留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

核-壳结构的脂质-聚合物杂化纳米粒的研究进展

刘丹 张军东 廉云飞 房秋雨 李娟

刘丹, 张军东, 廉云飞, 房秋雨, 李娟. 核-壳结构的脂质-聚合物杂化纳米粒的研究进展[J]. 药学实践与服务, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
引用本文: 刘丹, 张军东, 廉云飞, 房秋雨, 李娟. 核-壳结构的脂质-聚合物杂化纳米粒的研究进展[J]. 药学实践与服务, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
Citation: LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003

核-壳结构的脂质-聚合物杂化纳米粒的研究进展

doi: 10.3969/j.issn.1006-0111.2018.01.003

Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles

  • 摘要: 核-壳结构的脂质-聚合物杂化纳米粒(CSLPHNs)是以具有生物可降解性的聚合物纳米粒为核,外层包覆单层或多层具有生物膜仿生性的脂质壳而形成,结合了纳米粒和脂质体的双重优点,具有粒径小、载药量高、生物相容性好及缓控释给药等优势,在药物递送系统中应用甚广。笔者在查阅近年国内外文献的基础上归纳了CSLPHNs的基本特性、制备方法及在眼部给药、肿瘤治疗及临床诊断成像中的最新研究进展。
  • [1] Mandal B, Bhattacharjee H, Mittal N, et al. Core shell-type lipid polymer hybrid nanoparticles as a drug delivery platform[J]. Nanomedicine, 2013, 9(4):474-491.
    [2] Hadinoto K, Sundaresan A, Cheow WS. Lipid polymer hybrid nanoparticles as a new generation therapeutic delivery platform:a review[J].Eur J Pharm Biopharm, 2013, 85(3Pt A):427-443.
    [3] 赵一擎, 刘颖, 冯年平. 脂质聚合物纳米粒的研究进展[J]. 华西药学杂志, 2014, 29(5):602-605.
    [4] 王盈. 载溶酶体的脂质-聚合物杂化纳米粒的制备、表征和胶体稳定性评价[J]. 中国医药工业杂志,2016,47(11):1453.
    [5] Chan JM, Zhang L, Yuet KP, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery[J]. Biomaterials, 2009, 30(8):1627-1634.
    [6] 杨龙, 陈凌云, 魏刚. 眼用脂质纳米制剂的研究进展[J]. 中国医药工业杂志, 2016, 47(12):1592-1599.
    [7] Zhang L, Zhu D, Dong X, et al. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery[J].Int J Nanomedicine,2015, 10:2101-2114.
    [8] Almeida H, Amaral MH, Lob o P, et al. Applications of poloxamers in ophthalmic pharmaceutical formulations:an overview[J].Expert Opin Drug Deliv, 2013, 10(9):1223-1237.
    [9] Bucolo C, Drago F, Salomone S. Ocular drug delivery:a clue from nanotechnology[J].Front Pharmacol, 2012, 3(3):188.
    [10] 蒋敏, 甘莉, 甘勇, 等. 新型眼用脂质载体制剂的研究进展[J]. 中国药学杂志, 2012, 47(16):1265-1270.
    [11] Diebold Y, Jarrín M, Saez V, et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP)[J]. Biomaterials, 2007, 28(8):1553-1564.
    [12] Gan L, Wang J, Zhao Y, et al. Hyaluronan-modified core shell liponanoparticles targeting CD44-positive retinal pigment epithelium cells via intravitreal injection[J]. Biomaterials, 2013, 34(24):5978-5987.
    [13] Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010:a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380(9859):2224-2260.
    [14] Krishnamurthy S, Vaiyapuri R, Zhang L, et al. Lipid-coated polymeric nanoparticles for cancer drug delivery[J].Biomater Sci, 2015, 3(7):923-936.
    [15] Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents.[J]. Adv Drug Deliv Rev, 2002, 54(5):675-693.
    [16] Shen Z, Loe DT, Awino JK, et al. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles[J]. Nanoscale, 2016, 8(31):14821-14835.
    [17] Wang F, Chen L, Zhang R, et al. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer[J]. J Control Release, 2014, 196:222-233.
    [18] Shi K, Zhou J, Zhang Q, et al. Arginine-glycine-aspartic acid-modified lipid-polymer hybrid nanoparticles for docetaxel delivery in glioblastoma multiforme[J]. J Biomed Nanotechnol, 2015, 11(3):382-391.
    [19] Zhao Y, Lin D, Wu F, et al. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery[J]. Int J Mol Sci, 2014, 15(10):17565-17576.
    [20] 张悦, 邢仕歌, 王震, 等. 核酸适配体在靶向药物传递中的研究进展[J]. 生物化学与生物物理进展, 2015, 42(3):236-243.
    [21] Li L, Xiang D, Shigdar S, et al. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells[J]. Int J Nanomedicine, 2014, 9:1083-1096.
    [22] Zhang LJ, Wu B, Zhou W, et al. Two-component reduction-sensitive lipid polymer hybrid nanoparticles for triggered drug release and enhanced in vitro and in vivo anti-tumor efficacy[J]. Biomater Sci, 2016, 5(1):98-110.
    [23] Kong SD, Sartor M, Hu CM, et al. Magnetic field activated lipid polymer hybrid nanoparticles for stimuli-responsive drug release[J]. Acta Biomater, 2013, 9(3):5447-5452.
    [24] Clawson C, Ton L, Aryal S, et al. Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered poly (ethylene glycol) shedding[J]. Langmuir, 2011, 27(17):10556-10561.
    [25] Yan J, Wang Y, Zhang X, et al. Targeted nanomedicine for prostate cancer therapy:docetaxel and curcumin co-encapsulated lipid polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo[J]. Drug Deliv, 2016, 23(5):1757-1762.
    [26] Zhao X, Li F, Li Y, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer[J]. Biomaterials, 2015, 46:13-25.
    [27] Mieszawska AJ, Gianella A, Cormode DP, et al. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging[J]. Chem Commun(Camb), 2012, 48(47):5835-5837.
  • [1] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [2] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [3] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 1-6. doi: 10.12206/j.issn.2097-2024.202308062
    [4] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(7): 1-7. doi: 10.12206/j.issn.2097-2024.202303023
    [5] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [6] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
  • 加载中
计量
  • 文章访问数:  3918
  • HTML全文浏览量:  357
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-15
  • 修回日期:  2017-12-28

核-壳结构的脂质-聚合物杂化纳米粒的研究进展

doi: 10.3969/j.issn.1006-0111.2018.01.003

摘要: 核-壳结构的脂质-聚合物杂化纳米粒(CSLPHNs)是以具有生物可降解性的聚合物纳米粒为核,外层包覆单层或多层具有生物膜仿生性的脂质壳而形成,结合了纳米粒和脂质体的双重优点,具有粒径小、载药量高、生物相容性好及缓控释给药等优势,在药物递送系统中应用甚广。笔者在查阅近年国内外文献的基础上归纳了CSLPHNs的基本特性、制备方法及在眼部给药、肿瘤治疗及临床诊断成像中的最新研究进展。

English Abstract

刘丹, 张军东, 廉云飞, 房秋雨, 李娟. 核-壳结构的脂质-聚合物杂化纳米粒的研究进展[J]. 药学实践与服务, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
引用本文: 刘丹, 张军东, 廉云飞, 房秋雨, 李娟. 核-壳结构的脂质-聚合物杂化纳米粒的研究进展[J]. 药学实践与服务, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
Citation: LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
参考文献 (27)

目录

    /

    返回文章
    返回