留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

抗肿瘤多药耐药微管蛋白调节剂的研究进展

施赛健 张文 厉廷有 庄春林

施赛健, 张文, 厉廷有, 庄春林. 抗肿瘤多药耐药微管蛋白调节剂的研究进展[J]. 药学实践与服务, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
引用本文: 施赛健, 张文, 厉廷有, 庄春林. 抗肿瘤多药耐药微管蛋白调节剂的研究进展[J]. 药学实践与服务, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
SHI Saijian, ZHANG Wen, LI Tingyou, ZHUANG Chunlin. Recent research progress on anti-microtubule agents targeting multi-drug resistant cancers[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
Citation: SHI Saijian, ZHANG Wen, LI Tingyou, ZHUANG Chunlin. Recent research progress on anti-microtubule agents targeting multi-drug resistant cancers[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001

抗肿瘤多药耐药微管蛋白调节剂的研究进展

doi: 10.3969/j.issn.1006-0111.2017.05.001
基金项目: 上海市教委青年科研骨干培养计划(晨光计划,16CG42)

Recent research progress on anti-microtubule agents targeting multi-drug resistant cancers

  • 摘要: 2015年,全世界有超过800万人死于肿瘤。传统化疗药物仍广泛应用于临床一线,但超过50%的肿瘤对此类药物产生明显的耐药性。微管蛋白调节剂已成为临床证实有效的抗癌药物。然而,紫杉醇、长春碱等传统微管蛋白调节剂也会产生严重耐药。近年来,研究发现作用于微管蛋白秋水仙碱位点的微管蛋白调节剂对抗肿瘤多药耐药具有很好的效果。本文综述近年来此类抗肿瘤多药耐药微管蛋白调节剂的研究进展。
  • [1] Parker AL,Kavallaris M,McCarroll JA.Microtubules and their role in cellular stress in cancer[J].Front Oncol,2014,4:153.
    [2] Prosser SL,Pelletier L.Mitotic spindle assembly in animal cells: a fine balancing act[J].Nat Rev Mol Cell Biol,2017,18(3):187-201.
    [3] Jordan MA,Wilson L.Microtubules as a target for anticancer drugs[J].Nat Rev Cancer,2004,4(4):253-265.
    [4] Li W,Zhang H,Assaraf YG,et al.Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies[J].Drug Resist Updat,2016,27:14-29.
    [5] Krishna R,Mayer LD.Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs[J].Eur J Pharm Sci,2000,11(4):265-283.
    [6] Hao XY,Widersten M,Ridderstrom M,et al.Co-variation of glutathione transferase expression and cytostatic drug resistance in HeLa cells: establishment of class Mu glutathione transferase M3-3 as the dominating isoenzyme[J].Biochem J,1994,297 (Pt 1):59-67.
    [7] Ogiso Y,Tomida A,Tsuruo T.Nuclear localization of proteasomes participates in stress-inducible resistance of solid tumor cells to topoisomerase Ⅱ-directed drugs[J].Cancer Res,2002,62(17):5008-5012.
    [8] Fernald K,Kurokawa M.Evading apoptosis in cancer[J].Trends Cell Biol,2013,23(12):620-633.
    [9] Krauze A,Grinberga S,Krasnova L,et al.Thieno[2,3-b]pyridines——a new class of multidrug resistance (MDR) modulators[J].Bioorg Med Chem,2014,22(21):5860-5870.
    [10] Dostal V,Libusova L.Microtubule drugs: action, selectivity, and resistance across the kingdoms of life[J].Protoplasma,2014,251(5):991-1005.
    [11] Hu T,Li Z,Gao CY,et al.Mechanisms of drug resistance in colon cancer and its therapeutic strategies[J].World J Gastroenterol,2016,22(30):6876-6889.
    [12] Kavallaris M.Microtubules and resistance to tubulin-binding agents[J].Nat Rev Cancer,2010,10(3):194-204.
    [13] Kavallaris M,Annereau JP,Barret JM.Potential mechanisms of resistance to microtubule inhibitors[J].Semin Oncol,2008,35(3 Suppl 3):S22-S27.
    [14] Gan PP,Pasquier E,Kavallaris M.Class Ⅲ beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer[J].Cancer Res,2007,67(19):9356-9363.
    [15] Amos LA.What tubulin drugs tell us about microtubule structure and dynamics[J].Semin Cell Dev Biol,2011,22(9):916-926.
    [16] Löwe J,Li H,Downing KH,et al.Refined structure of αβ-tubulin at 3.5 Å resolution[J].J Mol Biol,2001,313(5):1045-1057.
    [17] Devambatla RK,Namjoshi OA,Choudhary S,et al.Design, synthesis, and preclinical evaluation of 4-substituted-5-methyl-furo[2,3-d]pyrimidines as microtubule targeting agents that are effective against multidrug resistant cancer cells[J].J Med Chem,2016,59(12):5752-5765.
    [18] Philchenkov AA,Zavelevich MP,Tryndyak VP,et al.Antiproliferative and proapoptotic effects of a pyrrole containing arylthioindole in human Jurkat leukemia cell line and multidrug-resistant Jurkat/A4 cells[J].Cancer Biol Ther,2015,16(12):1820-1829.
    [19] Gan PP,McCarroll JA,Po'uha ST,et al.Microtubule dynamics, mitotic arrest, and apoptosis: drug-induced differential effects of betaⅢ-tubulin[J].Mol Cancer Ther,2010,9(5):1339-1348.
    [20] Lu Y,Chen J,Xiao M,et al.An overview of tubulin inhibitors that interact with the colchicine binding site[J].Pharm Res,2012,29(11):2943-2971.
    [21] Chamberlain MC,Grimm S,Phuphanich S,et al.A phase 2 trial of verubulin for recurrent glioblastoma: a prospective study by the Brain Tumor Investigational Consortium (BTIC)[J].J Neurooncol,2014,118(2):335-343.
    [22] Kasibhatla S,Baichwal V,Cai SX,et al.MPC-6827: a small-molecule inhibitor of microtubule formation that is not a substrate for multidrug resistance pumps[J].Cancer Res,2007,67(12):5865-5871.
    [23] Subbiah IM,Lenihan DJ,Tsimberidou AM.Cardiovascular toxicity profiles of vascular-disrupting agents[J].Oncologist,2011,16(8):1120-1130.
    [24] Mahal K,Resch M,Ficner R,et al.Effects of the tumor-vasculature-disrupting agent verubulin and two heteroaryl analogues on cancer cells, endothelial cells, and blood vessels[J].ChemMedChem,2014,9(4):847-854.
    [25] Wang XF,Guan F,Ohkoshi E,et al.Optimization of 4-(N-cycloamino)phenylquinazolines as a novel class of tubulin-polymerization inhibitors targeting the colchicine site[J].J Med Chem,2014,57(4):1390-1402.
    [26] Gangjee A,Zhao Y,Raghavan S,et al.Structure-activity relationship and in vitro and in vivo evaluation of the potent cytotoxic anti-microtubule agent N-(4-methoxyphenyl)-N,2,6-trimethyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-aminium chloride and its analogues as antitumor agents[J].J Med Chem,2013,56(17):6829-6844.
    [27] Cao D,Liu Y,Yan W,et al.Design, synthesis, and evaluation of in vitro and in vivo anticancer activity of 4-substituted coumarins: A novel class of potent tubulin polymerization inhibitors[J].J Med Chem,2016,59(12):5721-5739.
    [28] Zhou B,Xing C.Diverse molecular targets for chalcones with varied bioactivities[J].Med Chem (Los Angeles),2015,5(8):388-404.
    [29] Gwaltney SL,Imade HM,Barr KJ,et al.Novel sulfonate analogues of combretastatin A-4: potent antimitotic agents[J].Bioorg Med Chem Lett,2001,11(7):871-874.
    [30] Romagnoli R,Baraldi PG,Brancale A,et al.Convergent synthesis and biological evaluation of 2-amino-4-(3',4',5'-trimethoxyphenyl)-5-aryl thiazoles as microtubule targeting agents[J].J Med Chem,2011,54(14):5144-5153.
    [31] Schobert R,Biersack B,Dietrich A,et al.4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and -N-methylimidazoles that are cytotoxic against combretastatin: A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model[J].J Med Chem,2010,53(18):6595-6602.
    [32] Nathwani SM,Hughes L,Greene LM,et al.Novel cis-restricted beta-lactam combretastatin A-4 analogues display anti-vascular and anti-metastatic properties in vitro[J].Oncol Rep,2013,29(2):585-594.
    [33] Cai D,Qiu Z,Yao W,et al.YSL-12,a novel microtubule-destabilizing agent, exerts potent anti-tumor activity against colon cancer in vitro and in vivo[J].Cancer Chemother Pharmacol,2016,77(6):1217-1229.
    [34] Mahal K,Biersack B,Schruefer S,et al.Combretastatin A-4 derived 5-(1-methyl-4-phenyl-imidazol-5-yl)indoles with superior cytotoxic and anti-vascular effects on chemoresistant cancer cells and tumors[J].Eur J Med Chem,2016,118:9-20.
    [35] La Regina G,Bai R,Rensen W,et al.Design and synthesis of 2-heterocyclyl-3-arylthio-1H-indoles as potent tubulin polymerization and cell growth inhibitors with improved metabolic stability[J].J Med Chem,2011,54(24):8394-8406.
    [36] An B,Zhang S,Yan J,et al.Synthesis, in vitro and in vivo evaluation of new hybrids of millepachine and phenstatin as potent tubulin polymerization inhibitors[J].Org Biomol Chem,2017,15(4):852-862.
    [37] Romagnoli R,Baraldi PG,Salvador MK,et al.Discovery and optimization of a series of 2-aryl-4-amino-5-(3',4',5'-trimethoxybenzoyl)thiazoles as novel anticancer agents[J].J Med Chem,2012,55(11):5433-5445.
    [38] Hwang DJ,Wang J,Li W,et al.Structural optimization of indole derivatives acting at colchicine binding site as potential anticancer agents[J].ACS Med Chem Lett,2015,6(9):993-997.
    [39] Romagnoli R,Baraldi PG,Salvador MK,et al.Synthesis and biological evaluation of 2-(alkoxycarbonyl)-3-anilinobenzo[b]thiophenes and thieno[2,3-b]pyridines as new potent anticancer agents[J].J Med Chem,2013,56(6):2606-2618.
    [40] Wang X,Wu E,Wu J,et al.An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells[J].PLoS ONE,2013,8(6):e65686.
    [41] Romagnoli R,Baraldi PG,Salvador MK,et al.Synthesis, antimitotic and antivascular activity of 1-(3',4',5'-trimethoxybenzoyl)-3-arylamino-5-amino-1,2,4-triazoles[J].J Med Chem,2014,57(15):6795-6808.
    [42] Zhou B,Yu X,Zhuang C,et al.Unambiguous identification of beta-tubulin as the direct cellular target responsible for the cytotoxicity of chalcone by photoaffinity labeling[J].Chem Med Chem,2016,11(13):1436-1445.
    [43] Yang Z,Wu W,Wang J,et al.Synthesis and biological evaluation of novel millepachine derivatives as a new class of tubulin polymerization inhibitors[J].J Med Chem,2014,57(19):7977-7989.
    [44] Wang G,Li C,He L,et al.Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents[J].Bioorg Med Chem,2014,22(7):2060-2079.
    [45] Zhu C,Zuo Y,Wang R,et al.Discovery of potent cytotoxic ortho-aryl chalcones as new scaffold targeting tubulin and mitosis with affinity-based fluorescence[J].J Med Chem,2014,57(15):6364-6382.
    [46] Yan J,Chen J,Zhang S,et al.Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo[J].J Med Chem,2016,59(11):5264-5283.
    [47] Aoyama A,Katayama R,Oh-Hara T,et al.Tivantinib (ARQ 197) exhibits antitumor activity by directly interacting with tubulin and overcomes ABC transporter-mediated drug resistance[J].Mol Cancer Ther,2014,13(12):2978-2990.
    [48] Eurtivong C,Semenov V,Semenova M,et al.3-Amino-thieno[2,3-b]pyridines as microtubule-destabilising agents: Molecular modelling and biological evaluation in the sea urchin embryo and human cancer cells[J].Bioorg Med Chem,2017,25(2):658-664.
    [49] Zheng YB,Gong JH,Liu XJ,et al.A Novel nitrobenzoate microtubule inhibitor that overcomes multidrug resistance exhibits antitumor activity[J].Sci Rep,2016,6:31472.
    [50] Nakagawa-Goto K,Oda A,Hamel E,et al.Development of a novel class of tubulin inhibitor from desmosdumotin B with a hydroxylated bicyclic B-ring[J].J Med Chem,2015,58(5):2378-2389.
    [51] Lee WH,Liu HE,Chang JY,et al.MPT0B169, a new tubulin inhibitor, inhibits cell growth and induces G2/M arrest in nonresistant and paclitaxel-resistant cancer cells[J].Pharmacology,2013,92(1-2):90-98.
  • [1] 沈洁, 黄飞, 张星杰, 姚建忠.  双模抗肿瘤光敏剂二氢卟吩e6-偕氟尿嘧啶的合成和生物活性 . 药学实践与服务, 2024, 42(1): 18-23. doi: 10.12206/j.issn.2097-2024.202306030
    [2] 温萍, 张俊平.  隐丹参酮及其衍生物抗肿瘤活性研究进展 . 药学实践与服务, 2023, 41(4): 207-211. doi: 10.12206/j.issn.2097-2024.202208090
    [3] 戴佳炜, 施赛健, 宋瑷蔚, 王志斌, 庄春林, 夏春年.  吲哚查尔酮衍生物FC58的抗白血病多药耐药活性研究 . 药学实践与服务, 2021, 39(4): 305-308. doi: 10.12206/j.issn.1006-0111.202012008
    [4] 马福家, 孟志, 张星杰, 王媛, 马志强, 姚建忠.  二氢卟吩p6醚类光敏剂的合成及光动力抗癌活性研究 . 药学实践与服务, 2020, 38(1): 52-56. doi: 10.3969/j.issn.1006-0111.201907017
    [5] 韩凌, 孙治国, 鲁莹.  抗肿瘤药物纳米粒载体的制备材料、包载药物及修饰方法 . 药学实践与服务, 2018, 36(4): 307-312,350. doi: 10.3969/j.issn.1006-0111.2018.04.005
    [6] 程丹, 许幼发, 傅志勤, 陈建明.  靶向肿瘤微环境的紫杉醇前药研究进展 . 药学实践与服务, 2018, 36(1): 1-8. doi: 10.3969/j.issn.1006-0111.2018.01.001
    [7] 刘明辉, 刘俊宏, 韩贵焱, 张星杰, 盛春泉, 姚建忠.  二氢卟吩p6-13,15-环酰亚胺类光敏剂的设计合成 . 药学实践与服务, 2017, 35(1): 26-30,35. doi: 10.3969/j.issn.1006-0111.2017.01.007
    [8] 张悦, 王静, 李铁军.  海带多糖抗肿瘤活性研究进展 . 药学实践与服务, 2016, 34(5): 393-395,473. doi: 10.3969/j.issn.1006-0111.2016.05.003
    [9] 康烨, 周密, 阎澜.  真菌多药耐药外排机制的研究进展 . 药学实践与服务, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
    [10] 陈自强, 张玮, 李玉平, 王晓宇.  纳米载药系统逆转肿瘤及骨肉瘤多药耐药的研究进展 . 药学实践与服务, 2016, 34(2): 103-105. doi: 10.3969/j.issn.1006-0111.2016.02.002
    [11] 苏瑞强, 李晏, 彭坤, 李洁, 杨全, 杨献文.  海洋拟诺卡菌SCSIO 11492中次生代谢产物的分离及其抗肿瘤活性研究 . 药学实践与服务, 2015, 33(5): 406-410. doi: 10.3969/j.issn.1006-0111.2015.05.006
    [12] 金夕琳, 张洁, 江海龙, 陆一鸣.  蛇毒毒素的抗肿瘤作用及其在医药领域的应用 . 药学实践与服务, 2015, 33(6): 502-504,517. doi: 10.3969/j.issn.1006-0111.2015.06.006
    [13] 张涛, 王甜甜, 张一凯, 牛春娟, 李令振, 李科.  2-(4-三氟甲基苯基)-4-乙基-呋喃-3-酰胺衍生物的设计、合成及其抗肿瘤活性研究 . 药学实践与服务, 2014, 32(2): 98-101,120. doi: 10.3969/j.issn.1006-0111.2014.02.006
    [14] 孙囡囡, 刘嘉, 郑灿辉, 周有骏.  新型四氢-2-萘醇类化合物的合成、晶体结构及抗肿瘤活性 . 药学实践与服务, 2014, 32(3): 191-194. doi: 10.3969/j.issn.1006-0111.2014.03.007
    [15] 李唯, 周峰, 郑灿辉, 周有骏.  结合微管蛋白位点的小分子血管阻断剂的研究进展 . 药学实践与服务, 2013, 31(6): 401-404,423. doi: 10.3969/j.issn.1006-0111.2013.06.001
    [16] 王园园, 王鑫, 王义善.  瑞香狼毒提取物尼地吗啉的抗肿瘤研究概况 . 药学实践与服务, 2011, 29(5): 328-330,335.
    [17] 廖洪利, 苏春丽, 王伟新, 杨倩.  抗肿瘤青蒿素衍生物的研究 . 药学实践与服务, 2009, 27(2): 84-86.
    [18] 董环文, 刘超美, 何秋琴, 赵荔华.  斑蝥素及其衍生物的抗肿瘤构效关系研究进展 . 药学实践与服务, 2007, (5): 276-280.
    [19] 王彦, 刁亚英, 姜远英.  ABC转运蛋白与肿瘤多药耐药 . 药学实践与服务, 2003, (1): 28-31.
    [20] 王昌林, 周月芬, 李昱.  喜树碱类抗肿瘤药物研究概况 . 药学实践与服务, 2001, (3): 172-174.
  • 加载中
计量
  • 文章访问数:  5949
  • HTML全文浏览量:  402
  • PDF下载量:  3942
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-03
  • 修回日期:  2017-06-19

抗肿瘤多药耐药微管蛋白调节剂的研究进展

doi: 10.3969/j.issn.1006-0111.2017.05.001
    基金项目:  上海市教委青年科研骨干培养计划(晨光计划,16CG42)

摘要: 2015年,全世界有超过800万人死于肿瘤。传统化疗药物仍广泛应用于临床一线,但超过50%的肿瘤对此类药物产生明显的耐药性。微管蛋白调节剂已成为临床证实有效的抗癌药物。然而,紫杉醇、长春碱等传统微管蛋白调节剂也会产生严重耐药。近年来,研究发现作用于微管蛋白秋水仙碱位点的微管蛋白调节剂对抗肿瘤多药耐药具有很好的效果。本文综述近年来此类抗肿瘤多药耐药微管蛋白调节剂的研究进展。

English Abstract

施赛健, 张文, 厉廷有, 庄春林. 抗肿瘤多药耐药微管蛋白调节剂的研究进展[J]. 药学实践与服务, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
引用本文: 施赛健, 张文, 厉廷有, 庄春林. 抗肿瘤多药耐药微管蛋白调节剂的研究进展[J]. 药学实践与服务, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
SHI Saijian, ZHANG Wen, LI Tingyou, ZHUANG Chunlin. Recent research progress on anti-microtubule agents targeting multi-drug resistant cancers[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
Citation: SHI Saijian, ZHANG Wen, LI Tingyou, ZHUANG Chunlin. Recent research progress on anti-microtubule agents targeting multi-drug resistant cancers[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
参考文献 (51)

目录

    /

    返回文章
    返回