-lactamase-producing carbapenem-resistant Enterobacteriaceae (CRE) to eravacycline[J]. J Antibiot, 2016, 69(8):600-604. doi: 10.1038/ja.2016.73 |
[64]
|
LIVERMORE D M, MUSHTAQ S, WARNER M, et al. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2016, 60(6):3840-3844. doi: 10.1128/AAC.00436-16 |
[65]
|
GROSSMAN T H, STAROSTA A L, FYFE C, et al. Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic[J]. Antimicrob Agents Chemother, 2012, 56(5):2559-2564. doi: 10.1128/AAC.06187-11 |
[66]
|
ALOSAIMY S, ABDUL-MUTAKABBIR J C, KEBRIAEI R, et al. Evaluation of eravacycline: a novel fluorocycline[J]. Pharmacotherapy, 2020, 40(3):221-238. doi: 10.1002/phar.2366 |
[67]
|
KAYE K S, NAAS T, POGUE J M, et al. Cefiderocol, a siderophore cephalosporin, as a treatment option for infections caused by carbapenem-resistant enterobacterales[J]. Infect Dis Ther, 2023, 12(3):777-806. doi: 10.1007/s40121-023-00773-6 |
[68]
|
SATO T, YAMAWAKI K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin[J]. Clin Infect Dis, 2019, 69(Suppl 7):S538-S543. |
[69]
|
EL-LABABIDI R M, RIZK J G. Cefiderocol: a siderophore cephalosporin[J]. Ann Pharmacother, 2020, 54(12):1215-1231. doi: 10.1177/1060028020929988 |
[70]
|
SHORTRIDGE D, STREIT J M, MENDES R, et al. In vitro activity of cefiderocol against U. S. and European gram-negative clinical isolates collected in 2020 as part of the SENTRY antimicrobial surveillance program[J]. Microbiol Spectr, 2022, 10(2):e0271221. doi: 10.1128/spectrum.02712-21 |
[71]
|
LONGSHAW C, MANISSERO D, TSUJI M, et al. In vitro activity of the siderophore cephalosporin, cefiderocol, against molecularly characterized, carbapenem-non-susceptible Gram-negative bacteria from Europe[J]. JAC Antimicrob Resist, 2020, 2(3):dlaa060. doi: 10.1093/jacamr/dlaa060 |
[72]
|
KARAKONSTANTIS S, ROUSAKI M, KRITSOTAKIS E I. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance[J]. Antibiotics(Basel), 2022, 11(6):723. |