留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

抗肿瘤多药耐药微管蛋白调节剂的研究进展

施赛健 张文 厉廷有 庄春林

施赛健, 张文, 厉廷有, 庄春林. 抗肿瘤多药耐药微管蛋白调节剂的研究进展[J]. 药学实践与服务, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
引用本文: 施赛健, 张文, 厉廷有, 庄春林. 抗肿瘤多药耐药微管蛋白调节剂的研究进展[J]. 药学实践与服务, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
SHI Saijian, ZHANG Wen, LI Tingyou, ZHUANG Chunlin. Recent research progress on anti-microtubule agents targeting multi-drug resistant cancers[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
Citation: SHI Saijian, ZHANG Wen, LI Tingyou, ZHUANG Chunlin. Recent research progress on anti-microtubule agents targeting multi-drug resistant cancers[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001

抗肿瘤多药耐药微管蛋白调节剂的研究进展

doi: 10.3969/j.issn.1006-0111.2017.05.001
基金项目: 上海市教委青年科研骨干培养计划(晨光计划,16CG42)

Recent research progress on anti-microtubule agents targeting multi-drug resistant cancers

  • 摘要: 2015年,全世界有超过800万人死于肿瘤。传统化疗药物仍广泛应用于临床一线,但超过50%的肿瘤对此类药物产生明显的耐药性。微管蛋白调节剂已成为临床证实有效的抗癌药物。然而,紫杉醇、长春碱等传统微管蛋白调节剂也会产生严重耐药。近年来,研究发现作用于微管蛋白秋水仙碱位点的微管蛋白调节剂对抗肿瘤多药耐药具有很好的效果。本文综述近年来此类抗肿瘤多药耐药微管蛋白调节剂的研究进展。
  • [1] Parker AL,Kavallaris M,McCarroll JA.Microtubules and their role in cellular stress in cancer[J].Front Oncol,2014,4:153.
    [2] Prosser SL,Pelletier L.Mitotic spindle assembly in animal cells: a fine balancing act[J].Nat Rev Mol Cell Biol,2017,18(3):187-201.
    [3] Jordan MA,Wilson L.Microtubules as a target for anticancer drugs[J].Nat Rev Cancer,2004,4(4):253-265.
    [4] Li W,Zhang H,Assaraf YG,et al.Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies[J].Drug Resist Updat,2016,27:14-29.
    [5] Krishna R,Mayer LD.Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs[J].Eur J Pharm Sci,2000,11(4):265-283.
    [6] Hao XY,Widersten M,Ridderstrom M,et al.Co-variation of glutathione transferase expression and cytostatic drug resistance in HeLa cells: establishment of class Mu glutathione transferase M3-3 as the dominating isoenzyme[J].Biochem J,1994,297 (Pt 1):59-67.
    [7] Ogiso Y,Tomida A,Tsuruo T.Nuclear localization of proteasomes participates in stress-inducible resistance of solid tumor cells to topoisomerase Ⅱ-directed drugs[J].Cancer Res,2002,62(17):5008-5012.
    [8] Fernald K,Kurokawa M.Evading apoptosis in cancer[J].Trends Cell Biol,2013,23(12):620-633.
    [9] Krauze A,Grinberga S,Krasnova L,et al.Thieno[2,3-b]pyridines——a new class of multidrug resistance (MDR) modulators[J].Bioorg Med Chem,2014,22(21):5860-5870.
    [10] Dostal V,Libusova L.Microtubule drugs: action, selectivity, and resistance across the kingdoms of life[J].Protoplasma,2014,251(5):991-1005.
    [11] Hu T,Li Z,Gao CY,et al.Mechanisms of drug resistance in colon cancer and its therapeutic strategies[J].World J Gastroenterol,2016,22(30):6876-6889.
    [12] Kavallaris M.Microtubules and resistance to tubulin-binding agents[J].Nat Rev Cancer,2010,10(3):194-204.
    [13] Kavallaris M,Annereau JP,Barret JM.Potential mechanisms of resistance to microtubule inhibitors[J].Semin Oncol,2008,35(3 Suppl 3):S22-S27.
    [14] Gan PP,Pasquier E,Kavallaris M.Class Ⅲ beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer[J].Cancer Res,2007,67(19):9356-9363.
    [15] Amos LA.What tubulin drugs tell us about microtubule structure and dynamics[J].Semin Cell Dev Biol,2011,22(9):916-926.
    [16] Löwe J,Li H,Downing KH,et al.Refined structure of αβ-tubulin at 3.5 Å resolution[J].J Mol Biol,2001,313(5):1045-1057.
    [17] Devambatla RK,Namjoshi OA,Choudhary S,et al.Design, synthesis, and preclinical evaluation of 4-substituted-5-methyl-furo[2,3-d]pyrimidines as microtubule targeting agents that are effective against multidrug resistant cancer cells[J].J Med Chem,2016,59(12):5752-5765.
    [18] Philchenkov AA,Zavelevich MP,Tryndyak VP,et al.Antiproliferative and proapoptotic effects of a pyrrole containing arylthioindole in human Jurkat leukemia cell line and multidrug-resistant Jurkat/A4 cells[J].Cancer Biol Ther,2015,16(12):1820-1829.
    [19] Gan PP,McCarroll JA,Po'uha ST,et al.Microtubule dynamics, mitotic arrest, and apoptosis: drug-induced differential effects of betaⅢ-tubulin[J].Mol Cancer Ther,2010,9(5):1339-1348.
    [20] Lu Y,Chen J,Xiao M,et al.An overview of tubulin inhibitors that interact with the colchicine binding site[J].Pharm Res,2012,29(11):2943-2971.
    [21] Chamberlain MC,Grimm S,Phuphanich S,et al.A phase 2 trial of verubulin for recurrent glioblastoma: a prospective study by the Brain Tumor Investigational Consortium (BTIC)[J].J Neurooncol,2014,118(2):335-343.
    [22] Kasibhatla S,Baichwal V,Cai SX,et al.MPC-6827: a small-molecule inhibitor of microtubule formation that is not a substrate for multidrug resistance pumps[J].Cancer Res,2007,67(12):5865-5871.
    [23] Subbiah IM,Lenihan DJ,Tsimberidou AM.Cardiovascular toxicity profiles of vascular-disrupting agents[J].Oncologist,2011,16(8):1120-1130.
    [24] Mahal K,Resch M,Ficner R,et al.Effects of the tumor-vasculature-disrupting agent verubulin and two heteroaryl analogues on cancer cells, endothelial cells, and blood vessels[J].ChemMedChem,2014,9(4):847-854.
    [25] Wang XF,Guan F,Ohkoshi E,et al.Optimization of 4-(N-cycloamino)phenylquinazolines as a novel class of tubulin-polymerization inhibitors targeting the colchicine site[J].J Med Chem,2014,57(4):1390-1402.
    [26] Gangjee A,Zhao Y,Raghavan S,et al.Structure-activity relationship and in vitro and in vivo evaluation of the potent cytotoxic anti-microtubule agent N-(4-methoxyphenyl)-N,2,6-trimethyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-aminium chloride and its analogues as antitumor agents[J].J Med Chem,2013,56(17):6829-6844.
    [27] Cao D,Liu Y,Yan W,et al.Design, synthesis, and evaluation of in vitro and in vivo anticancer activity of 4-substituted coumarins: A novel class of potent tubulin polymerization inhibitors[J].J Med Chem,2016,59(12):5721-5739.
    [28] Zhou B,Xing C.Diverse molecular targets for chalcones with varied bioactivities[J].Med Chem (Los Angeles),2015,5(8):388-404.
    [29] Gwaltney SL,Imade HM,Barr KJ,et al.Novel sulfonate analogues of combretastatin A-4: potent antimitotic agents[J].Bioorg Med Chem Lett,2001,11(7):871-874.
    [30] Romagnoli R,Baraldi PG,Brancale A,et al.Convergent synthesis and biological evaluation of 2-amino-4-(3',4',5'-trimethoxyphenyl)-5-aryl thiazoles as microtubule targeting agents[J].J Med Chem,2011,54(14):5144-5153.
    [31] Schobert R,Biersack B,Dietrich A,et al.4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and -N-methylimidazoles that are cytotoxic against combretastatin: A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model[J].J Med Chem,2010,53(18):6595-6602.
    [32] Nathwani SM,Hughes L,Greene LM,et al.Novel cis-restricted beta-lactam combretastatin A-4 analogues display anti-vascular and anti-metastatic properties in vitro[J].Oncol Rep,2013,29(2):585-594.
    [33] Cai D,Qiu Z,Yao W,et al.YSL-12,a novel microtubule-destabilizing agent, exerts potent anti-tumor activity against colon cancer in vitro and in vivo[J].Cancer Chemother Pharmacol,2016,77(6):1217-1229.
    [34] Mahal K,Biersack B,Schruefer S,et al.Combretastatin A-4 derived 5-(1-methyl-4-phenyl-imidazol-5-yl)indoles with superior cytotoxic and anti-vascular effects on chemoresistant cancer cells and tumors[J].Eur J Med Chem,2016,118:9-20.
    [35] La Regina G,Bai R,Rensen W,et al.Design and synthesis of 2-heterocyclyl-3-arylthio-1H-indoles as potent tubulin polymerization and cell growth inhibitors with improved metabolic stability[J].J Med Chem,2011,54(24):8394-8406.
    [36] An B,Zhang S,Yan J,et al.Synthesis, in vitro and in vivo evaluation of new hybrids of millepachine and phenstatin as potent tubulin polymerization inhibitors[J].Org Biomol Chem,2017,15(4):852-862.
    [37] Romagnoli R,Baraldi PG,Salvador MK,et al.Discovery and optimization of a series of 2-aryl-4-amino-5-(3',4',5'-trimethoxybenzoyl)thiazoles as novel anticancer agents[J].J Med Chem,2012,55(11):5433-5445.
    [38] Hwang DJ,Wang J,Li W,et al.Structural optimization of indole derivatives acting at colchicine binding site as potential anticancer agents[J].ACS Med Chem Lett,2015,6(9):993-997.
    [39] Romagnoli R,Baraldi PG,Salvador MK,et al.Synthesis and biological evaluation of 2-(alkoxycarbonyl)-3-anilinobenzo[b]thiophenes and thieno[2,3-b]pyridines as new potent anticancer agents[J].J Med Chem,2013,56(6):2606-2618.
    [40] Wang X,Wu E,Wu J,et al.An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells[J].PLoS ONE,2013,8(6):e65686.
    [41] Romagnoli R,Baraldi PG,Salvador MK,et al.Synthesis, antimitotic and antivascular activity of 1-(3',4',5'-trimethoxybenzoyl)-3-arylamino-5-amino-1,2,4-triazoles[J].J Med Chem,2014,57(15):6795-6808.
    [42] Zhou B,Yu X,Zhuang C,et al.Unambiguous identification of beta-tubulin as the direct cellular target responsible for the cytotoxicity of chalcone by photoaffinity labeling[J].Chem Med Chem,2016,11(13):1436-1445.
    [43] Yang Z,Wu W,Wang J,et al.Synthesis and biological evaluation of novel millepachine derivatives as a new class of tubulin polymerization inhibitors[J].J Med Chem,2014,57(19):7977-7989.
    [44] Wang G,Li C,He L,et al.Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents[J].Bioorg Med Chem,2014,22(7):2060-2079.
    [45] Zhu C,Zuo Y,Wang R,et al.Discovery of potent cytotoxic ortho-aryl chalcones as new scaffold targeting tubulin and mitosis with affinity-based fluorescence[J].J Med Chem,2014,57(15):6364-6382.
    [46] Yan J,Chen J,Zhang S,et al.Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo[J].J Med Chem,2016,59(11):5264-5283.
    [47] Aoyama A,Katayama R,Oh-Hara T,et al.Tivantinib (ARQ 197) exhibits antitumor activity by directly interacting with tubulin and overcomes ABC transporter-mediated drug resistance[J].Mol Cancer Ther,2014,13(12):2978-2990.
    [48] Eurtivong C,Semenov V,Semenova M,et al.3-Amino-thieno[2,3-b]pyridines as microtubule-destabilising agents: Molecular modelling and biological evaluation in the sea urchin embryo and human cancer cells[J].Bioorg Med Chem,2017,25(2):658-664.
    [49] Zheng YB,Gong JH,Liu XJ,et al.A Novel nitrobenzoate microtubule inhibitor that overcomes multidrug resistance exhibits antitumor activity[J].Sci Rep,2016,6:31472.
    [50] Nakagawa-Goto K,Oda A,Hamel E,et al.Development of a novel class of tubulin inhibitor from desmosdumotin B with a hydroxylated bicyclic B-ring[J].J Med Chem,2015,58(5):2378-2389.
    [51] Lee WH,Liu HE,Chang JY,et al.MPT0B169, a new tubulin inhibitor, inhibits cell growth and induces G2/M arrest in nonresistant and paclitaxel-resistant cancer cells[J].Pharmacology,2013,92(1-2):90-98.
  • [1] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [2] 史生辉, 石飞, 雷琼, 王亚峰, 吴雪花.  青藏高原肺结核合并念珠菌感染患者的病原菌分布特点及耐药率分析 . 药学实践与服务, 2024, 42(6): 260-262, 272. doi: 10.12206/j.issn.2097-2024.202304014
    [3] 崔亚玲, 吴琼, 马良煜, 胡北, 姚东, 许子华.  肝素钠肌醇烟酸酯乳膏中肌醇烟酸酯皮肤药动学研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404006
    [4] 钱淑雨, 李铁军.  耐碳青霉烯类肠杆菌耐药机制的研究进展 . 药学实践与服务, 2024, 42(10): 419-425. doi: 10.12206/j.issn.2097-2024.202405005
    [5] 黄韵, 张正银, 金英, 郑怡菁, 李铁军, 孙莉莉.  耐碳青霉烯类肺炎克雷伯菌及大肠埃希菌临床分离株耐药性及耐药基因分析 . 药学实践与服务, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202309059
    [6] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
    [7] 瞿文君, 白若楠, 崔力, 周琰.  基于联合库存的公立医院多院区药品采购模式分析 . 药学实践与服务, 2024, 42(7): 315-318. doi: 10.12206/j.issn.2097-2024.202401002
    [8] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202401072
    [9] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(7): 278-284. doi: 10.12206/j.issn.2097-2024.202306040
    [10] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
  • 加载中
计量
  • 文章访问数:  8970
  • HTML全文浏览量:  578
  • PDF下载量:  3953
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-03
  • 修回日期:  2017-06-19

抗肿瘤多药耐药微管蛋白调节剂的研究进展

doi: 10.3969/j.issn.1006-0111.2017.05.001
    基金项目:  上海市教委青年科研骨干培养计划(晨光计划,16CG42)

摘要: 2015年,全世界有超过800万人死于肿瘤。传统化疗药物仍广泛应用于临床一线,但超过50%的肿瘤对此类药物产生明显的耐药性。微管蛋白调节剂已成为临床证实有效的抗癌药物。然而,紫杉醇、长春碱等传统微管蛋白调节剂也会产生严重耐药。近年来,研究发现作用于微管蛋白秋水仙碱位点的微管蛋白调节剂对抗肿瘤多药耐药具有很好的效果。本文综述近年来此类抗肿瘤多药耐药微管蛋白调节剂的研究进展。

English Abstract

施赛健, 张文, 厉廷有, 庄春林. 抗肿瘤多药耐药微管蛋白调节剂的研究进展[J]. 药学实践与服务, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
引用本文: 施赛健, 张文, 厉廷有, 庄春林. 抗肿瘤多药耐药微管蛋白调节剂的研究进展[J]. 药学实践与服务, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
SHI Saijian, ZHANG Wen, LI Tingyou, ZHUANG Chunlin. Recent research progress on anti-microtubule agents targeting multi-drug resistant cancers[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
Citation: SHI Saijian, ZHANG Wen, LI Tingyou, ZHUANG Chunlin. Recent research progress on anti-microtubule agents targeting multi-drug resistant cancers[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(5): 385-393,397. doi: 10.3969/j.issn.1006-0111.2017.05.001
参考文献 (51)

目录

    /

    返回文章
    返回